ebook img

Lepton Flavour Violation in Left-Right Theory PDF

6.6 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lepton Flavour Violation in Left-Right Theory

Lepton Flavour Violation in Left-Right Theory Pavel Fileviez Pe´rez1, Clara Murgui2 1CERCA, Physics Department, Case Western Reserve University, Rockefeller Bldg. 2076 Adelbert Rd. Cleveland, OH 44106, USA 2DepartamentodeF´ısicaTeo´rica,IFIC,UniversitatdeValencia-CSIC,E-46071,Valencia,Spain We investigate the predictions for lepton flavour number violating processes in the context of a 7 simpleleft-rightsymmetrictheory. InthiscontextneutrinosareMajoranafermionsandtheirmasses 1 0 aregeneratedatthequantumlevelthroughtheZeemechanismusingthesimplestHiggssector. We 2 show that the right handed neutrinos are generically light and can give rise to large lepton flavour r a violatingcontributionstorareprocesses. Wediscussthecorrelationbetweenthecolliderconstraints M and the predictions for lepton flavour violating processes. We find that using the predictions for 6 1 µ→eγ andµ→econversiontogetherwiththecollidersignaturesonecouldtestthistheoryinthe nearfuture. ] h p - p I. INTRODUCTION e h [ TheLargeHadronCollider(LHC)hasdiscoveredthelastmissingpieceoftheStandardModel(SM)of 2 v particle physics. The discovery of the Brout-Englert-Higgs boson was crucial to establish the SM as one 1 0 of the most important theories of nature. Today, we believe that the SM should be an effective theory to 8 6 explainmostofthecurrentexperimentalresults. However,itiswell-knownthatonecannotexplaininthis 0 . context,forexample,thehierarchyofthefermionmasses,theoriginofneutrinomasses,theoriginofParity 1 0 andCPviolation,thenatureofdarkmatterandthebaryon-asymmetryintheUniverse. 7 1 TherearemanyideasforphysicsbeyondtheStandardModelwhichcanhelpustodefineanewtheory : v i to describe the new energy scale, TeV scale, which is currently explored by the Large Hadron Collider. X r In the context of left-right symmetric theories [1–5], proposed by J. Pati, A. Salam, R. Mohapatra and G. a Senjanovic´, one can explain some of the open issues of the SM. In this context, the spontaneous breaking of Parity is naturally explained and one can understand why at the low scale the weak interactions are V − A interactions. These theories predict the existence of right-handed neutrinos in nature which play a crucial role to generate neutrino masses. In the context of left-right symmetric theories, neutrinos can be Dirac fermions [3] or Majorana fermions [5]. In the Majorana case one can make use of the see-saw mechanism[5,6]tounderstandthesmallnessoftheneutrinomasses. Thesetheoriescangiverisetomany interesting signatures at colliders and low energy experiments, see for example Refs. [7–28] for different phenomenologicalstudies. 2 Recently, we have proposed a simple left-right symmetric theory [29] where the Majorana neutrino massesaregeneratedthroughtheZee-mechanism[30]. Inthiscontextthechargedfermionmassesaregen- eratedattreelevelasintheSM,whiletheneutrinomassesaregeneratedatone-looplevel. Thistheoryhas thesimplestHiggssectorneededtogenerateMajoranamassesforneutrinosandtorealizethespontaneous breakingofthelocalleft-rightsymmetryobtainingtheSMattheweakscale. InRef.[29]wehaveproposed this new theory and investigated the main collider signatures which can help us to test the theory at the LargeHadronCollider. Inthisarticleweinvestigateindetailsthepropertiesoftheright-handedneutrinosinthetheoryproposed inRef.[29]andthepredictionsforleptonflavorviolating(LFV)processessuchastheraredecayse → e γ i j and µ → e conversion. The current experimental bounds from the LFV experiments provide non-trivial bounds on lepton flavour violating interactions present in different theories (see Ref. [31] for a review of LFV experiments). The next generation of LFV experiments will set very strong bounds on the branching fractionsfortheseraredecaysandweinvestigatetheimpactoftheseresultsinourmodel,inwhichonehas severalcontributionstoLFVprocesses: theinteractionsbetweentheW± orW± withthechargedleptons L R andtheneutrinos,andtheL-violatingHiggsinteractions. Weshowthat,inthiscontext,onecanhavevery large contributions to LFV processes in agreement with all experimental constraints. Together with the collider signatures studied in Ref. [29] these results can be used to test this theory in current and future experiments. II. SIMPLELEFT-RIGHTSYMMETRICTHEORY Recently, we have proposed in Ref. [29] a simple left-right symmetric theory based on the gauge sym- metry G = SU(3) ⊗SU(2) ⊗SU(2) ⊗U(1) LR C L R B−L where the Majorana neutrino masses are generated at the quantum level. As in any left-right symmetric theorythematterfieldsliveinthefollowingrepresentations     u u L R QL =   ∼ (3,2,1,1/3), QR =   ∼ (3,1,2,1/3), d d L R     ν ν L R (cid:96)L =   ∼ (1,2,1,−1), and (cid:96)R =   ∼ (1,1,2,−1). e e L R 3 andtheHiggssectoriscomposedoffourHiggses: abi-doubletneededtogeneratechargedfermionmasses, achargedsingletandtwodoubletsrequiredtobreaktheleft-rightsymmetryandgenerateMajorananeutrino massesinaminimalway,   φ0 φ+ Φ =  1 2 ∼ (1,2,2,0), δ+ ∼ (1,1,1,2), φ− φ0 1 2     h+ h+ L R HL =   ∼ (1,2,1,1) and HR =   ∼ (1,1,2,1). h0 h0 L R A. ChargedFermionMasses As in any left-right symmetric theory the charged fermions acquire mass at tree level once the Higgs bi-doubletgetsavacuumexpectationvalue. Usingtheinteractions (cid:16) (cid:17) (cid:16) (cid:17) −LD = Q Y Φ+Y Φ˜ Q + (cid:96) Y Φ+Y Φ˜ (cid:96) +h.c., (1) LR L 1 2 R L 3 4 R whereΦ˜ = σ Φ∗σ ,onefindsthefollowingchargedfermionmassesafterelectroweaksymmetrybreaking 2 2 M = Y v +Y v∗, (2) U 1 1 2 2 M = Y v +Y v∗, (3) D 1 2 2 1 M = Y v +Y v∗. (4) E 3 2 4 1 Here,v andv arethevacuumexpectationvaluesforthefieldsφ0 andφ0,respectively. NoticethattheY 1 2 1 2 1 andY canbewrittenaslinearcombinationsofthemassmatricesfortheupanddownquarks,whileonehas 2 morefreedomintheexpressionforchargedleptonmassesduetothepresenceoftwoYukawacouplings. B. NeutrinoMasses In the left-right theory with only three Higgses, Φ, H and H , the total lepton number is conserved L R aftersymmetrybreakingandneutrinosareDiracmassivefermionswithmassgivenby MD = Y v +Y v∗. (5) ν 3 1 4 2 4 H0 H0 L R φ+ δ+ j νL/R e e νL/R φ0 i FIG.1: Neutrinomassgenerationatthequantumlevel. Notice that using the freedom in Eqs.(4) and (5) one can have a consistent scenario for Dirac neutrinos in thiscontext[3]. However,theneutrinomassesareverysmallandtheycouldbeMajoranafermions. Inthe theoryproposedinRef.[29]Majorananeutrinomassesaregeneratedatone-looplevelusingthefollowing interactions −LM = λ (cid:96) (cid:96) δ+ + λ (cid:96) (cid:96) δ++λ HTiσ ΦH δ−+λ HTiσ Φ˜H δ−+h.c. (6) LR L L L R R R 1 L 2 R 2 L 2 R See Fig.1 for the one-loop contribution to neutrino masses in the unbroken phase. Notice that both the left-handed and right-handed neutrinos acquire masses at one-loop level and their masses are proportional √ √ to the vacuum expectation values of h0 and h0, i.e. v / 2 and v / 2. The neutrino mass matrix in the L R L R basis(cid:0)ν , (νC) (cid:1)isgivenby L L   ML MD ν ν Mν =  , (7) (MD)T MR ν ν whereML andMR aregeneratedatone-looplevelwhileMD isgeneratedattreelevel. Theexplicitforms ν ν ν ofML andMR aregivenby ν ν (cid:32) (cid:33) (ML)αγ = 1 λαβm (cid:88)Log Mh2i V (cid:104)(Y†)βγV∗ −(Y†)βγV∗(cid:105) + α ↔ γ, (8) ν 4π2 L eβ m2 5i 3 2i 4 1i i eβ (cid:32) (cid:33) (MR)αγ = 1 λαβm (cid:88)Log Mh2i V (cid:104)(Y )βγV∗ −(Y )βγV∗(cid:105) + α ↔ γ. (9) ν 4π2 R eβ m2 5i 3 1i 4 2i i eβ 5 HereV definesthemixingbetweenthechargedHiggsesinthetheoryandM theirphysicalmasses(see ij hi Ref.[29]formoredetails). Inournotationtheneutrinomassmatrixisdiagonalizedbythefollowingmatrix        ν V A ν V ν + AN L ν L ν L L   →    =  , (10) (νC) B V N Bν + V N L N L L N L which is useful to obtain all physical interactions. Henceforth we are neglecting the mixing between the left-handedandright-handedneutrinosbecauseitisverysmall. IngeneralthevevsaswellastheYukawas are free parameters and one cannot predict anything about the magnitude of the masses. However, for the theory to be consistent one needs to assume (see Ref. [29]) that v (cid:28) v and Y (cid:28) Y . In this limit, the 2 1 3 4 massmatrixforchargedleptonscanbeapproximatedbyM ≈ Y v∗ andMR as E 4 1 ν (cid:32) (cid:33) (MR)αβ = 1 λαβm2eβ (cid:88)Log Mh2i V V∗ + α ↔ β. (11) ν 4π2 R v∗ m2 5i 2i 1 i eβ From the above relation one can extract predictions about the hierarchy of the sterile neutrino masses. αβ Notice that Eq.(11) is traceless due to the product of the antisymmetric Yukawa λ with the symmetric R mass matrix of the charged leptons, which is assumed without loss of generality to be diagonal. On the otherhand,themassmatrixinEq.(11)issensibletothedifferencebetweenpairsofchargedleptonmasses squared. Since the difference between the muon mass and the other charged lepton masses is one order of magnitudesmallerthantherestofdifferences, themuonneutrinoN ispredictedtobeatleasttwoorders µ of magnitude lighter than the electron neutrino N and the tauon neutrino N . Bringing together both e τ statementsandtakingintoaccounttheinvarianceofthetrace,thefollowingconclusionaboutthehierarchy of the masses can be drawn: the model predicts that the muon sterile neutrino is much lighter than the others,whichthereforehavealmostdegeneratedmasses. Inordertostudyqualitativelytheorderofmagnitudofthesterileneutrinomasses,onecouldassumeas a good approximation that the product of the charged Higgses mixing matrices is of the order of one, due theunitaritynatureofthemixingmatrix. Noticethatunitarityfurtherconstraintsthesumofthelogarithm over the different five physical charged Higgses in the theory, making this term only sensible to twice the differenceoftheorderofmagnitudebetweenthelightestandtheheaviestchargedHiggses. Letuscallthis factor ∆, which will represent the contribution of the logarithms in Eq.(11). Hence, in the limit v (cid:28) v 2 1 andY (cid:28) Y ,andassumingthatv ≈ v = 246GeV,Eq.(11)canberewrittenas 3 4 1 ∆ (MR)αβ ≈ λαβ(m2 −m2 ). (12) ν 4π2v∗ R eα eβ 1 6 FIG.2: Predictionsforthesterileneutrinomassesasafunctionof∆. Theblue,orangeandredpointscorrespondto theelectronN ,muonN ,tauonN sterileneutrinos,respectively. Forthescan,theentriesoftheYukawaλ have e µ τ √ R beentakenrandomlyrangingbetween0to2 π. Theverticalgreenlineshowstheestimatedupperbound∆ . upper Wecanestimateatheoreticalupperlimitforthefactor∆byassumingtheextremecaseinwhichthelightest charged scalar lives at the electroweak scale and the heaviest one at the Plank scale. In this scenario ∆ is (cid:18)1019 GeV(cid:19)2 given by, ∆ ∼ Log = 2×17×Log(10). The relation in Eq. (12) is one of the main upper 102 GeV predictionsofthemodel,sincethiscorrelationbetweenthesterileneutrinomassesandtheYukawacoupling λ constrains strongly, on one hand, the hierarchy of the sterile neutrino masses and, on the other hand, R allowsustoestimateanupperboundfortheright-handedneutrinomasses. InFig.2weshowthecorrelationbetweenthesterileneutrinomassesM ,givenbytheeigenvaluesof Ni Eq. (12) and the factor ∆. The scattered points correspond to different values for the entries of λ , which R √ rangerandomlyfrom[0,2 π],accordingtoperturbativity. AswecanseeinFig.2,themodelpredictsvery light sterile neutrinos with the theoretically predicted hierarchy. We emphasize again the relevance of the antisymmetricnatureoftheYukawaλ matrixsinceonehasonlythreefreeparameters,λeµ,λµτ andλeτ. R R R R Our main result here is that the right-handed neutrinos are generically light. This prediction will be very importanttostudythepredictionsforleptonflavourviolatingprocesses. C. ChargedGaugeBosonMasses Inthebasis(W+, W+)thechargedgaugebosonmassmatrixreadsas L R   gL2(1v2 +v2) −g g v v M2± =  2−g2 gL v v gR2 (1Lv2R+1v22), (13) L R 1 2 2 2 R 7 wherev2 = v2+v2. ThemassoftheW -likechargedgaugebosonisM ≈ g v /2. Usingthecharged 1 2 R WR R R currentinteractions g g −LCC ⊃ √L ν¯ W/ +e + √Rν¯ W/ +e +h.c., (14) LR L L L R R R 2 2 and the definition in Eq.(10) one can study lepton flavour violation in the leptonic sector mediated by the gauge bosons. Recently, the LHC experiments have set bounds on the mass of these gauge bosons. See Ref.[32]forthelowerexperimentalbound,M > 4.1TeV,onthemassoftheW -likegaugeboson. WR R III. LEPTONFLAVOURVIOLATINGPROCESSES InthetheoryproposedinRef.[29]thereareseveralsourcesofleptonflavourviolation: • ThephysicalinteractionsbetweentheW±,thechargedleptonsandtheneutrinos. L • ThephysicalinteractionsbetweentheW±,thechargedleptonsandtheneutrinos. R • In Eq.(1) we cannot simultaneously diagonalize the Yukawa couplings Y and Y , and the Higgs 3 4 interactionsviolatethefamilyleptonnumbers. • TheYukawainteractionsinEq.(6)violatetheglobalU(1) aswell. Li Inthissectionweinvestigatethepredictionsforleptonflavourviolatingprocessessuchase → e γ taking i j intoaccountthedifferentsourcesforL violation. Noticethat,amongthedifferentsourcesviolatinglepton i flavour, there are the charged Higgses in the bi-doublet. In this work we will not focus on them since they also contribute to ∆F = 2 hadronic changing neutral current effects which are very constrained and, therefore, these Higgses have to be very heavy [10]. However, in the context of the recently proposed left-right symmetric model [29], the singly charged Higgs could be relatively light and can induce large contributionstoleptonflavourviolatingprocesses. A. LFVe →e γ Processes i j Inthissectionweinvestigatethepredictionsfortheleptonflavourviolatingprocessesinordertounder- standthetestabilityofthetheoryproposedinRef.[29]. Thecurrentexperimentalboundsonthebranching ratiosforthee → e γ processesare i j Br(µ → eγ) < 4.2×10−13[33], Br(τ → eγ) < 3.3×10−8[34], Br(τ → µγ) < 4.4×10−8[34]. 8 γ WR+/L δj+ γ µ νi/Ni e µ νi/Ni e (a) (b) FIG.3: Contributionstoµ → eγ. Topology(a)mediatedbyachargedgaugeboson,WL± orWR±,andtopology(b) mediatedbyasinglychargedHiggs. Asitiswellknown,theamplitudefortheprocessµ → eγ canbewrittenas A(µ → eγ) = iu (p−q)(cid:15)∗σνµq [A P +A P ]u (p), (15) e ν µ R R L L µ wherepµ andqµ arethemuonandphotonquadrimomenta,respectively,andthedecaywidthreadsas m3 Γ(µ → eγ) = µ(|A |2+|A |2). (16) L R 16π Thebranchingratiocanbecomputedusingtherelation Γ(µ → eγ) Br(µ → eγ) ≡ , (17) Γ(µ → eν ν¯)+Γ(µ → eγ) µ e where m5G2 Γ(µ → eν ν¯) = µ F. (18) µ e 192π3 InourmodelthereareseveralcontributionstothecoefficientsA andA relevantforthedecaywidth. In L R Fig. 3 we show the Feynman graphs for the different contributions mediated by the charged gauge bosons and the charged Higgses. Here we will investigate the predictions for each contribution in order to under- standthetestabilityofthetheoryincurrentandfutureexperiments. 1. LFVinducedbyWi±gaugebosons TheW± andW± contributionstotheprocessµ → eγ,neglectingtheelectronmass,readas L R (cid:32) (cid:33) AWR ≈ g2 emµ (cid:88)(V ) (V∗) F m2Ni , (19) L R64π2M2 N ei N µi m2 WR i WR 9 (cid:32) (cid:33) AWL ≈ g2 emµ (cid:88)(V ) (V∗) F m2νi , (20) R L64π2M2 ν ei ν µi m2 WL i WL wherewehaveneglectedthemixingbetweentheneutrinos. TheloopscalarfunctionF(x)isdefinedas F(x) = 1 (cid:0)10−43x+78x2−49x3+18x3Log(x)+4x4(cid:1), (21) 6(1−x)4 whichhasthefollowinglimits, 2 Log(x) 5 1 17 3 F(x) ∼ +3 , F(x) ∼ − x, F(x) ∼ + (1−x). (22) x→∞ x→0 x→1 3 x 3 2 12 20 NoticethatwhenW±isthemediatoroftheprocess,theStandardModelneutrinosaretheonescontributing L into the amplitude. In the second contribution, the W± and the sterile neutrinos are inside the loop. In R the case of W±, x ≡ m2 /M2 → 0 due to the smallness of the Standard Model neutrino masses and L νi WL the function F(x → 0) characterizing the loop behaves almost as a constant. Hence, AWL ∼ 0 due to the R unitarityofV ,i.e. theso-calledGIMsuppression. FortheW gaugeboson,however,theGIMsuppression ν R canbeavoidedifthesterileneutrinosareheavyenoughtospoilthesuppressioncomingfromtheunitarity relations. Each of the limits of F(x) leads to a different amplitude, shown in Table I. The largest possible TABLEI:DifferentlimitsforAWR amplitud. L Limit AWR L m (cid:28) M −g2 e mµ (cid:80) (V ) (V∗) m2 Ni WR R128π2MW4R(cid:18) i N(cid:19) ei N µi Ni m (cid:29) M g2m 3e (cid:80) Log m2Ni (V ) (V∗) 1 Ni WR R µ64π2 i M2 N ie N iµm2 WR Ni m ∼ M g2 3 mµ (cid:80) (V ) (V∗) MW2R−m2Ni Ni WR R1280π2M2 i N ei N µi M2 WR WR contribution corresponds to the case where both, the masses of the sterile neutrinos and the mass of the chargedgaugeboson,areofthesameorderofmagnitude,i.e. m ∼ M . Weillustratethisscenarioin Ni WR Fig.4byshowingthepredictiononthebranchingratioe → e γ (purplepoints)asafunctionofM for i j WR different values of the sterile neutrino masses of the same order of magnitude as M . In the context of WR ourLR-modelinRef.[29], neutrinosarepredictedtobeverylight; m /M ≤ 10−4. Therefore, aswe Ni WR alsoshowinFig.4,bluepoints,theGIMsuppressionoccursandthepredictionsforthebranchingratioare farawayfromthecurrentandevenfutureexperimentalreach. Inordertocompleteourdiscussionweshow thepredictionsforg−2whicharealwaysverysmall. 10 FIG.4: Predictionsonthebranchingratioofe → e γ andg−2anomalousmomentumofthemuonmediatedby i j a right handed charged gauge boson as a function of its mass M . The blue points represent the predictions on WR thebranchingratiointhecontextofourmodel,whereasthepurplepointscorrespondtothemostoptimisticcaseto observe LNV in which the right handed neutrinos and the W boson masses are of the same order of magnitude. √ R For all points, λ ∈ [0,2 π] (perturbative scenario) and the factor ∆ ∈ [0,∆ ]. The red lines represent the R upper experimentallowerboundsonthedifferentprocesses,Br(µ→eγ)<4.2×10 13 [33],Br(τ →eγ)<3.3×10 8 − − [34],Br(τ →µγ)<4.4×10 8[34]and∆a <287×10 11[35]. Theorangedashedlinesrepresenttheprojected − µ − limits6×10 14forµ→eγ[36],3×10 9forµ→eγ[37],and∼10 9forτ →eγ[37]. Finally,thegreenvertical − − − line shows the lower bound on the W gauge boson [32], which only applies to the blue points. Here, left-right R symmetryhasbeenassummedinthegaugesector,i.e. g =g . L R 2. LFVmediatedbyδ ChargedHiggses ± The charged Higgs, δ±, can be light and induce large contributions to the lepton flavour violating pro- cesses. Theamplitudefortheµ → eγ processcanbewrittenas (cid:32) (cid:33) Aδ+ = e mµ (cid:88)(cid:88)(λ∗)ceλdµVci(V∗)diG m2Ni , (23) L 4π2m2 R R N N m2 δ+ i c,d δ+ (cid:32) (cid:33) Aδ+ = e mµ (cid:88)(cid:88)(λ∗)ceλdµ(V∗)ciVdiG m2νi , (24) R 4π2m2 L L ν ν m2 δ+ i c,d δ+

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.