ebook img

Lectures on Sphere Arrangements - the Discrete Geometric Side PDF

186 Pages·2013·3.06 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lectures on Sphere Arrangements - the Discrete Geometric Side

Fields Institute Monographs 32 The Fields Institute for Research in Mathematical Sciences Károly Bezdek Lectures on Sphere Arrangements – the Discrete Geometric Side Fields Institute Monographs VOLUME 32 The Fields Institute for Research in Mathematical Sciences FieldsInstituteEditorialBoard: CarlR.Riehm,ManagingEditor EdwardBierstone,DirectoroftheInstitute MatheusGrasselli,DeputyDirectoroftheInstitute JamesG.Arthur,UniversityofToronto KennethR.Davidson,UniversityofWaterloo LisaJeffrey,UniversityofToronto BarbaraLeeKeyfitz,OhioStateUniversity ThomasS.Salisbury,YorkUniversity NorikoYui,Queen’sUniversity TheFieldsInstituteisacentreforresearchinthemathematicalsciences,locatedin Toronto,Canada.TheInstitutesmissionistoadvanceglobalmathematicalactivity intheareasofresearch,educationandinnovation.TheFieldsInstituteissupported bytheOntarioMinistryofTraining,CollegesandUniversities,theNaturalSciences and Engineering Research Council of Canada, and seven Principal Sponsoring Universities in Ontario (Carleton, McMaster, Ottawa, Toronto, Waterloo, Western andYork),aswellasbyagrowinglistofAffiliateUniversitiesinCanada,theU.S. andEurope,andseveralcommercialandindustrialpartners. Forfurthervolumes: http://www.springer.com/series/10502 Ka´roly Bezdek Lectures on Sphere Arrangements—the Discrete Geometric Side 123 TheFieldsInstituteforResearch intheMathematicalSciences Ka´rolyBezdek DepartmentofMathematicsandStatistics UniversityofCalgary Calgary,AB,Canada ISSN1069-5273 ISSN2194-3079(electronic) ISBN978-1-4614-8117-1 ISBN978-1-4614-8118-8(eBook) DOI10.1007/978-1-4614-8118-8 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2013942302 Mathematics Subject Classification (2010): 52-02, 52C07, 52C10, 52C17, 52C22, 52C25, 52C35, 52C45,52C99,52B10,52B11,52B60,52B99,52A05,52A21,52A38,52A40,52A55,52A99 ©SpringerInternationalPublishingSwitzerland2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Coverillustration:DrawingofJ.C.FieldsbyKeithYeomans Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Myparentsencouragedallmyinterests.This bookis dedicatedtothem withadmiration. Preface Thethematicprogramon“DiscreteGeometryandApplications”tookplaceatthe Fields Institute for Research in Mathematical Sciences in Toronto between July 1 and December 31, 2011.The core partof the bookis based on my three lectures, deliveredatthetheFieldsInstituteunderthetitles“Contactnumbersforcongruent spherepackings”(September23,2011),“Rigidball-polyhedra”(October11,2011), and“OnastrongversionoftheKeplerconjecture”(November17,2011). Onecanbrieflydescribediscretegeometryasthestudyofdiscretearrangements of geometric objects in Euclidean, as well as in non-Euclidean spaces. J. Kepler was the first to raise discrete geometryproblemson packingsof balls in the early 1610s,butthesystematicresearchbeganinthelate1940swiththeworkofL.Fejes To´th. The Hungarianschoolhe foundedfocused mainly on packing and covering problems,whileanumberofgreatmathematicianshelpedtolayabroadfoundation for the emerging field of discrete geometry, including H. S. M. Coxeter, J. H. Conway,B.N.Delaunay,B.Gru¨nbaum,V.Klee,andC.A.Rogers.Twoactiveareas that have been outstanding from the birth of discrete geometry are dense sphere packingsandtilings.Bothoccupyasubstantialpartofmybookaswell.Thereisa chapter on unit sphere packingsand there are a number of sections that apply the methodof Delaunayand Voronoitilingsin the solutionsof a varietyof problems. Spherepackingsandtilingshaveaverystrongconnectiontonumbertheory,coding, groups, and mathematical programming.In particular, the latter greatly helped to achieve recent breakthroughresults. Extending the tradition of studying packings ofspheres, anothercore topicof mybookis the investigationof the monotonicity ofvolumeundercontractionsofarbitraryarrangementsofspheres.Theresearchon thisfundamentaltopic startedwith the conjectureofE. T.Poulsen andM.Kneser inthelate1950s.Thethirdmajortopicofmybookcanbefoundunderthesections onball-polyhedraintroducinganextensionofthetheoryofconvexpolyhedralsets tothefamilyofintersectionsofcongruentballs.Thispartofmybookisconnected inmanywaystotheabovementionedmajortopicsanditisalsoconnectedtosome other important research areas as well including the one on coverings by planks (withclosetiestogeometricanalysis).Thistopicistheforthmajoroneinmybook vii viii Preface discussedundercoveringsbycylinders.Theresearchworkonthelattertopicstarted withaconjectureofA.Tarskiintheearly1930s1. My book is aimed at advanced undergraduate and early graduate students, as well as interested researchers. In addition to leading the reader to the frontiers of geometric research on sphere arrangements,it gives a short introductionto the relevant modern parts of discrete geometry. I have structured the book in such a way that the four major research topics (unit sphere packings, contractions of sphere arrangements, ball-polyhedra,and coveringsby cylinders) are surveyed in individual chapters (Chaps.1, 3, 5, and 7) each followed by a chapter with a collectionofselectedproofs(Chaps.2,4,6,and8).Thesurveychaptersarereadable independentlyfromeachother.Theselectedproofscombineelementaryandconvex geometrywithanalyticandinsomecases,probabilisticortopologicalideas.They are the results of the author’s joint work with a number of discrete geometers. In addition, an independently understandable collection of unsolved problems is compiledinChap.9. I am very much indebted to all my students and colleagues who attended my lecturesandactivelyparticipatedinthediscussionsattheFieldsInstituteinthefall of 2011. Furthermore,I want to thank the support of a number of colleagues and friendsinparticular,TedBisztriczky(Univ.ofCalgary,Canada),Ka´rolyBo¨ro¨czky (Eo¨tvo¨s Univ., Hungary), Robert Connelly (Cornell Univ., USA), Bala´zs Csiko´s (Eo¨tvo¨s Univ., Hungary), Antoine Deza (McMaster Univ., Canada), Ga´bor Fejes To´th (Re´nyi Inst., Hungary), Herbert Edelsbrunner (Duke Univ., USA and IST, Austria), Ferenc Friedler (Univ. of Pannonia, Hungary), Thomas C. Hales (Univ. of Pittsburgh, USA), Ja´nos Pach (EPFL, Switzerland and Re´nyi Inst., Hungary), KonradSwanepoel(LSE,UK),SalvatoreTorquato(PrincetonUniv.,USA),AsiaI. Weiss(YorkUniv.,Canada),andYinyuYe(StanfordUniv.,USA).Itisaparticular pleasure for me to acknowledge my long-lasting research collaboration with my brother Andra´s Bezdek (Auburn Univ., USA and Re´nyi Inst., Hungary) as well as with my friendsTed Bisztriczky (Univ.of Calgary,Canada) and Bob Connelly (Cornell Univ., USA). Also, it is a pleasure to acknowledge the excellent support providedby the Fields Institute; in particular, I would like to offer special thanks to Edward Bierstone, Alison Conway, Claire Dunlop, Matheus Grasselli, Debbie Iscoe,MatthiasNeufang,andCarl Riehm.Also, specialthanksare dueto Samuel Reid (Univ. of Calgary, Canada) for the expressive drawings. Last but not least, I wish to thank my three sons, Da´niel, Ma´te´, and Ma´rk, and in particular,my wife, E´va, whose strong support and encouragementhelped me a great deal during the longhoursofwriting. Calgary,AB,Canada Ka´rolyBezdek,CanadaResearchChair 1TheauthorwassupportedbytheCanadaResearchChairprogramaswellasaNaturalSciences andEngineeringResearchCouncilofCanadaDiscoveryGrant. Contents 1 UnitSpherePackings........................................................ 1 1.1 TheContactNumberProblemofFiniteSpherePackings........... 1 1.2 LowerBoundsforVoronoiCellsinSpherePackings................ 5 1.3 DenseSpherePackingsinEuclidean3-Space........................ 9 1.4 OnSpherePackingsinHighDimensions ............................ 12 1.5 UniformlyStableandPeriodicExtremeLattices .................... 14 2 ProofsonUnitSpherePackings............................................ 17 2.1 ProofofTheorem1.1.6................................................ 17 2.1.1 AnUpperBoundforSpherePackings:Proofof(i)........ 18 2.1.2 AnUpperBoundforthefccLattice:Proofof(ii).......... 23 2.1.3 OctahedralUnitSpherePackings:Proofof(iii)............ 25 2.2 ProofofTheorem1.2.4................................................ 26 2.2.1 TheVoronoiStarofVoronoiCells.......................... 26 2.2.2 EstimatingtheVolumeofaVoronoiStarfromBelow..... 27 2.3 ProofofTheorem1.2.5................................................ 28 2.3.1 MetricPropertiesofVoronoiCells.......................... 28 2.3.2 WedgesofTypesI,II,andIII,andTruncatedWedges..... 29 2.3.3 TheLemmaofComparison ................................. 32 2.3.4 VolumeFormulasfor(Truncated)Wedges ................. 34 2.3.5 TheIntegralRepresentationofSurfaceDensity............ 34 2.3.6 TruncationofWedgesIncreasestheSurfaceDensity...... 37 2.3.7 Maximum Surface Density in Truncated WedgesofTypeI............................................. 38 2.3.8 SurfaceDensityinTruncatedWedgesofTypeII........... 41 2.3.9 The OverallEstimate of Surface Density inVoronoiCells.............................................. 42 2.4 ProofofTheorem1.3.3................................................ 43 2.4.1 AverageSurface Areaof Cells in Normal TilingsofaCube............................................. 43 2.4.2 AverageSurfaceAreaofCellsinNormalTilings.......... 45 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.