ebook img

Lepton number violation in tau lepton decays PDF

0.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lepton number violation in tau lepton decays

NuclearPhysicsB Proceedings Supplement NuclearPhysicsBProceedingsSupplement00(2013)1–5 Lepton number violation in tau lepton decays G.Lo´pezCastroa,N.Quinteroa aDepartamentodeF´ısica,CinvestavdelIPN,ApartadoPostal14-740,07000Me´xico,D.F.Me´xico 3 1 0 Abstract 2 Recentstudiesofnovelfour-bodyleptonnumberviolatingdecaysofτleptonsandneutralBmesonsaresummarized n andupdated. ThesedecaysareassumedtobeenhancedbytheexchangeofresonantMajorananeutrinos. Itisshown a J that the τ− → π+l−l−ντ decay channels, with l = e or µ, can provide stronger constraints on the mixing vs. mass 0 parameterspaceofresonantMajorananeutrinosthananalogousthree-bodydecaysofchargedBmesons. 1 Keywords: ] Leptonnumberviolation,Majorananeutrinos,heavyflavordecays,taulepton h p - p 1. Introduction Underthisscheme, thesensitivityofdifferentheavy e flavorLNVdecays(Mdenotesavectororpseudoscalar h Total lepton number L = Le + Lµ + Lτ is an ab- meson and l,l(cid:48) = e,µ,τ whenever they are allowed by [ solutely conserved quantum number in the Standard kinematics) 2 Model (SM). Some extensions of the SM include in- v teractionsthatcaninduceLnon-conservation[1]. Min- D+(s),B+,B+c → l+l(cid:48)+M− 7 imal extensions of the SM aiming to include massive D0,B0,B → l−l(cid:48)−M−M− 3 s 1 2 0 neutrinoscancontainMajoranamassterms,likeLM = τ− → l+M−M− 0 νRcMMνR+h.c.,whichprovidesanappealingmechanism τ− → ν l−l1(cid:48)−M2+ . thatviolatesleptonnumber bytwounits(∆L = 2)[2]. τ 2 A clear signal of Majorana mass terms are L-number is determined by comparing the mass scale of the ex- 1 2 violating processes that involve the production of two changedMajorananeutrinoswithtypicalenergiesofthe 1 equal-sign charged leptons, the most well known and decayprocess. Thus,wedistinguishthreecases[4]: : widelystudiedexamplebeingneutrinolessdoublebeta v • If neutrinos are very light compared to their four- Xi decInaythinisncuocnlteriib[u3t]i.onweconsidertheexchangeofMa- momenta in the propagator (actually, m2ν << q2), the decay rates become sensitive to the effective r jorana neutrinos as a source of ∆L = 2 lepton number (cid:80) a Majorana mass defined by (cid:104)m (cid:105) ≡ U U m, violation (LNV) in decays of heavy flavors, and more ll(cid:48) i li l(cid:48)i i whereU denotethemixingsoflight(active)neu- specificallyinfour-bodydecaysoftheτlepton. These li trinosdescribedbythePMNSmatrix; Majorananeutrinosareassumedtobesterile,suchthat theircouplingtotheweakchargedcurrentareverysup- • If neutrinos are heavy compared to the mass pressed by tiny mixings with active neutrinos. Typical of the decaying state, the rate is sensitive to (cid:80) neutrino-exchangediagramscontributingtoLNVinde- V V /m ,whereV arethemixingsoflight N lN l(cid:48)N N lN caysoftheτleptonareshowninFigure1. (active)andheavy(sterile)neutrinosoftypeN(see definitioninSection2). • Finally, if heavy neutrinos are of the order of the Emailaddresses:[email protected](G.Lo´pez Castro),[email protected](N.Quintero) heavyflavormassscalesuchthattheycanbepro- /NuclearPhysicsBProceedingsSupplement00(2013)1–5 2 M1− 10-4 PDG L) 10-5 BLAHBCAbR U Belle (a) τ− l+ atio ( 10-6 r g νN M2− nchin 10-7 a Br 10-8 τ− ντ l− l′− 10-9 pfieeDmmpfiDmpfieDfiKeeDmmfiKDmfiKeDpfieeDsmmpfiDsmpfieDsfiKeeDsmmfiKDsmfiKeDspfieeBmmpfiBmpfieBfiKeeBmmfiKBmfiKeBfiDeeBmmfiDBmfiDeBmmfiDBsppfitepfitKefiteKKppmfitpmfitKmfitKK (b) Figure2: Experimentalupperlimitsonbranchingratiosof3- νN M+ bodydecaysofchargedheavymesonsandτlepton[9-15]. Figure1:Neutrino-exchangediagramsinducedbycrossingsof recentproposals[17,18]whichconsiderthefour-body theW−W−→l−l(cid:48)−∆L=2kernelleadingtoLNVin(a)three- decays τ− → ν l−l(cid:48)−M+ and B0 → D−l+l(cid:48)+M−, where τ and(b)four-bodytaudecays. Misapseudoscalarorvectormesonthatcanbeallowed by kinematics (the analogous decay π+ → e+e+µ−ν ducedontheirmass-shell(q2 = m2),theratesare was considered in [19]). We illustrate our studies with largely enhanced due to the resonNant effect asso- results on di-muonic channels (results on di-electrons ciated to their decay widths Γ , with their decay modescanbefoundin[17,18]). Searchesforthesede- N amplitudesproportionalto(cid:80) V V /Γ . Thisis caychannelshavenotbeenundertakenbyexperiments N lN l(cid:48)N N up to now. Here we emphasize that they can provide theso-calledresonantenhancementmechanism[4] competitive or even stronger bounds on the parameter for LNV decays and can occur only for time-like spaceofMajorananeutrinosascomparedtothree-body neutrino momenta as in the case of mesons and τ decaysofheavyflavors. leptondecays. Note that in the first two cases, the rates of heavy 2. Resonantthree-bodydecays flavor decays turn out to be very suppressed, making uninteresting their searches at flavor factories [5, 6]. Theadditionofright-handedsingletneutrinostothe Leptonnumberviolationinthree-bodydecaysofτlep- SM leads in a natural way to the appearance of Ma- tons and charged (D, D , B, B ) mesons have been s c jorana and Dirac mass terms [2], with Majorana mass widelyinvestigatedpreviously,bothfromthetheoretical terms allowing ∆L = 2 lepton number violation. The [4,5,6,7,8]andexperimental[9,10,11,12,13,14,15] heavier (sterile) neutrinos get involved into charged points of view. The current best experimental upper weakinteractions,sinceafterdiagonalizationofthefull boundsavailableonthesedecaychannelsareshownin neutrino matrix, neutrinos of defined flavor becomes a Figure2;inaddition,verystringentboundsoftheorder mixtureoflightandheavymasseigentstates,namely, of 10−9 have been obtained (see for example [13]) for K+ → π−l+l(cid:48)+ decays,withl, l(cid:48) = e, µ. Themeasured (cid:88)3 (cid:88)n+4 upper limits allow to exclude a region in the |V |2 vs. νl = Uliνi+ VlNνN (1) lN m planeoftheparameterspace,byassumingthatasin- i=1 N=4 N gleresonantneutrino(usuallydenotedbythesubindex ifnright-handedsingletsareconsidered. Here, U are li N or 4) dominates the decay amplitude. Such sterile essentiallytheentriesofthePMNSmatrix,andV are lN Majorana neutrinos, with masses in the range of 1∼10 thetinymixingsoftheactiveandsterileneutrinos. The GeV,canappearintheframeworkofsomeminimalex- chargedcurrentinteractionLagrangianintheflavorba- tensions of the SM; forinstance, it has been suggested sisbecomes: thattheycanplayanimportantroletoexplainsimulta- g neouslytheoscillationsofneutrinos, thebaryonasym- Lcc = √ ν¯lγµ(1−γ5)l·Wµ−+h.c. (2) 2 2 metryoftheUniverseandthedarkmatterproblem[16]. Inthispaperwepresentasummaryandupdateofour whereν isgivenabove. l /NuclearPhysicsBProceedingsSupplement00(2013)1–5 3 [4]andincorporaterecentlyupdatedmeasurementsob- 2|N 1 tained by B-factory experiments [9] and LHCb [10]. Vm10-1 | Note that despite the large improvement recently ob- 10-2 tained by LHCb [10, 14], B(B+ → π−µ+µ+) ≤ 1.3 × 10-3 10−8,theconstraintsonthe|V |2mixingarenotlargely 10-4 µN improved owing to the Cabibbo suppresion factor de- 10-5 KBfifi ppmmmm scribedinthepreviousparagraph. 10-6 DDfisfi p pmmmm 10-7 Btfifi nDmmmmpp t 10-8 3. Four-bodyB0decays 10-9 2· 10-1 3· 10-1 1 2 3 4 5 InordertoavoidthesuppressionduetoCKMfactors m [GeV] N in the B+ decay vertex, we have proposed to consider thefour-bodydecaysofneutralmesons, namely B0 → Figure3:Constrainsonmixingvs. massofMajorananeutrino D−M−l+l(cid:48)+ withl, l(cid:48) = e, µorτand M apseudoscalar parameterspacefromdi-muonicthree-bodydecaysofcharged mesons. Constraints from four-body B0 → D−π−µ+µ+ and orvectormeson[17].Thedecayamplitudeforthisfour- τ− → ν µ−µ−π+ byassumingupperboundsof10−7 and10−8 bodydecayisgivenby: τ ontheirbranchingratios,respectively,arealsoshownforcom- MB0 ∼G2V V m F(q2)VCKMf FB→D(t), (4) parison. 4 F lN l(cid:48)N N cb M + whereFB→D(t)isthevectorformfactorforthe B→ D + Under the assumption that only one Majorana neu- transitionandt=(pB−pD)2isthesquareofthemomen- trino N is resonant in three-body τ− → l(cid:48)+M−M− and tumtransfer(thecontributionofthescalarformfactoris 1 2 M− → l−l(cid:48)−M+ decays, the generic form of the de- negligibleinthiscase). Inthisupdatedcontributionwe 1 2 cay amplitudes is (properly antisymmetrization under usetheB→ DvectorformfactorobtainedfromLattice exchange of identical leptons in the final state must be QCD [21], in order to avoid the model dependence of understood) thevectorformfactorusedin[17]. In the neutrino narrow width approximation, the M3τ,M1− ∼G2FVlNVl(cid:48)NmNF(q2)VMCK1MVMCK2MfM1fM2 ,(3) genericexpressionforthebranchingratiosofthree-and where VCKM is the Cabibbo-Kobayashi-Maskawa four-bodydecayscanbewrittenas: Mi m(fCMiKineiMtds)bdmyecatahtryeixncoeeunletsrmtianenont.tprfToohpreatghraeetsocorhnaFarng(ceqed2)fma∼cets(ooqrn2i−sMdmie2atenr+d- Bll(cid:48) ∼ |VlNΓVNl(cid:48)N|2G(mN), (5) im Γ )−1 where q is the momenta of the exchanNged whereΓ =(cid:80) f(m )|V |2istheneutrinodecaywidth; N N N l l N lN neutrino. The neutrino decay width Γ ≤ 10−3 eV for thesumextendsovertheleptonflavorsthatareallowed N the mass scales of interest in τ lepton and in other me bykinematicsforagivenneutrinomassm ,and f(m ) N l N sondecays(m ≤5GeV)[4]. dependsondecayconstantsandmassesoffinalstatesin N FromEq. (3)wenotethatthebiggeristheCKMma- neutrinodecaychannels[4]. ThefunctionG(m )con- N trixelement,thestrongeristheconstraintthatcanbeset tainstheproductoffundamentalconstants,hadronicpa- ontheneutrinomixingsfromthemeasuredupperlimits rametersaswellastheintegratedfour-bodyphasespace onLNVbranchingfractions. Sincetheratesof B±, D± ofthespecificchannels[17]. mesondecayverticesareCabibbo-suppressedby|V |2 No upper limits have been reported so far for four- ub and |V |2 factors, respectively, the constraints that are body LNV decays of neutral B mesons. Upper limits cd derivedfromthemwillnotbeverystrong. Onanother for four-body LNV decays have been reported only in hand,τleptondecays(takingl=τinEq. (3)above)al- thecaseof D0 → M−M−l+l(cid:48)+ decayswithl, l(cid:48) = e, µ 1 2 low to constrain only the product |V V | (l(cid:48) = e,µ) and M = π, K [20]; in all cases, the upper lim- τN l(cid:48)N 1,2 from the measured upper limits of τ− → l(cid:48)+M−M− its obtained for the branching ratios are at the level of 1 2 branchingfractions. 10−5 ∼ 10−4 which loosely constrain the mixing an- In Figure 3 we show the constraints in the |V |2 vs gles. Very recently, the LHCb collaboration has re- µN m regionthatcanbegottenfromthree-bodyLNVde- portedthefirstupperlimitonthechargedBdecaychan- N cays of charged D and B mesons by using the ex- nel, B(B− → D0π+µ−µ−) ≤ 1.5×10−6 atthe95%c. l. (s) perimental upper limits on di-muonic channels. These [10]. Theconstraintsinthe|V |2 vs. m planethatare µN N plotswereobtainedbyusingtheratescalculatedinRef. obtainedbyassuming B(B0 → D−µ+µ+π−) ≤ 10−7 are /NuclearPhysicsBProceedingsSupplement00(2013)1–5 4 [22],wecomputethefollowingbranchingfraction(we 2|N 1 usesimilarvaluesofmixingsandmassesfortheheavy Vm |10-1 sterileneutrino) 10-2 B(τ− →ν µ−µ−π+)≤1.4×10−5. (7) τ 10-3 10-4 tt fifi nn tmm mm pr Ourresultsturnsouttobeofsimilarsize. Themaindif- t ference comes from the models we have used to com- 10-5 tt fifi nn ttmm mm KK* putetheheavyneutrinolifetime. 10-6 In summary, LNV decays of heavy flavors can pro- 0 200 400 600 800 1000 1200 1400 1600 1800 mN (MeV) vide important constraints on tiny mixing angles of Majorana neutrinos with masses in the range m ≤ π Figure4: Constraints on Majorana neutrino parameter space m ≤ m . This is possible if a single heavy neu- N B fromfour-bodydi-muonicchannelsofτleptondecays. trinoresonantlyenhancesthedecayamplitudes. Inthis contribution we have shown that the four-body decays B0 → D−π−µ+µ+ and τ− → ν µ−µ−π+ can provide showninFigure3. Weobservethattheconstraintofthe τ strongerconstrainsonthe|V |2mixinganglesthanthe µN mixing angle that can be obtained from this decay µN onesobtainedfromthree-bodydecaysofchargedheavy channeliscompetitiveorevenbetterwhencomparedto otherthree-bodyLNVdecaysofB+mesons,foramass mesons. The authors are grateful to the organizing committee of regionm ≤1.5GeV. N Tau2012 for the opportunity to present this work. They ac- knowledgethefinancialsupportfromConacyt(Mexico)and 4. Four-bodyτleptondecays thecollaborationofD.Delepineattheearlystageofthiswork. In order to look for better constraints on mixing of resonant neutrinos, we consider the τ− → ν l−l(cid:48)−M+ References τ decays, where l,l(cid:48) = e or µ and M = π,K,ρ and [1] R.N.Mohapatraetal,Rep.Prog.Phys.70,1757(2007). K∗ mesons. The use of these novel decay channels [2] P.G.Langacker,TheStandardModelandBeyond,CRCPress to constraint the parameter space of Majorana neutri- TaylorandFrancisGroup,(2010). [3] For for example: S. M. Bilenky, Phys. Part. Nucl. 41, 690 nos were proposed in Ref. [18]. A previous esti- (2010);W.Rodejohann,Int.J.Mod.Phys.E20,1833(2011). mate of the branching ratio for the dimuonic channel [4] A.Atre,T.Han,S.Pascoli,andZhang,JHEP0905,030(2009). B(τ−→ντµ−µ−π+)≤8.2×10−5wasreportedin[22]us- [5] A.Ali,A.V.BorisovandN.B.Zamorin,Eur.Phys.J.C21,123 ing|V |2 ≤ 10−3 andm = 400 ∼ 600MeVastypical (2001). µN N [6] A.Atre,V.BargerandT.Han,Phys.Rev.D79,113014(2005) valueswithinamodelwherethesterileneutrinolifetime [7] J.C.Helo,S.KovalenkoandI.Schmidt,Nucl.Phys.B853,80 isdominatedbytheradiativeN→νγdecay[23]. (2011). The four-body τ− → ν l−l(cid:48)−M+ decays can provide [8] M.A.IvanovandS.G.Kovalenko, Phyd.Rev.D71, 053004 τ constrainsdirectlyonthe|V |2 mixinganglescontrary (2005);S.S.Baoetal,arXiv:1208.5136[hep-ph];J.M.Chang lN andG.L.Wang,Eur.Phys.C71,1715(2011). to their three-body decays which are sensitive only to [9] J. P. Lees et al [BABAR Collab.], Phys. Rev. D84, 072006 theproduct|VτNVlN|. Thedecayamplitudeinthiscase (2011);Phys.Rev.D85,071103(R)(2012). isgivenby [10] R. Aaij et al [LHCb Collab.], Phys. Rev. Lett. 108, 101601 (2012);Phys.Rev.D85,112004(2012). Mτ ∼G2V V m F(q2)VCKMf , (6) [11] O. Seon et al [Belle Collab.], Phys. Rev. D84, 071106(R) 4 F lN l(cid:48)N N uq M (2011). whereq=dors. [12] Y.Miyazakietal[BelleCollab.],Phys.Lett.B682,(2010). [13] J.Beringeretal,Phys.Rev.D86,010001(2012). In Figure 4 we plot the constraints in the |VµN|2 vs. [14] D.Mart´ınezSantos,theseproceedings m planethatareobtainedbyassumingacommonup- [15] K.Hasayaka,theseproceedings N per limit B(τ− → ν µ−µ−M+) ≤ 10−7 for all chan- [16] L.Cannetietal,arXiv:1208.4607[hep-ph]. τ [17] D.Delepine,G.Lo´pezCastroandN.Quintero,Phys.Rev.D84, nels. InFigure3,theconstraintsobtainedbyassuming 096011(2011);ibidD86,079905(E)(2012). B(τ− → ντµ−µ−π+) ≤ 10−8 are compared to those ob- [18] G. Lo´pez Castro and N. Quintero, Phys. Rev. D85, 076006 tained from heavy meson decays. As we can observe, (2012);ibidD86,079904(E)(2012). theseconstraintsarestrongerthantheonesthatcanbe [19] G.Cvetic,C.Dib,andC.S.Kim,JHEP1206,149(2012). currently obtained from three-body decays of B+ and [20] E.M.Aitalaetal[E791Collab.],Phys.Rev.Lett.86,(2001). [21] J.A.Baileyetal[FermilabLatticeandMILC],Phys.Rev.D85, D+mesons. InordertocomparewiththeresultsofRef. 114502(2012);ibidD86,039904(E)(2012). /NuclearPhysicsBProceedingsSupplement00(2013)1–5 5 [22] C.Dibetal,Phys.Rev.D85,011301(R)(2012). [23] S.N.Gninenko,Phys.Rev.Lett.103,241802(2009).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.