ebook img

Lévy matters II : recent progress in theory and applications: fractional Lévy fields, and scale functions PDF

200 Pages·2012·1.355 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lévy matters II : recent progress in theory and applications: fractional Lévy fields, and scale functions

Lecture Notes in Mathematics 2061 Editors: J.-M.Morel,Cachan B.Teissier,Paris Forfurthervolumes: http://www.springer.com/series/304 Le´vyinStanford(PermissiongrantedbyG.L.Alexanderson) “Le´vy Matters” is a subseries of the Springer Lecture Notes in Mathematics, devoted to the disseminationofimportantdevelopmentsintheareaofStochasticsthatarerootedinthetheoryof Le´vyprocesses.Eachvolumewillcontainstate-of-the-arttheoreticalresultsaswellasapplications ofthisrapidlyevolvingfield,withspecialemphasisonthecaseofdiscontinuouspaths.Contributions tothisseriesbyleadingexpertswillpresentorsurveynewandexcitingareasofrecenttheoretical developments,orwillfocusonsomeofthemorepromisingapplicationsinrelatedfields.Inthisway eachvolumewillconstitute areferencetextthatwillservePhDstudents,postdoctoral researchers andseasonedresearchersalike. Editors OleE.Barndorff-Nielsen JeanJacod ThieleCentreforAppliedMathematics InstitutdeMathe´matiquesdeJussieu inNaturalScience CNRS-UMR7586 DepartmentofMathematicalSciences Universite´Paris6-PierreetMarieCurie AarhusUniversity 75252ParisCedex05,France 8000AarhusC,Denmark [email protected] [email protected] JeanBertoin ClaudiaKlu¨ppelberg Institutfu¨rMathematik ZentrumMathematik Universita¨tZu¨rich TechnischeUniversita¨tMu¨nchen 8057Zu¨rich,Switzerland 85747GarchingbeiMu¨nchen,Germany [email protected] [email protected] ManagingEditors VickyFasen RobertStelzer DepartmentofMathematics InstituteofMathematicalFinance ETHZu¨rich UlmUniversity 8092Zu¨rich,Switzerland 89081Ulm,Germany [email protected] [email protected] ThevolumesinthissubseriesarepublishedundertheauspicesoftheBernoulliSociety. Serge Cohen • Alexey Kuznetsov Andreas E. Kyprianou • Victor Rivero Le´vy Matters II Recent Progress in Theory and Applications: Fractional Le´vy Fields, and Scale Functions 123 SergeCohen AndreasE.Kyprianou Universite´PaulSabatier UniversityofBath InstitutMathe´matiquedeToulouse DepartmentofMathematicalSciences ToulouseCedex4,France Bath,UnitedKingdom AlexeyKuznetsov VictorRivero YorkUniversity CIMATA.C. DepartmentofMathematics Guanajuato,Col.Valenciana,Mexico andStatistics Toronto,ON,Canada ISBN978-3-642-31406-3 ISBN978-3-642-31407-0(eBook) DOI10.1007/978-3-642-31407-0 SpringerHeidelbergNewYorkDordrechtLondon LectureNotesinMathematicsISSNprintedition:0075-8434 ISSNelectronicedition:1617-9692 LibraryofCongressControlNumber:2012945523 MathematicsSubjectClassification(2010):Primary:60G10,60G40,60G51,60G70,60J10,60J45 Secondary:91B28,91B70,91B84 (cid:2)c Springer-VerlagBerlinHeidelberg2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface This second volume of the series “Le´vy Matters” consists of two surveys of two topical areas, namely Fractional Le´vy Fields by Serge Cohen and the Theory of Scale Functions for Spectrally Negative Le´vy Processes by Alexey Kuznetsov, AndreasKyprianouandVictorRivero. Roughly speaking, irregularity is a crucial aspect of random phenomena that appearsin manydifferentcontexts.An importantissue in thisdirectionis to offer tractablemathematicalmodelsthatencompassthevarietyofobservedbehavioursin applications.FractionalLe´vyfieldsareconstructedbyintegrationofLe´vyrandom measures; somehow they interpolate between Gaussian and stable random fields. They exhibit a number of interesting features including local asymptotic self- similarity and multi-fractional aspects. Calibration techniques and simulation of fractionalLe´vyfieldsconstituteimportantelementsformanyapplications. Areal-valuedLe´vyprocessisspectrallynegativewhenithasnopositivejumps. In this situation, the distribution of several variables related to the first exit-time froma boundedintervalcanbespecifiedintermsoftheso-calledscale functions; thelatteralsoplayafundamentalroleinotheraspectsofthetheory.Scalefunctions are characterized by their Laplace transform, but in general no explicit formula is known, and therefore it is crucial in many applications to gather information abouttheirasymptoticbehaviourandregularityandto provideefficientnumerical methodstocomputethem. Aarhus,Denmark OleE.Barndorff-Nielsen Zu¨rich,Switzerland JeanBertoin Paris,France JeanJacod Munich,Germany ClaudiaKu¨ppelberg v (cid:127) From the Preface to Le´vy Matters I Overthepast10–15years,wehaveseenarevivalofgeneralLe´vyprocessestheory aswellasaburstofnewapplications.Inthepast,BrownianmotionorthePoisson process had been considered as appropriate models for most applications. Nowa- days,theneedformorerealisticmodellingofirregularbehaviourofphenomenain nature and society like jumps, bursts and extremeshas led to a renaissance of the theory of generalLe´vy processes. Theoreticaland applied researchers in fields as diverse as quantum theory, statistical physics, meteorology,seismology, statistics, insurance, finance and telecommunication have realized the enormous flexibility ofLe´vymodelsinmodellingjumps,tails,dependenceandsamplepathbehaviour. Le´vy processes or Le´vy-driven processes feature slow or rapid structural breaks, extremalbehaviour,clusteringandclumpingofpoints. Tools and techniques from related but distinct mathematical fields, such as point processes, stochastic integration, probability theory in abstract spaces and differential geometry, have contributed to a better understanding of Le´vy jump processes. As in many other fields, the enormous power of modern computers has also changed the view of Le´vy processes. Simulation methods for paths of Le´vy processes and realizations of their functionals have been developed. Monte Carlo simulationmakesitpossibletodeterminethedistributionoffunctionalsofsample pathsofLe´vyprocessestoahighlevelofaccuracy. ThisdevelopmentofLe´vyprocesseswasaccompaniedandtriggeredbyaseries ofConferencesonLe´vyProcesses:TheoryandApplications.TheFirstandSecond ConferenceswereheldinAarhus(1999,2002),theThirdinParis(2003),theFourth inManchester(2005)andtheFifthinCopenhagen(2007). Toshowthebroadspectrumoftheseconferences,thefollowingtopicsaretaken fromtheannouncementoftheCopenhagenconference: (cid:129) StructuralresultsforL e´vyprocesses:distributionandpathproperties (cid:129) L e´vytrees,superprocessesandbranchingtheory (cid:129) Fractalprocessesandfractalphenomena (cid:129) Stableandinfinitelydivisibleprocessesanddistributions vii viii FromthePrefacetoLe´vyMattersI (cid:129) Applicationsinfinance,physics,biosciencesandtelecommunications (cid:129) L e´vyprocessesonabstractstructures (cid:129) Statistical,numericalandsimulationaspectsofL e´vyprocesses (cid:129) L e´vyandstablerandomfields AttheConferenceonLe´vyProcesses:TheoryandApplicationsinCopenhagen theideawasborntostartaseriesofLectureNotesonLe´vyprocessestobearwitness oftheexcitingrecentadvancesintheareaofLe´vyprocessesandtheirapplications. Itsgoalisthedisseminationofimportantdevelopmentsintheoryandapplications. Each volume will describe state-of-the-art results of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts will present new exciting fields, or surveys of recent developments, or focus on some of the most promising applications. Despite its special character, each article is written in an expositorystyle, normallywith an extensivebibliographyat the end. In this way each article makes an invaluable comprehensivereference text. The intended audiencearePhDandpostdoctoralstudents,orresearchers,whowanttolearnabout recent advances in the theory of Le´vy processes and to get an overview of new applicationsindifferentfields. Now,withthefieldinfullflourishandwith futureinterestdefinitelyincreasing itseemedreasonabletostartaseriesofLectureNotesinthisarea,whoseindividual volumeswillappearovertimeunderthecommonname“Le´vyMatters,”intunewith thedevelopmentsinthefield.“Le´vyMatters”appearsasasubseriesoftheSpringer Lecture Notes in Mathematics, thus ensuring wide dissemination of the scientific material.Themainlyexpositoryarticlesshouldreflectthebroadnessoftheareaof Le´vyprocesses. We take thepossibilityto acknowledgetheverypositivecollaborationwith the relevantSpringerstaffandtheeditorsoftheLNseriesandthe(anonymous)referees ofthearticles. We hope that the readers of “Le´vy Matters” enjoy learning about the high potentialof Le´vyprocessesin theoryandapplications.Researcherswith ideasfor contributions to further volumes in the Le´vy Matters series are invited to contact anyoftheeditorswithproposalsorsuggestions. Aarhus,Denmark OleE.Barndorff-Nielsen Zu¨rich,Switzerland JeanBertoin Paris,France JeanJacod Munich,Germany ClaudiaKu¨ppelberg Contents FractionalLe´vyFields........................................................... 1 SergeCohen 1 Introduction.................................................................... 1 2 RandomMeasures............................................................. 3 2.1 PoissonRandomMeasure .............................................. 3 2.2 Le´vyRandomMeasure................................................. 4 2.3 RealStableRandomMeasure.......................................... 6 2.4 ComplexIsotropicRandomMeasure.................................. 8 3 StableFields................................................................... 13 3.1 GaussianFields.......................................................... 13 3.2 Non-GaussianFields.................................................... 16 4 Le´vyFields.................................................................... 20 4.1 MovingAverageFractionalLe´vyFields............................... 20 4.2 RealHarmonizableFractionalLe´vyFields............................ 27 4.3 AComparisonofLe´vyFields.......................................... 38 4.4 RealHarmonizableMultifractionalLe´vyFields ...................... 38 5 Statistics ....................................................................... 40 5.1 EstimationforRealHarmonizableFractionalLe´vyFields ........... 40 5.2 IdentificationofmafLf.................................................. 45 6 Simulation..................................................................... 53 6.1 RateofAlmostSureConvergenceforShotNoiseSeries............. 55 6.2 StochasticIntegralsRevisited .......................................... 56 6.3 GeneralizedShotNoiseSeries ......................................... 58 6.4 NormalApproximation................................................. 64 6.5 Summary ................................................................ 69 6.6 Examples................................................................ 69 6.7 SimulationofHarmonizableFields.................................... 79 Appendix........................................................................... 82 References......................................................................... 94 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.