ebook img

Lectures on symplectic geometry PDF

226 Pages·2000·0.974 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lectures on symplectic geometry

Lectures on Symplectic Geometry Ana Cannas da Silva1 1E-mail: [email protected] or [email protected] Foreword Thesenotesapproximatelytranscribea15-weekcourseonsymplecticgeometry I taught at UC Berkeley in the Fall of 1997. The course at Berkeley was greatly inspired in content and style by Victor Guillemin, whose masterly teaching of beautiful courses on topics related to symplectic geometry at MIT, I was lucky enough to experience as a graduate student. I am very thankful to him! That course also borrowed from the 1997 Park City summer courses on symplectic geometry and topology, and from many talks and discussions of the symplecticgeometrygroupatMIT.Amongthe regularparticipantsintheMIT informalsymplecticseminar93-96,Iwouldliketoacknowledgethecontributions of Allen Knutson,ChrisWoodward,DavidMetzler, EckhardMeinrenken,Elisa Prato,EugeneLerman,JonathanWeitsman,LisaJe(cid:11)rey,ReyerSjamaar,Shaun Martin, Stephanie Singer, Sue Tolman and, last but not least, Yael Karshon. Thanks to everyone sitting in Math 242 in the Fall of 1997 for all the com- mentstheymade,andespeciallytothosewhowrotenotesonthebasisofwhich I was better able to reconstruct what went on: Alexandru Scorpan, Ben Davis, David Martinez, Don Barkauskas, Ezra Miller, Henrique Bursztyn, John-Peter Lund, Laura De Marco, Olga Radko, Peter P(cid:20)rib(cid:19)(cid:16)k, Pieter Collins, Sarah Pack- man, Stephen Bigelow, Susan Harrington, Tolga Etgu(cid:127) and Yi Ma. I am indebted to Chris Tu(cid:15)ey, Megumi Harada and Saul Schleimer who readthe (cid:12)rst draft of these notes and spotted many mistakes, and to Fernando Louro,GrishaMikhalkinand,particularly,Joa~oBaptistawhosuggestedseveral improvements and careful corrections. Of course I am fully responsible for the remaining errors and imprecisions. The interest of Alan Weinstein, Allen Knutson, Chris Woodward, Eugene Lerman, Jiang-Hua Lu, Kai Cieliebak, Rahul Pandharipande, Viktor Ginzburg and Yael Karshon was crucial at the last stages of the preparation of this manuscript. I am grateful to them, and to Mich(cid:18)ele Audin for her inspiring texts and lectures. Finally, many thanks to Faye Yeager and Debbie Craig who typed pages of messy notes into neat LATEX, to Joa~o Palhoto Matos for his technical support, andtoCatrionaByrne,InaLindemann,IngridMa(cid:127)rzandtherestoftheSpringer- Verlag mathematics editorial team for their expert advice. Ana Cannas da Silva Berkeley, November 1998 and Lisbon, September 2000 v CONTENTS vii Contents Foreword v Introduction 1 I Symplectic Manifolds 3 1 Symplectic Forms 3 1.1 Skew-Symmetric Bilinear Maps . . . . . . . . . . . . . . . . . . . 3 1.2 Symplectic Vector Spaces . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Symplectic Manifolds. . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Symplectomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 7 Homework 1: Symplectic Linear Algebra 8 2 Symplectic Form on the Cotangent Bundle 9 2.1 Cotangent Bundle . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Tautological and Canonical Forms in Coordinates . . . . . . . . . 9 2.3 Coordinate-Free De(cid:12)nitions . . . . . . . . . . . . . . . . . . . . . 10 2.4 Naturality of the Tautological and Canonical Forms . . . . . . . 11 Homework 2: Symplectic Volume 13 II Symplectomorphisms 15 3 Lagrangian Submanifolds 15 3.1 Submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 LagrangianSubmanifolds of T X . . . . . . . . . . . . . . . . . . 16 (cid:3) 3.3 Conormal Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Application to Symplectomorphisms . . . . . . . . . . . . . . . . 19 Homework 3: Tautological Form and Symplectomorphisms 20 4 Generating Functions 22 4.1 Constructing Symplectomorphisms . . . . . . . . . . . . . . . . . 22 4.2 Method of Generating Functions . . . . . . . . . . . . . . . . . . 23 4.3 Application to Geodesic Flow . . . . . . . . . . . . . . . . . . . . 24 Homework 4: Geodesic Flow 27 viii CONTENTS 5 Recurrence 29 5.1 Periodic Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2 Billiards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3 Poincar(cid:19)eRecurrence . . . . . . . . . . . . . . . . . . . . . . . . . 32 III Local Forms 35 6 Preparation for the Local Theory 35 6.1 Isotopies and Vector Fields . . . . . . . . . . . . . . . . . . . . . 35 6.2 Tubular Neighborhood Theorem . . . . . . . . . . . . . . . . . . 37 6.3 Homotopy Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Homework 5: Tubular Neighborhoods in Rn 41 7 Moser Theorems 42 7.1 Notions of Equivalence for Symplectic Structures . . . . . . . . . 42 7.2 Moser Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.3 Moser Local Theorem . . . . . . . . . . . . . . . . . . . . . . . . 45 8 Darboux-Moser-Weinstein Theory 46 8.1 Classical Darboux Theorem . . . . . . . . . . . . . . . . . . . . . 46 8.2 LagrangianSubspaces . . . . . . . . . . . . . . . . . . . . . . . . 46 8.3 Weinstein LagrangianNeighborhood Theorem . . . . . . . . . . . 48 Homework 6: Oriented Surfaces 50 9 Weinstein Tubular Neighborhood Theorem 51 9.1 Observation from Linear Algebra . . . . . . . . . . . . . . . . . . 51 9.2 Tubular Neighborhoods . . . . . . . . . . . . . . . . . . . . . . . 51 9.3 Application 1: Tangent Space to the Group of Symplectomorphisms . . . . . . . 53 9.4 Application 2: Fixed Points of Symplectomorphisms . . . . . . . . . . . . . . . . 55 IV Contact Manifolds 57 10 Contact Forms 57 10.1 Contact Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 57 10.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 10.3 First Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Homework 7: Manifolds of Contact Elements 61 CONTENTS ix 11 Contact Dynamics 63 11.1 Reeb Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 63 11.2 Symplectization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 11.3 Conjectures of Seifert and Weinstein . . . . . . . . . . . . . . . . 65 V Compatible Almost Complex Structures 67 12 Almost Complex Structures 67 12.1 Three Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 12.2 Complex Structures on Vector Spaces . . . . . . . . . . . . . . . 68 12.3 Compatible Structures . . . . . . . . . . . . . . . . . . . . . . . . 70 Homework 8: Compatible Linear Structures 72 13 Compatible Triples 74 13.1 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 13.2 Triple of Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 75 13.3 First Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Homework 9: Contractibility 77 14 Dolbeault Theory 78 14.1 Splittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 14.2 Forms of Type (‘;m) . . . . . . . . . . . . . . . . . . . . . . . . . 79 14.3 J-Holomorphic Functions . . . . . . . . . . . . . . . . . . . . . . 80 14.4 Dolbeault Cohomology . . . . . . . . . . . . . . . . . . . . . . . . 81 Homework 10: Integrability 82 VI K(cid:127)ahler Manifolds 83 15 Complex Manifolds 83 15.1 Complex Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 15.2 Forms on Complex Manifolds . . . . . . . . . . . . . . . . . . . . 85 15.3 Di(cid:11)erentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Homework 11: Complex Projective Space 89 16 K(cid:127)ahler Forms 90 16.1 Ka(cid:127)hler Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 16.2 An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 16.3 Recipe to Obtain Ka(cid:127)hler Forms . . . . . . . . . . . . . . . . . . . 92 16.4 Local Canonical Form for Ka(cid:127)hler Forms . . . . . . . . . . . . . . 94 Homework 12: The Fubini-Study Structure 96 x CONTENTS 17 Compact K(cid:127)ahler Manifolds 98 17.1 Hodge Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 17.2 Immediate Topological Consequences . . . . . . . . . . . . . . . . 100 17.3 Compact Examples and Counterexamples . . . . . . . . . . . . . 101 17.4 Main Ka(cid:127)hler Manifolds. . . . . . . . . . . . . . . . . . . . . . . . 103 VII Hamiltonian Mechanics 105 18 Hamiltonian Vector Fields 105 18.1 Hamiltonian and Symplectic Vector Fields . . . . . . . . . . . . . 105 18.2 Classical Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . 107 18.3 Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 18.4 Integrable Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Homework 13: Simple Pendulum 112 19 Variational Principles 113 19.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . 113 19.2 Principle of Least Action . . . . . . . . . . . . . . . . . . . . . . 114 19.3 Variational Problems . . . . . . . . . . . . . . . . . . . . . . . . . 114 19.4 Solving the Euler-LagrangeEquations . . . . . . . . . . . . . . . 116 19.5 Minimizing Properties . . . . . . . . . . . . . . . . . . . . . . . . 117 Homework 14: Minimizing Geodesics 119 20 Legendre Transform 121 20.1 Strict Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 20.2 Legendre Transform . . . . . . . . . . . . . . . . . . . . . . . . . 121 20.3 Application to Variational Problems . . . . . . . . . . . . . . . . 122 Homework 15: Legendre Transform 125 VIII Moment Maps 127 21 Actions 127 21.1 One-ParameterGroups of Di(cid:11)eomorphisms . . . . . . . . . . . . 127 21.2 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 21.3 Smooth Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 21.4 Symplectic and Hamiltonian Actions . . . . . . . . . . . . . . . . 129 21.5 Adjoint and Coadjoint Representations. . . . . . . . . . . . . . . 130 Homework 16: Hermitian Matrices 132 CONTENTS xi 22 Hamiltonian Actions 133 22.1 Moment and Comoment Maps . . . . . . . . . . . . . . . . . . . 133 22.2 Orbit Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 22.3 Preview of Reduction. . . . . . . . . . . . . . . . . . . . . . . . . 136 22.4 Classical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Homework 17: Coadjoint Orbits 139 IX Symplectic Reduction 141 23 The Marsden-Weinstein-Meyer Theorem 141 23.1 Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 23.2 Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 23.3 Proof of the Marsden-Weinstein-Meyer Theorem . . . . . . . . . 145 24 Reduction 147 24.1 Noether Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 24.2 Elementary Theory of Reduction . . . . . . . . . . . . . . . . . . 147 24.3 Reduction for Product Groups . . . . . . . . . . . . . . . . . . . 149 24.4 Reduction at Other Levels . . . . . . . . . . . . . . . . . . . . . . 149 24.5 Orbifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Homework 18: Spherical Pendulum 152 X Moment Maps Revisited 155 25 Moment Map in Gauge Theory 155 25.1 Connections on a Principal Bundle . . . . . . . . . . . . . . . . . 155 25.2 Connection and Curvature Forms . . . . . . . . . . . . . . . . . . 156 25.3 Symplectic Structure on the Space of Connections . . . . . . . . 158 25.4 Action of the Gauge Group . . . . . . . . . . . . . . . . . . . . . 158 25.5 Case of Circle Bundles . . . . . . . . . . . . . . . . . . . . . . . . 159 Homework 19: Examples of Moment Maps 162 26 Existence and Uniqueness of Moment Maps 164 26.1 Lie Algebras of Vector Fields . . . . . . . . . . . . . . . . . . . . 164 26.2 Lie Algebra Cohomology . . . . . . . . . . . . . . . . . . . . . . . 165 26.3 Existence of Moment Maps . . . . . . . . . . . . . . . . . . . . . 166 26.4 Uniqueness of Moment Maps . . . . . . . . . . . . . . . . . . . . 167 Homework 20: Examples of Reduction 169 xii CONTENTS 27 Convexity 170 27.1 Convexity Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . 170 27.2 E(cid:11)ective Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 27.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Homework 21: Connectedness 175 XI Symplectic Toric Manifolds 177 28 Classi(cid:12)cation of Symplectic Toric Manifolds 177 28.1 Delzant Polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . 177 28.2 Delzant Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 28.3 Sketch of Delzant Construction . . . . . . . . . . . . . . . . . . . 180 29 Delzant Construction 183 29.1 Algebraic Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 29.2 The Zero-Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 29.3 Conclusion of the Delzant Construction . . . . . . . . . . . . . . 185 29.4 Idea Behind the Delzant Construction . . . . . . . . . . . . . . . 186 Homework 22: Delzant Theorem 189 30 Duistermaat-Heckman Theorems 191 30.1 Duistermaat-Heckman Polynomial . . . . . . . . . . . . . . . . . 191 30.2 Local Form for Reduced Spaces . . . . . . . . . . . . . . . . . . . 192 30.3 Variation of the Symplectic Volume. . . . . . . . . . . . . . . . . 195 Homework 23: S1-Equivariant Cohomology 197 References 199 Index 207 Introduction Thegoalofthesenotesistoprovideafastintroductiontosymplecticgeometry. A symplectic form is a closed nondegenerate 2-form. A symplectic mani- fold is a manifold equipped with a symplectic form. Symplectic geometry is the geometry of symplectic manifolds. Symplectic manifolds are necessarily even-dimensional and orientable, since nondegeneracy says that the top exte- rior power of a symplectic form is a volume form. The closedness condition is a natural di(cid:11)erential equation, which forces all symplectic manifolds to being locally indistinguishable. (These assertions will be explained in Lecture 1 and Homework 2.) The list of questions on symplectic forms begins with those of existence and uniqueness on a given manifold. For speci(cid:12)c symplectic manifolds, one wouldliketounderstandthegeometryandthetopologyofspecialsubmanifolds, the dynamics of certain vector (cid:12)elds or systems of di(cid:11)erential equations, the symmetries and extra structure, etc. Two centuries ago, symplectic geometry provided a language for classical mechanics. Through its recent huge development, it conquered an independent and rich territory, as a central branch of di(cid:11)erential geometry and topology. To mention just a few key landmarks, one may say that symplectic geometry began to take its modern shape with the formulation of the Arnold conjec- tures in the 60’s and with the foundational work of Weinstein in the 70’s. A paper of Gromov [49] in the 80’s gave the subject a whole new set of tools: pseudo-holomorphic curves. Gromov also (cid:12)rst showed that important results fromcomplexKa(cid:127)hlergeometryremaintruein the moregeneralsymplecticcat- egory, and this direction was continued rather dramatically in the 90’s in the workofDonaldsononthetopologyofsymplecticmanifoldsandtheirsymplectic submanifolds, and in the work of Taubes in the context of the Seiberg-Witten invariants. Symplectic geometry is signi(cid:12)cantly stimulated by important inter- actions with global analysis, mathematical physics, low-dimensional topology, dynamicalsystems,algebraicgeometry,integrablesystems,microlocalanalysis, partial di(cid:11)erential equations, representation theory, quantization, equivariant cohomology,geometric combinatorics, etc. As a curiosity, note that two centuries ago the name symplectic geometry did not exist. If you consult a major English dictionary, you are likely to (cid:12)nd that symplectic is the name for a bone in a (cid:12)sh’s head. However, as clari(cid:12)ed in [103], the word symplectic in mathematics was coined by Weyl [108, p.165] who substituted the Greek root in complex by the corresponding Latin root, in ordertolabel the symplecticgroup. Weyl thusavoidedthatthisgroupconnote the complexnumbers,andalsosparedusfrommuchconfusionthat wouldhave arisen, had the name remained the former one in honor of Abel: abelian linear group. This text is essentially the set of notes of a 15-week course on symplectic geometrywith2hour-and-a-halflecturesperweek. Thecoursetargetedsecond- yeargraduatestudents in mathematics, though the audience was more diverse, 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.