ebook img

(Lens culinaris L.) Agronomy PDF

13 Pages·2017·0.59 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview (Lens culinaris L.) Agronomy

agronomy Article Impacts of Trace Element Addition on Lentil (Lens culinaris L.) Agronomy Md.MoshiulIslam1,*,Md.RazaulKarim1,Md.MoinulHosainOliver2,TahminaAkterUrmi3, Md.AshrafHossain4andM.MoynulHaque1 1 DepartmentofAgronomy,BangabandhuSheikhMujiburRahmanAgriculturalUniversity, GazipurP.O.Box1706,Bangladesh;[email protected](M.R.K.);[email protected](M.M.H.) 2 DepartmentofAgriculturalEngineering,BangabandhuSheikhMujiburRahmanAgriculturalUniversity, GazipurP.O.Box1706,Bangladesh;[email protected] 3 DepartmentofSoilScience,BangabandhuSheikhMujiburRahmanAgriculturalUniversity, GazipurP.O.Box1706,Bangladesh;[email protected] 4 DepartmentofSoilScience,BangladeshAgriculturalResearchInstitute,GazipurP.O.Box1701,Bangladesh; [email protected] * Correspondence:[email protected];Tel.:+88-0171-213-2019 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:27May2018;Accepted:14June2018;Published:27June2018 Abstract: Adequate supply of micronutrients is important for the proper growth and yield of lentil, particularly in poorly fertile soil. This study was carried out to understand the effects of zinc (Zn), boron (B), and molybdenum (Mo) on the growth and yield of lentil, and how these elementscanhelpmanagesoilfertilityissues. Inthisregard,themorpho-physiologicaltraitsoflentils (BARI Masur-7) were collected from two experiments receiving the same treatments carried out duringconsecutiverabiseasonsof2015–2016and2016–2017. Theexperimentswerelaidoutwitha randomizedcompleteblockdesignhavingeighttreatments,andwasreplicatedthrice.Thetreatments wereT (Control),T (Zn kgha−1),T (B kgha−1),T (Mo kgha−1),T (Zn B kgha−1), 1 2 2.0 3 1.5 4 1.0 5 2.0 1.5 T (Zn Mo kgha−1),T (B Mo kgha−1),andT (Zn B Mo kgha−1). Theresultsrevealed 6 2.0 1.0 7 1.5 1.0 8 2.0 1.5 1.0 thattheapplicationofmicronutrientseithersinglyorincombinationhadsignificanteffectsonthe plantheight,numberofbranchesperplant,numberofpodsperplant,numberofseedsperpod, thousandseedweight,andtheseedyieldoflentil. Themaximumseedproductionwas,however, observedinplotsreceivingtreatmentT ,i.e.,thecombinedapplicationofZn,B,andMo. Agronomic 8 biofortificationalsohadsignificantlyincreasedproteincontentoflentilseedswhileaffectingthemacro andmicronutrientcontentoflentilseed. Theseresultssuggestthatanymicronutrientdeficiencies mightleadtoayieldlossoflentil,andsuchascenariocouldbeavoidedbyacombinedapplication ofmicronutrientsataproportionatelevel. Keywords: micronutrients;lentil;cropcharacteristics;yieldcomponent;seedquality;soilproperties 1. Introduction Lentil(LensculinarisL.)isanediblepulsethatbelongstothefamilyFabaceae. Humanshave knownlentilssincethebeginningofcivilization. ItisoneofthepopularpulsecropsinBangladesh. Lentilseedcontains25%protein,1.1%fat,59%carbohydrate,andisalsorichinimportantvitamins, minerals, and soluble and insoluble dietary fiber [1]. Due to the overpopulation of the country, the majority of fertile agricultural lands are occupied with cereal crops. This is why pulse crops aregrowninmarginalandpoorlyfertilesoilsunderrain-fedconditionsinBangladesh. Oneofthe majorconstraintsofpulsesproductionisthelackofpropermanagementpracticesthathascausedthe continuousdepletionofmicronutrientsduetointensivecropcultivation[2].Therefore,theintroduction Agronomy2018,8,100;doi:10.3390/agronomy8070100 www.mdpi.com/journal/agronomy Agronomy2018,8,100 2of13 ofpropermanagementpractices,i.e.,balancingthesupplyofmacroandmicronutrients,mayplaya majorroleinincreasingtheproductionoflentil. Lentil production is largely influenced by the genotypic potential and the resistance to biotic andabioticstresses[3]. However,amongvariousedaphicfactors,theavailabilityofadequateplant nutrientsisofprimeimportance. Inparticular,micronutrientswerereportedtohaveinfluencedthe growthandyieldoflentil[4,5]. Micronutrientscontributesubstantiallytotheachievementofhigher productionbyinfluencingthesymbioticnitrogen-fixingprocess,wheremicronutrientdeficienciescan limitnitrogenfixationbylegume-rhizobiumsymbiosisandinfluencetheeffectiveuptakeofdifferent plantnutrients. Zinc(Zn),forinstance,playsanimportantroleinthebiosynthesisofplanthormones, mainlyindoleaceticacid[6]. Manyotherenzymessuchasthealcoholdehydrogenase(EC1.1.1.1), superoxidedismutase(EC1.15.1.1),carbonicanhydrase(EC4.2.1.1),andRNApolymerase(EC2.7.7.6) includezincasacofactor. Itis,therefore,evidentthatzincdeficiencymayinhibitproteinsynthesis in plant. Zn deficiency also reduces the water uptake by plants, affecting water use efficiency [7], nodulation, and nitrogen fixation [8]. In addition, Zn uptake is positively correlated with organic mattercontentinsoil[8,9]. Sandysoilswithlessorganicmatterproduceloweryieldsduetothepoor utilizationofZn[10]. Boron (B) is one of the most import trace elements essential for plants. Boron can influence theabsorptionofN,P,andK,anditsdeficiencycanchangetheoptimalequilibriumofthosethree macronutrients. Boronalsoplaysakeyroleinsugartranslocation,nitrogenfixation,proteinsynthesis, sucrosesynthesis,cellwallcomposition,membranestability,andK+transport[11]. Borondeficiency leadstosterilityinplantsbythemalformationofreproductivetissuesaffectingpollengermination, andresultinginincreasedflowerdropandreducedfruitset[12]. Theotherimportantmicronutrient essentialfortheproperfunctionofnitrogenaseenzymeofRhizobiumbacteriaisMolybdenum(Mo). Itisalsothecofactorforthenitratereductaseenzymethatisinvolvedinnitrogenassimilation[13]. Molybdenum,beingaconstituentofnitratereductaseandnitrogenaseenzymes,isassociatedwith ammoniareductionandnitrogenfixation,anditsdeficiencyadverselyaffectsthegrowthandyieldof crops[11]. InMo-deficientcrops,theflowersproducedarefewerinnumber,smallerinsize,andmany ofthemfailtoopenortomature,leadingtolowerseedyield[8]. Itisreportedinthescientificcommunitythattheapplicationofmicronutrientsincreasesnodule formation,micronutrientuptake,andpostharvestsoilproperties[5,14,15]. Severalresearchershave alsoreportedthattheconjunctiveuseofdifferentmicroandmacronutrientssignificantlyincreases seedyieldby55–60%,ofwhich20–25%couldbeascribedtothemicronutrients[4,14,15]. Valencianoet al.[16]foundthatZnapplicationwasmoreefficientinchickpeawhenitwasappliedinconjunction withboronandmolybdenum. Quddusetal.[17]reportedthatmanysoilsofBangladesharedeficient inzinc(Zn),boron(B),andmolybdenum(Mo),whichcausespoorcropyields. Thebeneficialeffects ofthesethreemicronutrientsongroundnut,soybean,chickpea,andmungbeanhavealreadybeen reported in Bangladesh. However, their effect on lentil production is yet to be fully understood. Thepresentstudywasthereforeundertakentoevaluatetheeffectsofmicronutrientsonseedyield, nutrientuptake,andthepostharvestsoilnutrientstatusoflentilfield. 2. MaterialsandMethods 2.1. ExperimentalSiteandSoil The field experiment was conducted at the research field of the Pulses Research Sub-Station, BangladeshAgriculturalResearchInstitute(BARI),Gazipur,Bangladesh,duringthewinterseason (NovembertoFebruary)of2015–2016and2016–2017.Thesiteislocatedat24◦0/Nlatitudeand90◦25/E longitudeatanelevationof8.4mabovesealevel. Thesoilofthestudyareabelongstothechhiata seriesundertheagroecologicalzone(AEZ)MadhupurTract(AEZ-28). Theexperimentalsitehasa subtropicalhumidmonsoonclimaticcondition. Itischaracterizedbycomparativelyhighmonsoon rainfall,highhumidity,andhightemperature,longdayswithlessclearsunshine,andsometimesthe Agronomy2018,8,100 3of13 skyremainscloudyforheavyrainfallduringtheperiodfromApriltoSeptember. Scantyrainfall,low humidity,lowtemperature,shortdays,andmoreclearsunshinecharacterizetheperiodfromOctober toMarch. Theaveragetemperaturerangesfrom15.0–36.1◦Candaverageannualrainfallvariesfrom 1500–2200mmaroundtheyear. Initialsoilsamples(0–15cmdepth)werecollectedfromdifferentspots oftheexperimentalfieldandthecharacteristicsoftheexperimentalsoilaregiveninTable1. Table1.Physicalandchemicalpropertiesofthesoilusedintheexperiments. SoilProperties Value Sand% 26.28 Silt% 38.20 Clay% 35.52 Texturalclass(0–15cm) Clayloam Particledensity(gcm−3) 2.51 Bulkdensity(gcm−3) 1.35 Porosity(%) 46.22 pH 6.6 ExchangeableK(meq.100g−1) 0.11 ExchangeableCa(meq.100g−1) 6.01 ExchangeableMg(meq.100g−1) 2.02 Organicmatter(%) 1.28 TotalN(%) 0.057 AvailableP(µgg−1) 23.5 AvailableS(µgg−1) 26.0 AvailableZn(µgg−1) 1.31 AvailableB(µgg−1) 0.16 AvailableMo(µgg−1) 0.072 2.2. ExperimentalDesignandTreatments The experiment was laid out in a randomized complete block design (RCBD) with eight treatmentsandthreereplications. Theplotsizewas4m×3m. ThetreatmentswereT (Control), 1 T (Zn kgha−1),T (B kgha−1),T (Mo kgha−1),T (Zn B kgha−1),T (Zn Mo kgha−1), 2 2.0 3 1.5 4 1.0 5 2.0 1.5 6 2.0 1.0 T (B Mo kgha−1),andT (Zn B Mo kgha−1). Basalapplicationoffertilizerwasmadewith 7 1.5 1.0 8 2.0 1.5 1.0 15 kg nitrogen (N), 20 kg phosphorus (P), 30 kg potassium (K), and 10 kg sulfur (S) ha−1 in all plots. Fertilizersofeachtreatmentwereappliedtotheirrespectiveplotsatthefinallandpreparation. ThesourcesofN,P,K,S,zinc(Zn),boron(B),andmolybdenum(Mo)wereurea,triplesuperphosphate (TSP),muriateofpotash(MoP),gypsum,zincsulfate,boricacid,andsodiummolybdate,respectively. Disease-free vigorous lentil (BARI Masur-7) seeds were sown on 8 November 2015 and 2016 with thespacingof30cm×5cm. Theseedratewas30kgha−1. Standardcropmanagementpractices wereemployed. Nopestsanddiseaseswereobservedduringtheexperimentalperiod. Cropswere harvestedatmaturity. Dataonyieldcontributingcharacterswererecordedfrom10randomlyselected plantsfromeachplot. Theseedyield(kgha−1)wasrecordedbythewholeplottechnique. Theseed yieldwasadjustedto10%moisturelevel[18]. Theadjustedseedyieldat10%moisturelevelperplot wasconvertedtoseedyieldaskilogramperhectare. 2.3. ProteinPercentage Theproteinpercentageinlentilseedwascalculatedconsideringthepulsesfoodfactor5.30[19]. Theproteincontentwasmeasuredbymultiplyingthe%Ncontentofseedwiththepulsesfoodfactor 5.30(%N×5.30). 2.4. ChemicalAnalysisofPlantSamples The collected grain and straw were air-dried in ambient conditions and then oven-dried at 65–70◦Cfor72h. ThedriedsampleswerefinelygroundbyusingaWiley-Millwithstainlesscontact Agronomy2018,8,100 4of13 pointstopassthrougha60-meshsieve. Groundplantsamplesweredigestedwithdi-acidmixture (HNO HClO )(5:1)asdescribedbyPiper(1966)[20]forphosphorus(P),potassium(K),sulfur(S), 3 4 zinc(Zn),andboron(B).TotalnitrogenwasdeterminedusingKjeldhalsystems[21]. Phosphoruswas determinedcolorimetricallyusingthevenadomolybdateblueascorbicacidmethodbydoublebeam spectrophotometry(Modelno. 200-20,Hitachi,Tokyo,Japan)[22]. Potassiumandzincconcentrations inthedigestweredirectlymeasuredbyatomicabsorptionspectrophotometry(ModelNo.VARIAN SpectrAA55B,Adelaide, Australia)andthesulfurconcentrationwasdeterminedbytheturbidity methodusingBaCl byspectrophotometry[23]. Theboronconcentrationwasalsodeterminedby 2 spectrophotometryfollowingtheazomethine-Hmethod[23]. 2.5. SoilAnalysis Soilsampleswerecollected(upto0–15cmdepth)attheinitialstageandalsoafterharvestfrom fourdifferentspotsineachplot. Thecompositesoilsampleofeachplotwasbroughttothelaboratory fordifferentsoilanalyses. Particlesizeanalysisofthesoilwasconductedusingthehydrometermethod[24]. Thetextural classwasdeterminedusingMarshall’sTriangularCoordinatesoftheUSDAsystem. Particledensitywasdeterminedbythevolumetricflaskmethod[24]usingthefollowingformula: Ms Particledensity(Dp) = gcm−3 Vs where D =Particledensity(gcm−3); P Vs=Volumeofsoilsolid(cm−3); Ms=Weightofsoilsolid(g). Bulkdensitywasdeterminedbythecoresamplermethod[24]usingthefollowingformula: Ms Bulkdensity(Db) = gcm−3 Vt where Db=Bulkdensity(gcm−3); Ms=Massofsoilsolid(g); Vt=Totalvolumeofsoil(cm−3). Soilporositywascalculatedfromtheresultsofparticledensityandbulkdensityas: Dp−Db Soilporosity= ( )×100 Dp where Dp=Particledensity(gcm−3); Db=Bulkdensity(gcm−3). SoilpHwasmeasuredwiththehelpofaglasselectrodepHmeterusingasoilwatersuspension of1:2.5asdescribedbyReference[23]. Organiccarbonwasdeterminedfollowingthewetoxidation methodasdescribedbyReference[23]andtheorganicmattercontentwascalculatedbymultiplying the%organiccarbonwiththeVanBemmelenfactor1.73[25]. Totalnitrogenwasdeterminedusing Kjeldhalsystems[21]. Calciumandmagnesiumweredeterminedbytheammoniumacetateextraction method[26]. Phosphoruswasdeterminedcolorimetricallyusingthevenadomolybdateblueascorbic acid method by double beam spectrophotometry (Model no. 200-20, Hitachi, Tokyo, Japan) [22]. Potassium and zinc concentrations in the digest were directly measured by atomic absorption Agronomy2018,8,100 5of13 spectrophotometry(ModelNo.VARIANSpectrAA55B,Australia)andthesulfurconcentrationwas determinedbytheturbiditymethodusingBaCl byspectrophotometry[23]. Theboronconcentration 2 wasalsodeterminedbyspectrophotometryfollowingtheazomethine-Hmethod[23]. 2.6. StatisticalAnalysis Thecollecteddatawereanalyzedtoassesstheirstatisticalsignificance. Statistix10programwas usedtoperformstatisticalanalysis(www.statistix.com). Meanswereseparatedbytheleastsignificant difference(LSD)testata5%levelofsignificance[27]. 3. ResultsandDiscussion 3.1. EffectofMicronutrientsonMorpho-PhysiologicalCharactersofLentil 3.1.1. PlantHeight Plantheightisthemostimportantcharacteristicofthemorpho-physiologywhichalsoactsasa keytoshootyieldaswellastotalbiomassproduction. AgronomicbiofortificationwithZn,B,and Mosignificantlyincreasedtheplantheightoflentil(Table2). Thehighestplantheight(35.9cm)was recordedfromtheT treatmentwhichwasstatisticallysimilartoT ,andthelowest(31.8cm)was 8 5 recordedfromtheT (control)treatment(Table2). Aswithotherleguminouscrops,Znapplication 1 resultedinmorevegetativegrowth[28],leadingtohigherplantheight. Differentmicronutrientsmight havehelpedinthesynthesisoftheauxinindoleaceticacidandincreasedtheplantheight. Table2.EffectofZn,B,andMoapplicationsongrowthandyieldcharactersoflentil.Averagesfrom threeindependentexperimentsareshown(meanof2yearsofdata). Plant 1000 Seed Seed Branches Pods Seeds Treatments Height Plant−1 Plant−1 Pod−1 Seedswt. Yield Protein (cm) (gm) (Kg/ha) (%) T =Control 31.8e 2.54c 36.9e 1.62d 17.3c 822d 20.8b 1 T =Zn2.0kgha−1 34.7bc 2.74b 51.1bcd 1.77bc 18.7b 1081bc 24.8a 2 T =B1.5kgha−1 34.1cd 2.76b 48.2cd 1.80b 18.6b 1066c 24.6a 3 T =Mo1.0kgha−1 33.5d 2.69bc 48.0d 1.76bc 18.3b 1015c 25.3a 4 T =Zn B 35.1ab 3.04a 62.0a 1.88a 19.6a 1203ab 25.2a 5 2.0 1.5 T =Zn Mo 34.9bc 2.85b 52.9b 1.79bc 18.4b 1105bc 25.6a 6 2.0 1.0 T =B Mo 34.8bc 2.84b 52.4bc 1.78bc 18.2b 1096bc 25.8a 7 1.5 1.0 T =Zn B Mo 35.9a 3.06a 65.0a 1.90a 19.7a 1256a 26.7a 8 2.0 1.5 1.0 CV(%) 1.70 3.33 4.72 1.46 1.55 6.61 6.71 LSD(0.05) 1.04 0.164 4.29 0.046 0.504 1.27 2.92 Valueswithinacolumnhavingsameletter(s)donotdiffersignificantly(p=0.05). 3.1.2. BranchesPlant−1 Micronutrients have a significant effect on the number of branches per plant (Table 2). Themaximumnumberofbranchesperplant(3.06)wasrecordedfromtheT treatment,whichwas 8 statistically similar to the T treatment. The minimum (2.54) was recorded from the T (control) 5 1 treatment, which was statistically similar to T (Table 2). A significant increase in number of 4 branchesperplanthasbeenreportedfollowingtheapplicationofdifferentmicronutrients[29–32]and micronutrientmixtures[33]indifferentcrops. Agronomy2018,8,100 6of13 3.2. EffectofMicronutrientsonYieldComponentsofLentil 3.2.1. NumberofPodsPlant−1 The number of pods per plant is the most influential yield component, and is most closely correlatedwithseedyield. Itisalsothemostvariablecomponent[34]. Dataregardingpodsperplant oflentilasinfluencedbydifferentmicronutrientapplicationsisshowninTable2. Analysisofthedata revealedthattheeffectofthetreatmentswassignificantonthenumberofpodsperplant. During thesingleapplicationofZn,B,andMo,thehighestnumberofpodsperplant(51.1)wasobtained fromtheT treatmentandthelowest(48.0)wasobtainedfromtheT treatment(Table2). However, 2 4 amongallofthetreatments,thehighestnumberofpodsperplant(65.0)wasrecordedfromtheT 8 treatment,whichwasstatisticallysimilartotheT treatment,whilethelowest(36.9)wasrecorded 5 fromtheT (control)treatment(Table2). Theresultsindicatethatmicronutrientshaveapositiveeffect 1 onthepodsetoflentils. Thepodsetwasincreasedby76.15%inT overthecontrol. Thiscouldbe 8 duetothegreaterroleofmicronutrientsintheproductionofindoleaceticacid(IAA),whichmay haveresultedinmorepodsperplant[35]. Micronutrientsalsoincreasethenumberofbranchesdueto theformationofstamensandpollens[36]. Theenhancingeffectofzinc,boron,andmolybdenumon podsperplanthasbeenreportedinmungbean[37],chickpea[38],greengram[39],frenchbean[40], andcowpea[15]. Theresultsofthisstudycontributetothegrowingbodyofknowledgeaboutthe effectofthesemicronutrientsonlentils. 3.2.2. NumberofSeedsPod−1 The number of seeds per pod is the least variable yield component. It was also significantly influencedbyagronomicbiofortification(Table2). Thehighestnumberofseedsperpod(1.90)was obtainedfromtheT treatment,whichwasstatisticallysimilartotheT treatment,andthelowest(1.62) 8 5 wasrecordedfromtheT (control)treatment(Table2). Similarresultshavebeenreportedinthecase 1 ofmungbean[37]andgreengram[39],showingtherelevanceofthepresentstudy,andinferringthe factthatagronomicbiofortificationmighthaveenhancedtheseedsettingthatresultedinanincreasing numberofseedsperpod. 3.2.3. ThousandSeedWeight Seed weight is an important quality attribute of crops. Although this character is genetically controlled,thegrowingconditionalsoexertsconsiderableinfluenceonitsexpression. Inthepresent study,thethousandseedweightoflentilswassignificantlyinfluencedbytheapplicationofZn,B, andMo. Thehighestthousandseedweight(19.7g)wasobtainedfromtheT treatment,whichwas 8 statistically similar to the T treatment, and the lowest (17.3 g) was obtained from the T (control) 5 1 treatment(Table2). Thiscouldbeduetothehighermobilizationofphotosynthatestothedeveloping seedsinT causedbytheagronomicbiofortificationofZn,B,andMo.Theresultsofthisstudyconform 8 withthefindingsofanumberofpreviousreports[37,39]formungbeanandgreengram. 3.2.4. SeedYield Seedyieldisanimportantconsiderationforanystudyrelatingtothecommercialcultivationas wellastheseedproductionofacrop. Seedyielddependsonthenumberofpodsperplant,seeds perpod,andseedweight. TheresultsfromTable2indicatedthattheapplicationofmicronutrients either singly or in combination had a significant effect on the seed yield of lentil. However, the maximumincreaseinseedyieldwasobservedfollowingthecombinedapplicationofZn,B,andMo. Allothertreatmentswerefoundtohavemoderatetoloweffectsinenhancingtheseedyieldofthis crop. The increase in seed yield varied from 23.48 to 52.80% at different treatments compared to thecontrols(Table2). Thisindicatesthefactthatagronomicbiofortificationmayhavefosteredthe photosynthesis process and translocation of photosynthetic products to the seed as a result of an Agronomy2018,8,100 7of13 increaseinenzymaticactivity. Theplotslackinginoneofthemicronutrients(T ,T ,andT treatments) 5 6 7 showed lower seed yield than T treatments where Zn, B, and Mo were applied in combination. 8 Ontheotherhand,whenZn,B,andMowereappliedindividuallytosoil,theincreaseinseedyield wasmarginalbutstatisticallydifferentfromthecontrol. Thisresultindicatesthatanymicronutrient deficienciesmayresultinyieldloss,andthiscouldberecoverediftherelevantmicronutrientsare applied. Thebestresultswouldthereforebeachievedifmicronutrientsareappliedinconjunction with macronutrients to favorably influence the plant vigor, morphology, and metabolic processes. Theresultsofthisexperimentareinagreementwiththefindingsofanumberofpreviousresearch endeavorsinvolvingothercrops[38,40–43]. Yangetal.[44]forinstance,reportedthatthecombined application of B with Mo or Zn resulted in higher seed yield than the application of B, Mo, or Zn alone,andthecombinedapplicationofB,Mo,andZnincreasedtheseedyieldby68.1%comparedto thecontrols. 3.3. EffectsofMicronutrientsontheProteinContentofLentilSeed AgronomicbiofortificationwithZn,B,andMohadasignificanteffectontheseedproteincontent of lentil (Table 2). The highest seed protein content (26.7%) was obtained from the T treatment, 8 whichwasstatisticallysimilartoT (25.8%),T (25.6%),T (25.2%),T (25.3%),T (24.6%),andT (24.8%). 7 6 5 4 3 2 Thelowest(20.8%)proteincontent,however,wasobtainedfromtheT (control)treatment(Table2). 1 Ithasbeenreportedthattheproteinpercentageingrainofmothbean(Vignaaconitifolia(Jacq.)Marechal) increasedsignificantlyfollowingMoapplication[45].BarikandRout[46]alsoobservedthatagronomic biofortificationwithMo,Zn,B,K,andSenhancedtheseedproteincontentofpulses. Thisisbecause an increase in micronutrient availability enhances N uptake by plants through nodule formation, whichincreasestheproteincontentinseeds[47]. 3.4. EffectsofMicronutrientsontheNoduleFormationofLentil Theresultsoftheconsecutiveexperimentsofthisstudyshowthatthenumberofnodulesperplant wasgraduallyincreasedfrom32daysafterseeding(DAS)to62DAS,andthendecreasedregardlessof treatment(Figure1). Theresultsalsoindicatethateverymicronutrienthasanimportantroleinnodule formation. Thehighestnumberofnodulesperplant(58.5)wasrecordedforT after62daysofsowing, 8 whichwasstatisticallysimilartoT ,andthelowestnumberofnodulesperplant(13.7)wasrecorded 6 forT (control)at32DAS(Figure1). Fromtheresultsofdifferentdates, wefoundthatthelowest 1 numbersofnodulesperplantwererecordedat32DASand77DASwhilethehighestnumbersof nodulesperplantwererecordedbetween47and62DAS.Itseemsthatthehighestnumberofnodules formationoccurredduringearlytomid-floweringstages.Afterflowering,nodulesformationefficiency wasreduced. Micronutrientsplayimportantrolesasconstituentsoforganicstructures,constituentsor activatorsofenzymes,electroncarriers,andinosmoregulation. Micronutrientsmayalsoinfluence N fixation in legumes and nonlegumes at various levels of the symbiotic interactions: infection 2 andnoduledevelopment, nodulefunction, andhostplantgrowth[48]. Bolanosetal.[49]studied the effect of boron on Rhizobium-legume cell-surface interaction and nodule development in pea. Inboron-deficientplants,thenumberofRhizobiainfectingthehostcellsandthenumberofinfection threadswerefoundtohavereduced. Moreover,theinfectionthreadshaddevelopedmorphological aberrationsandreducedthenodulenumber. IthasbeenreportedthattheFe-Mocofactor(FeMoco)of nitrogenaseconstitutestheactivesiteofthemolybdenum-containingnitrogenaseproteininN2-fixing organisms[50]. Althoughatalowsupply,molybdenumisanessentialtraceelementandisvitalforthe synthesisandactivityofmolybdoenzymessuchasnitrogenassimilationenzyme-nitratereductaseand thenitrogen-fixingenzyme-nitrogenase,thekeyregulatorycomponentfortheinitiationofnodulation andthemaintenanceofnitrogenfixationinlegumes[51]. Thepresentresultsareinagreementwith thesepreviousstudiesthatexplainedthereasonforlownoduleformulationatlaterstagesinlentils. Agronomy2018,8,100 8of13 Agronomy 2018, 8, x FOR PEER REVIEW 8 of 13 Figure 1. Effects of Zn, B, and Mo on number of nodules per plant of lentil at different days after Figure1. EffectsofZn,B,andMoonnumberofnodulesperplantoflentilatdifferentdaysafter seeding. Averages from three independent experiments are shown. Error bars represent the SEM. seeding. Averagesfromthreeindependentexperimentsareshown. ErrorbarsrepresenttheSEM. Means followed by uncommon letter(s) are significantly different from each other at the 5% level of Meansfollowedbyuncommonletter(s)aresignificantlydifferentfromeachotheratthe5%level ofssiiggnniifificcaannccee.. NNootete: T:1T = C=oCntoronlt,r To2l ,=T Zn= 2.Z0 nkg2 .h0a−k1g, Th3 a=− B1 ,1.T5 k=g hBa−11., 5T4k =g Mhao− 11.0, Tkg h=aM−1, oT51 =.0 Zkng2.0hB1a.5−, 1, T6 = Zn2.0Mo1.0, T7 = B1.51Mo1.0, T8 = Zn2.02B1.5Mo1.0. 3 4 T =Zn B ,T =Zn Mo ,T =B Mo ,T =Zn B Mo . 5 2.0 1.5 6 2.0 1.0 7 1.5 1.0 8 2.0 1.5 1.0 3.5. Effects of Micronutrients on the N, P, K, S, Zn, and B Content of Lentil 3.5. EffectsofMicronutrientsontheN,P,K,S,Zn,andBContentofLentil The uptake of N, P, K, S, Zn, and B by lentil (grain and straw) was markedly influenced by agTrhoneoumpitca bkieofoofrtNifi,caPt,ioKn, (ST,aZblne,s a3n adndB 4b).y Thleen rteilsu(gltrsa sihnoawnedd tshtraat wag)rwonaosmmica brkioefdorlytifiincafltuioenn hcaedd ab y agrsoingonmificicanbti oinfoflruteifinccea toionn th(eT aNb lceosn3teannt dof 4le).nTtihl (esereedsu alntsd sshtroawwe).d Tthhea htiagghreosnt oNm ciocnbteinotf o(5rt.0ifi4%ca tinio sneehda d a siagnndi fi1c.7a4n%t iinnfl sutreanwc)e woans tohbetaNinecdo nfrtoemnt tohfe lTe8n ttriela(tsmeeednt,a wndhischtr awwas). stTahtiestihciagllhye ssitmNilacro tnot Ten7 (t4(.858.0%4 % insaenedd 1a.6n7d%1).,7 T46% (4i.8n3s%tr aanwd) 1w.6a4s%o),b Tta5 i(n4e.7d6%fr)o, mT4 t(h4.e78T%8)t,r Tea3 t(m4.6e5n%t,),w ahnidc hT2w (4a.6s8s%ta)t, iwsthicialel ltyhesi mlowilaerstt o T7(N4. 8c8o%nteanntd (31.9.627%% i)n, Tse6e(d4 .a8n3d% 1a.1n8d%1 i.n6 4s%tra),wT)5 w(4a.s7 o6%bt)a,inTe4d( 4fr.7o8m% t)h,eT 3co(n4.t6ro5%l (T),1a tnredatTm2e(n4t.6) 8(T%a)b,lwesh 3i le thealnodw e4s).t INt hcaosn bteenent (r3e.p9o2%rteidn tsheaetd thaen dag1r.o1n8o%miinc sbtiroafwor)tiwficaastioobnt aoifn gedrafinro lmeguthmeecso innt rfoiell(dT cotnredaittimonesn t) 1 (Tabinlecsre3asaensd N42) f.ixIatthioans abnede nnordeuploer mteadsst,h raetsuthlteinagg irno nhiogmheicr Nbi ocofonrtteinfitc iant igornaino f[5g2r,a5i3n]. le gumes in field conditionsincreasesN fixationandnodulemass,resultinginhigherNcontentingrain[52,53]. 2 Table 3. Effect of Zn, B, and Mo applications on N, P, K, S, Zn, and B content in lentil seed. Averages from three independent experiments are shown (mean of 2 years of data). Table3.EffectofZn,B,andMoapplicationsonN,P,K,S,Zn,andBcontentinlentilseed.Averages fromthreeiTndreeaptemndenentst experiNm e(%nt)s arePsh (o%w)n (mKea n(%of) 2yeSa r(s%o)f daZtan). (μg g−1) B (μg g−1) T1 = Control 3.92 b 0.22 e 0.61 c 0.13 d 59.0 d 31.2 d TTr2e =a tZmne n2.t0s kg ha−1 N4(%.68) a 0P.2(%9 c)d 0K.6(2% c) 0.S15( %cd) Z7n0.(8µ agbg −1) 3B2.3(µ dg g−1) T1=CTo3 n=t rBo l1.5 kg ha−1 3.942.6b5 a 00.3.202 becd 00.6.691 bcc 00.1.143 dd 655.96. 0c d 37.53 1c. 2d T2=ZTn4 =2 .0Mkog 1h.0a −k1g ha−1 4.648.7a8 a 00.2.928c dd 00.7.662 acb 00.1.175 ccdd 677.50 .8bca b 32.73 2d. 3d T3=BT15 .=5 Zkgn2h.0aB−1.15 4.645.7a6 a 00.3.303b acbdc 00..7699 abbc 0.02.104 bdc 70.06 5a.b6cc 40.1 3a7b.5 c T =Mo1.0kgha−1 4.78a 0.28d 0.76ab 0.17cd 67.5bc 32.7d 4 T6 = Zn2.0Mo1.0 4.83 a 0.31 bcd 0.77 ab 0.23 b 69.3 abc 38.7 bc T =Zn B 4.76a 0.33abc 0.79ab 0.20bc 70.0abc 40.1ab T5=ZTn7 2=.0 BM11o..55Mo1.0 4.843.8a8 a 0.03.134b cadb 00..7871a ab 00.2.253 bb 686.19 .a3bacb c 40.63 a8.b7 bc 6 2.0 1.0 T =BT8 =M Zon2.0B1.5Mo1.0 4.858.0a4 a 0.03.436a ba 00..8861 aa 00.3.245 ab 7628.4.1 aa bc 41.450 a.6 ab 7 1.5 1.0 T =ZCnV (B%) Mo 5.064.a79 0.93.614a 07.8.864a 01.03.42 a 37.823.4 a 3.2451 .5a 8 2.0 1.5 1.0 LSD (0.05) 0.56 0.049 0.102 0.076 4.56 2.10 CV(%) 6.79 9.14 7.84 10.2 3.83 3.25 LSD(0.05)Values within a co0l.u5m6n havin0g.0 s4a9me lette0r.1(s0)2 do not0 d.0if7f6er significa4n.5t6ly (p = 0.05). 2.10 Valueswithinacolumnhavingsameletter(s)donotdiffersignificantly(p=0.05). Agronomic biofortification with Zn, B, and Mo had a significant effect on the P and S content in lentil (seed and straw). The highest amount of P (0.36% in seed and 0.18% in straw) was obtained AgronomicbiofortificationwithZn,B,andMohadasignificanteffectonthePandScontent from the T8 treatment, which was statistically similar to T7, and the highest amount of S (0.34% in inlentil(seedandstraw). ThehighestamountofP(0.36%inseedand0.18%instraw)wasobtained seed and 0.54% in straw) was obtained from the T8 treatment, which was not statistically similar to fromtheT treatment,whichwasstatisticallysimilartoT ,andthehighestamountofS(0.34%in any oth8er treatment. The lowest amount of both P and7 S was recorded from the T1 (control) seedand0.54%instraw)wasobtainedfromtheT treatment,whichwasnotstatisticallysimilarto treatment (Tables 3 and 4). Regarding K content,8 the highest K content in lentil seed (0.86%) was anyothertreatment. ThelowestamountofbothPandSwasrecordedfromtheT (control)treatment 1 Agronomy2018,8,100 9of13 (Tables3and4). RegardingKcontent,thehighestKcontentinlentilseed(0.86%)wasobtainedfrom theT treatment,whichwasstatisticallysimilartoT ,T ,T ,andT . ThehighestKcontentinlentil 8 7 6 5 4 straw (0.72%) was also obtained from the T treatment, which was not statistically similar to any 8 othertreatment. Ontheotherhand,thelowestKcontent(bothinseedandstraw)wasfoundforthe T (control)treatment(Table3). ThehighestZncontentinlentil(72.4µgg−1inseedand49.1µgg−1 1 instraw)wasobtainedfromtheT treatment. whichwasstatisticallysimilartoT (68.1µgg−1inseed 8 7 and48.5µgg−1instraw),T (69.3µgg−1). andT (70.0µgg−1). Thelowest(59.0µgg−1inseedand 6 5 42.1µgg−1instraw)Zncontentwas. however,obtainedfromthecontrol(T treatment). Thehighest 1 Bcontentinlentil(41.5µgg−1inseedand31.7µgg−1instraw)wasrecordedfromtheT treatment, 8 whichwasstatisticallysimilartoT (40.6µgg−1inseed)andT (40.1µgg−1inseed). ThelowestZn 7 5 andBcontent(seedandstraw)wasobtainedfromcontrol(T treatment)(Tables3and4). Increasesof 1 theZnandBcontentinbothstrawandseedsgoalongwithZnandBapplicationstothesoil. Similar resultshavebeenreportedinpreviousstudiesinvolvingdifferentcrops,wheremicronutrientswere showntohaveinfluencedtheuptakeofN,P,K,S,Zn,andB[54–58]. Table4.EffectofZn,B,andMoapplicationsonN,P,K,S,Zn,andBcontentinlentilstraw.Averages fromthreeindependentexperimentsareshown(meanof2yearsofdata). Treatments N(%) P(%) K(%) S(%) Zn(µgg−1) B(µgg−1) T =Control 1.18e 0.12e 0.59e 0.45e 42.1d 25.6d 1 T =Zn2.0kgha−1 1.42d 0.17a 0.63d 0.49d 48.2ab 26.1d 2 T =B1.5kgha−1 1.41d 0.16ab 0.64d 0.50cd 43.3cd 28.1c 3 T =Mo1.0kgha−1 1.52cd 0.15bc 0.65cd 0.48d 44.5cd 27.6c 4 T =Zn B 1.59bc 0.14cd 0.69b 0.52b 47.8ab 30.0b 5 2.0 1.5 T =Zn Mo 1.64abc 0.13de 0.68b 0.51bc 45.8bc 28.0c 6 2.0 1.0 T =B Mo 1.67ab 0.16ab 0.67bc 0.50cd 48.5ab 29.2b 7 1.5 1.0 T =Zn B Mo 1.74a 0.18a 0.72a 0.54a 49.1a 31.7a 8 2.0 1.5 1.0 CV(%) 4.62 6.17 2.56 1.90 3.48 1.93 LSD(0.05) 0.123 0.016 0.030 0.017 2.82 0.960 Valueswithinacolumnhavingsameletter(s)donotdiffersignificantly(p=0.05). 3.6. EffectsofMicronutrientsonPostharvestSoilProperties ThepHofpostharvestsoilsslightlyincreasedinallofthetreatments(Table5)afterthe2years of consecutive experiments. This was the result of the incorporation of lentil stover in soil. It has beenreportedthatorganicmatterfromcropresidueincreasesthesoilpHstatusbyimprovingthe soilbufferingcapacity[59]. Organicmatterincreasesthecationexchangecapacity,whichcontributes toahighbasesaturationofthesoil. Asthebasesaturationincreases,therelativeamountofcations neutralizes. Ourresultsweresupportedbymanyotherresearchers[60–62],whoreportedanincrease of soil pH resulting from increased organic matter. It was also reported that plants can alter soil pHbyreleasingrootexudates, suchasorganicacidanions, toenhancemineralnutrientsolubility, aswellasbytheliberationofH+andOH− (orHCO − resultingfromOH− carbonation)inorderto 3 counterbalancecationsoranionsenteringtheroots. Thedecompositionoforganicacidanionscanalso fosterprotonconsumptioninthedecarboxylationprocess,whichmayresultintheincreaseofsoilpH, whichexplainstheresultsofourstudy. TheresultsofthisstudysuggestthattheapplicationofZn,B,andModidnotaffectthemacro andmicronutrientcontentofthesoil,nordiditaffecttheorganicmattercontent(Table5). Nonetheless, the highest amount of organic matter (1.50%) was obtained from the T treatment and the lowest 8 (1.35%)wasfromtheT treatment. Inmostofthecases,thehighestmacroandmicronutrientcontent 1 ofthepostharvestsoilwasrecordedfromtheT treatmentandthelowestwasfromtheT treatment. 8 1 TheresultsalsoshowedthatagronomicbiofortificationwithZn,B,andMohadaprominenteffecton theavailabilityofnutrientsinthesoil. Ithasbeenreportedthattheincorporationofpulsesstoverin soilafterthepickingofpodsresultedinaneconomyofabout23kgN/hainthesucceedingcrop[63]. Agronomy2018,8,100 10of13 Itwasfoundthatthepulsesreceivingoptimumfertilizerhadmorepronouncedresidualeffectbothfor macroandmicronutrientsinthesucceedingcrops[64,65]. Regardlessofthetreatmentsofthisstudy, theconsecutiveexperimentsyieldedsimilarresultsthatmayhelpthescientificcommunitytobetter understandthedynamicsofmicronutrientsinlentilproduction. Ourresultsalsoshedlightsonhow suchmanagementpracticescanhelpincreasethefertilitystatusofpoorlyfertilesoils. Table5.EffectofZn,B,andMoapplicationsonpostharvestsoilpHandthestatusofdifferentnutrients. Averagesfromthreeindependentexperimentsareshown(meanof2yearsofdata). Ca Mg K P S Zn B Treatment pH OM(%) TotalN(%) meq.100g−1 µgg−1 Initial 6.61 1.28 0.057 6.01 2.02 0.11 23.5 26.0 1.31 0.16 Criticallevel 0.12 2.0 0.80 0.20 10.0 10.0 0.60 0.2 T =Zn B Mo 6.71 1.35 0.062 5.90 2.00 0.10 24.0 25.2 1.28 0.14 1 0 0 0 T =Zn 6.78 1.45 0.064 6.01 2.00 0.11 24.5 25.3 1.41 0.15 2 2.0 T =B 6.77 1.38 0.065 6.01 2.01 0.11 24.6 25.5 1.31 0.20 3 1.5 T =Mo 6.82 1.39 0.067 6.00 2.02 0.10 24.8 25.8 1.32 0.16 4 1.0 T =Zn B 6.93 1.47 0.069 5.89 2.00 0.11 24.6 25.7 1.43 0.23 5 2.0 1.5 T =Zn Mo 6.93 1.47 0.068 5.91 2.01 0.10 24.7 25.6 1.44 0.17 6 2.0 1.0 T =B Mo 6.96 1.49 0.070 5.92 2.02 0.10 24.6 25.7 1.36 0.26 7 1.5 1.0 T =Zn B Mo 7.01 1.50 0.072 5.88 2.00 0.11 24.7 25.9 1.45 0.27 8 2.0 1.5 1.0 NS NS NS NS NS NS NS NS NS NS NS:notsignificant. 4. Conclusions ThisstudywascarriedouttounderstandtheroleofZn,B,andMointheproductionoflentils and how the application of these elements can help manage soil fertility issues. In this regard, themorpho-physiologicaltraitsoflentilswerededucedfromtwoexperimentsreceivingthesame treatments carried out during consecutive seasons in 2015–2016 and 2016–2017. The agronomic biofortificationhadinfluencedtheplantheight,branchperplant,and,importantly,thenumberof nodulesperplant. Suchanintroductionofmicronutrientswasfoundtohavetriggeredmorepod settingandmoreseedsperpod,whichultimatelyenhancedtheseedyield. TheconjunctiveuseofZn, B,andMoalsohadasignificanteffectontheproteincontentofseeds. Thesepromisingresultssuggest thatagronomicbiofortificationwithZn,B,andMomayberecommendedforahigheryieldoflentilin marginalandpoorlymanagedsoilsunderrain-fedconditions. AuthorContributions: M.M.I.,M.M.H.andM.A.H.conceivedanddesignedtheexperiments;M.M.I.,M.R.K. andT.A.U.performedtheexperiments;M.M.I.,M.A.H.,T.A.U.andM.R.K.analyzedthedata;M.M.I.andM.A.H. contributedreagents/materials/analysistools;M.M.I.,M.R.K.,M.M.H.O.,T.A.U.,M.A.H.andM.M.H.wrote thepaper. Funding:Thisresearchreceivednoexternalfunding. Acknowledgments: TheauthorswouldliketothanktheBangladeshAgriculturalResearchInstitutefortheir facilities,inwhichtheexperimentwasconducted. ConflictsofInterest:Theauthorsdeclarenoconflictofinterest. References 1. Faris,M.A.I.E.; Takruri,H.R.; Issa,A.Y.Roleoflentils(LensculinarisL.)inhumanhealthandnutrition: Areview.Mediterr.J.Nutr.Metab.2013,6,3–16.[CrossRef] 2. Fageria,N.K.;Baligar,C.;Clark,R.B.Micronutrientsincropproduction.Adv.Agron.2002,77,185–268. 3. Singh,A.K.; Bhatt,B.P.; Upadhya,A.; Singh,B.K.; Kumar,S.; Sundaram,P.K.; Chndra,N.; Bharati,R.C. Improvementoffababean(ViciafabaL.)yieldandqualitythroughbiotechnologicalapproach: Areview. Afr.J.Biotechnol.2012,11,15264–15271.

Description:
Table 1. Physical and chemical properties of the soil used in the experiments. In Methods of Soil Analysis, Part 2, Chemical and Microbiological.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.