ebook img

Leveraging Human Perception and Computer Vision Algorithms for Interactive Fine-Grained Visual PDF

131 Pages·2014·32.1 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Leveraging Human Perception and Computer Vision Algorithms for Interactive Fine-Grained Visual

UC San Diego UC San Diego Electronic Theses and Dissertations Title Leveraging Human Perception and Computer Vision Algorithms for Interactive Fine-Grained Visual Categorization / Permalink https://escholarship.org/uc/item/5z2523gj Author Wah, Catherine Lih-Lian Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITYOFCALIFORNIA,SANDIEGO LeveragingHumanPerceptionandComputerVisionAlgorithmsforInteractive Fine-GrainedVisualCategorization Adissertationsubmittedinpartialsatisfactionofthe requirementsforthedegreeofDoctorofPhilosophy in ComputerScience by CatherineLih-LianWah Committeeincharge: ProfessorSergeBelongie,Chair ProfessorDavidKriegman ProfessorGertLanckriet ProfessorLawrenceSaul ProfessorNunoVasconcelos 2014 Copyright CatherineLih-LianWah,2014 Allrightsreserved. TheDissertationofCatherineLih-LianWahisapprovedandisacceptable inqualityandformforpublicationonmicrofilmandelectronically: Chair UniversityofCalifornia,SanDiego 2014 iii DEDICATION Tomyparentsandtwinsister,whocontinuetosupportandinspiremeeveryday. iv EPIGRAPH Donotfeargoingforwardslowly;fearonlytostandstill. Chineseproverb Nothingisdifficult,onlyunfamiliar. Unknown GOD:IownyoulikeIownthecaves. THEOCEAN:Notachance. Nocomparison. GOD:Imadeyou. Icouldtameyou. THEOCEAN:Atonetime,maybe. Butnotnow. GOD:Iwillcometoyou,freezeyou,breakyou. THEOCEAN:Iwillspreadmyselflikewings. Iamabilliontinyfeathers. Youhaveno ideawhat’shappenedtome. DaveEggers v TABLEOFCONTENTS SignaturePage........................................................ iii Dedication ........................................................... iv Epigraph............................................................. v TableofContents ..................................................... vi ListofFigures ........................................................ viii Acknowledgements.................................................... xi Vita ................................................................. xv AbstractoftheDissertation ............................................. xvii Chapter1 Introduction ............................................... 1 Chapter2 BackgroundandRelatedWork................................ 4 2.1 Visipedia..................................................... 4 2.2 RelatedWork ................................................. 4 2.2.1 Fine-GrainedCategorization.............................. 4 2.2.2 Human-In-The-LoopMethods ............................ 6 2.2.3 ActiveClassification .................................... 7 Chapter3 InteractiveCategorizationwithPartsandAttributes .............. 9 3.1 Introduction .................................................. 9 3.2 RelatedWork ................................................. 10 3.3 VisualRecognitionwithHumansintheLoop ...................... 11 3.3.1 AlgorithmsandFramework............................... 14 3.3.2 IncorporatingComputerVision ........................... 15 3.3.3 ModelingUserResponses................................ 16 3.4 ExtensiontoPart-BasedModels ................................. 18 3.5 DatasetsandImplementationDetails ............................. 32 3.6 Experiments .................................................. 35 3.6.1 MeasuringPerformance.................................. 35 3.6.2 UsingBinaryAttributeQuestions ......................... 36 3.6.3 1-vs-allVs. Attribute-BasedClassification .................. 40 3.6.4 UsingPartandAttributeQuestions ........................ 41 3.7 Conclusion ................................................... 45 Chapter4 InteractiveCategorizationwithSimilarityLearning .............. 47 vi 4.1 Introduction .................................................. 47 4.2 RelatedWork ................................................. 50 4.3 PerceptualSimilarityMetricsforInteractiveCategorization .......... 51 4.3.1 MethodsandFramework................................. 52 4.3.2 IncorporatingComputerVision ........................... 58 4.4 ExtensiontoMultipleLocalizedPerceptualMetrics ................. 60 4.5 DatasetandImplementationDetails .............................. 65 4.6 Experiments .................................................. 68 4.6.1 EmbeddingGeneration .................................. 68 4.6.2 UsingNonlocalizedSimilarityMetrics ..................... 70 4.6.3 UsingMultipleLocalizedSimilarityMetrics ................ 79 4.7 HumanPerceptionofSimilarity.................................. 84 4.8 Conclusion ................................................... 87 Chapter5 Conclusion ................................................ 90 5.1 FinalThoughts................................................ 90 5.2 FutureDirections.............................................. 91 AppendixACUB-200-2011Dataset...................................... 92 A.1 Introduction .................................................. 92 A.2 DatasetSpecificationandCollection.............................. 93 A.3 Applications .................................................. 94 A.4 BenchmarksandBaselineExperiments ........................... 95 Bibliography ......................................................... 104 vii LISTOFFIGURES Figure2.1. Visipedia. ............................................... 5 Figure3.1. ScreencaptureofaniPadappforbirdspeciesrecognition. ... 10 Figure3.2. Examplesofclassificationproblems........................ 11 Figure3.3. Examplesofthevisual20questionsgame .................. 12 Figure3.4. Visualizationofthebasicalgorithmflow. ................... 14 Figure3.5. Examplesofuserresponses ............................... 17 Figure3.6. Interactivevisualrecognitionwithlocalization. ............. 19 Figure3.7. ProbabilisticModel. ..................................... 23 Figure3.8. FullyAutomatedPartDetectionResults.................... 25 Figure3.9. Userinterfaceforpartlocationsinput. ..................... 26 Figure3.10. Comparing part prediction accuracy for humans and comput- ers ..................................................... 28 Figure3.11. Poseclusters............................................. 35 Figure3.12. DifferentModelsofUserResponses........................ 37 Figure3.13. PerformanceonBirds-200whenusingcomputervision ...... 38 Figure3.14. Examples where computer vision and user responses work to- gether .................................................. 39 Figure3.15. Imagesthataremisclassifiedbyoursystem................. 40 Figure3.16. PerformanceonAnimalsWithAttributes .................. 41 Figure3.17. AttributeandPartQuestions. ............................. 42 Figure3.18. InteractiveClassificationUsingPartandAttributeQuestions. 43 Figure3.19. Examplesofthebehaviorofoursystem..................... 44 Figure4.1. Similaritymetricsforinteractivecategorization. ............ 48 viii Figure4.2. InterfaceforCollectingSimilarityComparisons. ............ 49 Figure4.3. Localized Similarity Comparisons for Interactive Categoriza- tion..................................................... 62 Figure4.4. DiscoveringDiscriminativeRegions. ....................... 63 Figure4.5. ComparingLocalizedandNonlocalizedComparisons. ....... 65 Figure4.6. Discriminative Regions. The 106 discovered discriminative re- gions. Weselect5touseinourexperiments. .................. 67 Figure4.7. EmbeddingGeneralizationError. ......................... 70 Figure4.8. NonlocalizedSimilarityEmbedding. ....................... 71 Figure4.9. LocalizedSimilarityEmbeddingforRegion1................ 72 Figure4.10. LocalizedSimilarityEmbeddingforRegion13............... 73 Figure4.11. LocalizedsimilarityembeddingforRegion21. .............. 74 Figure4.12. LocalizedsimilarityembeddingforRegion23. .............. 75 Figure4.13. LocalizedsimilarityembeddingforRegion39. .............. 76 Figure4.14. Test-TimeInterface. Anexampleofatest-timeuserinterfacefor ourinteractiveclassificationsystem. ......................... 77 Figure4.15. ObservingDeterministicUsers. ........................... 77 Figure4.16. ObservingSimulatedNoisyUsers. ......................... 78 Figure4.17. QualitativeResultsforNonlocalizedMetrics................ 80 Figure4.18. QualitativeResultsforLocalizedMetrics. .................. 81 Figure4.19. InteractiveCategorizationResults. ........................ 82 Figure4.20. QuestionDistribution..................................... 85 Figure4.21. Comparing human perception of nonlocalized vs. localized similarity................................................ 86 Figure4.22. ObservingAMTworkerbehavior. ......................... 88 ix

Description:
Caltech-UCSD Birds-200-2011 Dataset,” In California Institute of [21] Carl Doersch, Saurabh Singh, Abhinav Gupta, Josef Sivic, and Alexei a.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.