ebook img

Lectures on Quark Matter PDF

343 Pages·2002·5.449 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lectures on Quark Matter

Lecture Notes in Physics EditorialBoard R.Beig,Wien,Austria B.-G.Englert,Ismaning,Germany U.Frisch,Nice,France P.Ha¨nggi,Augsburg,Germany K.Hepp,Zu¨rich,Switzerland W.Hillebrandt,Garching,Germany D.Imboden,Zu¨rich,Switzerland R.L.Jaffe,Cambridge,MA,USA R.Lipowsky,Golm,Germany H.v.Lo¨hneysen,Karlsruhe,Germany I.Ojima,Kyoto,Japan D.Sornette,Nice,France,andLosAngeles,CA,USA S.Theisen,Golm,Germany W.Weise,Trento,Italy,andGarching,Germany J.Wess,Mu¨nchen,Germany J.Zittartz,Ko¨ln,Germany 3 Berlin Heidelberg NewYork Barcelona HongKong London Milan Paris Tokyo EditorialPolicy TheseriesLectureNotesinPhysics(LNP),foundedin1969,reportsnewdevelopmentsin physicsresearchandteaching--quickly,informallybutwithahighquality.Manuscripts to be considered for publication are topical volumes consisting of a limited number of contributions,carefullyeditedandcloselyrelatedtoeachother.Eachcontributionshould containatleastpartlyoriginalandpreviouslyunpublishedmaterial,bewritteninaclear, pedagogical style and aimed at a broader readership, especially graduate students and nonspecialistresearcherswishingtofamiliarizethemselveswiththetopicconcerned.For thisreason,traditionalproceedingscannotbeconsideredforthisseriesthoughvolumes toappearinthisseriesareoftenbasedonmaterialpresentedatconferences,workshops and schools (in exceptional cases the original papers and/or those not included in the printedbookmaybeaddedonanaccompanyingCDROM,togetherwiththeabstracts of posters and other material suitable for publication, e.g. large tables, colour pictures, programcodes,etc.). Acceptance Aprojectcanonlybeacceptedtentativelyforpublication,byboththeeditorialboardandthe publisher,followingthoroughexaminationofthematerialsubmitted.Thebookproposal senttothepublishershouldconsistatleastofapreliminarytableofcontentsoutliningthe structureofthebooktogetherwithabstractsofallcontributionstobeincluded. Finalacceptanceisissuedbytheserieseditorincharge,inconsultationwiththepublisher, onlyafterreceivingthecompletemanuscript.Finalacceptance,possiblyrequiringminor corrections, usually follows the tentative acceptance unless the final manuscript differs significantlyfromexpectations(projectoutline).Inparticular,theserieseditorsareentitled torejectindividualcontributionsiftheydonotmeetthehighqualitystandardsofthis series.Thefinalmanuscriptmustbecamera-ready,andshouldincludebothaninformative introductionandasufficientlydetailedsubjectindex. ContractualAspects PublicationinLNPisfreeofcharge.Thereisnoformalcontract,noroyaltiesarepaid, andnobulkordersarerequired,althoughspecialdiscountsareofferedinthiscase.The volumeeditorsreceivejointly30freecopiesfortheirpersonaluseandareentitled,asarethe contributingauthors,topurchaseSpringerbooksatareducedrate.Thepublishersecures thecopyrightforeachvolume.Asarule,noreprintsofindividualcontributionscanbe supplied. ManuscriptSubmission Themanuscriptinitsfinalandapprovedversionmustbesubmittedincamera-readyform. Thecorrespondingelectronicsourcefilesarealsorequiredfortheproductionprocess,in particulartheonlineversion.Technicalassistanceincompilingthefinalmanuscriptcanbe providedbythepublisher’sproductioneditor(s),especiallywithregardtothepublisher’s ownLatexmacropackagewhichhasbeenspeciallydesignedforthisseries. OnlineVersion/LNPHomepage LNPhomepage(listofavailabletitles,aimsandscope,editorialcontactsetc.): http://www.springer.de/phys/books/lnpp/ LNPonline(abstracts,full-texts,subscriptionsetc.): http://link.springer.de/series/lnpp/ W. Plessas L. Mathelitsch (Eds.) Lectures on Quark Matter 1 3 Editors WillibaldPlessas LeopoldMathelitsch Universita¨tGraz Institutfu¨rTheoretischePhysik Universita¨tsplatz5 8010Graz,Austria SupportedbytheO¨sterreichischeBundesministeriumfu¨rBildung,Wissenschaft, undKultur,Vienna,Austria CoverPicture:(seefigure10,page300,contributionbyL.McLerraninthisvolume) LibraryofCongressCataloging-in-PublicationDataappliedfor. DieDeutscheBibliothek-CIP-Einheitsaufnahme Lecturesonquarkmatter/W.Plessas;L.Mathelitsch(ed.).-Berlin; Heidelberg;NewYork;Barcelona;HongKong;London;Milan;Paris; Tokyo:Springer,2002 (Lecturenotesinphysics;583) (Physicsandastronomyonlinelibrary) ISBN3-540-43234-5 ISSN0075-8450 ISBN3-540-43234-5Springer-VerlagBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustra- tions, recitation, broadcasting, reproduction on microfilm or in any other way, and storageindatabanks.Duplicationofthispublicationorpartsthereofispermittedonly undertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,initscurrent version,andpermissionforusemustalwaysbeobtainedfromSpringer-Verlag.Violations areliableforprosecutionundertheGermanCopyrightLaw. Springer-VerlagBerlinHeidelbergNewYork amemberofBertelsmannSpringerScience+BusinessMediaGmbH http://www.springer.de (cid:1)c Springer-VerlagBerlinHeidelberg2002 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Typesetting:Camera-readybytheauthors/editor Camera-dataconversionbySteingraeberSatztechnikGmbHHeidelberg Coverdesign:design&production,Heidelberg Printedonacid-freepaper SPIN:10860999 54/3141/du-543210 Preface This volume contains the written versions of the lectures delivered at the “40. Internationale Universita¨tswochen fu¨r Theoretische Physik” in Schlad- ming, Austria. The 40th “Schladming Winter School” took place during the period March 3rd–10th, 2001. The topic of the School was “Dense Matter”. After the establishment of quantum chromodynamics as the fundamen- tal gauge field theory of strong interactions it soon became an intriguing question whether a new form of matter consisting just of the ultimate con- stituentsofhadrons,i.e.quarksandgluons,wouldbepossible.Couldnuclear matter undergo a phase transition and transform to quark matter? What would be the necessary conditions for the creation of the so-called quark- gluon plasma? Did such a state exist at the beginning of the universe and coulditstillbefoundsomewhereinourcosmos?Thesewereonlyafewofthe questionsthatcouldbeposedontheissueofadeconfinedstateofquarkmat- ter. Theoreticians rapidly came up with a variety of answers. Sometimes the corresponding predictions were rather speculative but gradually they gained a more quantitative nature. Experimental physicists started to think about ways of realizing the new form of matter in the laboratory. Soon the idea of letting heavy nuclear systems collide at high energies was born. Thereby, possibly,conditionscouldbereachedsuchthatthehadronconstituentscould get deconfined over a reasonably large local domain and one could observe quark matter. The discipline of heavy-ion physics developed rapidly at the interface between nuclear and particle physics. A lot of effort went into the theoretical and experimental investigations of heavy-ion reactions. In partic- ular, experimentalists had a hard time reaching a stage where they could manage head-on collisions of heavy nuclei at energies large enough so that a quark-gluon plasma could be formed. After many years and a long series of experiments, in early 2000 sufficient and convincing enough experimen- tal data were accumulated so that physicists at CERN could announce the observation of quark matter. Evidently, this brought new enthusiasm to the field of heavy-ion physics. Also, one could then expect exciting new evidence of the quark-gluon plasma from RHIC, which started data taking later on in 2000.Throughthesedevelopmentsonecertainlyhadenoughreasontodevote the 2001 Schladming Winter School to the topic of “Dense Matter”. VI Preface Wearehappythatwegotsomeofthemostrenownedexpertsinthefield to lecture at Schladming. Thus the meeting not only became a respectable jubilee Winter School – the 40th in a continuous series since 1962 – but was also very successful scientifically. Practically all relevant topics relating to heavy-ion physics and the quark-gluon plasma were dealt with in the lec- turespresented.C.Lourenc¸osummarizedthemodernexperimentalevidence onquarkmatterformationastheywereachievedatCERN.M.Gyulassycom- plemented them with the most recent data from RHIC, along with exposing the theory of ultra-relativistic heavy-ion reactions, and M. Alford reviewed aspects of quark matter in compact stars. The general theory of the quark- gluon plasma was presented by J.-P. Blaizot, while A. Rebhan explained the treatmentwithinthermalgaugefieldtheories.Theevidenceontheproperties ofthequark-gluonplasmasofarobtainedfromlatticeQCDcalculationswere reviewedbyF.Karsch.FinallyE.V.ShuryakandL.McLerranopenedexcit- ing views on a variety of new phenomena that can be studied through quark matter,forexample,colorsuperconductivityortheformationofacolorglass condensate. We should also mention that all of these lectures were accompa- nied by a number of seminars given on related topics by the participants of the School. Herewewouldliketoexpressoursinceregratitudetothelecturersforall theireffortsinpreparing,presenting,andfinallywritinguptheirlectures.Our thanks are also due to the main sponsors of the School, the Austrian Federal Ministry for Education, Science, and Culture and the Government of Styria, forprovidinggeneroussupport.Wealsoappreciatethecontributionsfromthe University of Graz and the valuable organizational and technical assistance fromthetownofSchladming,RicohAustria,andHornigGraz.Furthermore, we thank our secretaries, S. Fuchs and E. Monschein, a number of graduate students from our institute, and, last but not least, our colleagues from the organizing committee for their valuable assistance in preparing and running the school. Graz, Leopold Mathelitsch October 2001 Willibald Plessas List of Contributors M. Alford C. Lourenc¸o Dept. of Physics and Astronomy EP Division Glasgow University CERN Glasgow G12 8QQ CH-1211 Gen`eve 23 United Kingdom Switzerland [email protected] [email protected] J.-P. Blaizot L. McLerran Service de Physique Th´eorique Nuclear Theory Group CEA Saclay Brookhaven National Laboratory F-91191 Gif-sur-Yvette Cedex Upton, NY 11793 France USA [email protected] [email protected] M. Gyulassy A. Rebhan Department of Physics Institut fu¨r Theoretische Physik Pupin Lab Technische Universit¨at Wien Columbia University Wiedner Hauptstrasse 8 – 10 New York, NY 10027 A-1040 Vienna USA Austria [email protected] [email protected] F. Karsch E.V. Shuryak Fakulta¨t fu¨r Physik Department of Physics Universita¨t Bielefeld SUNY D-33615 Bielefeld Stony Brook, NY 11794-3800 Germany USA [email protected] [email protected] Contents Quark Matter Production in Heavy-Ion Collisions Carlos Lourenc¸o ................................................ 1 1 Introduction ................................................ 1 2 Overview of Heavy-Ion Collisions at the SPS.................... 4 3 Strangeness Production ...................................... 9 4 Evolution of the Final State .................................. 12 5 Low-Mass Dilepton Production................................ 14 6 Intermediate-Mass Dilepton Production ........................ 17 7 Charmonia Production and Suppression........................ 21 8 Open-Charm Production ..................................... 27 9 Future Prospects ............................................ 27 10 Summary and Conclusions.................................... 34 References ..................................................... 35 Theory of High-Energy A+A at RHIC Miklos Gyulassy ................................................ 37 1 Introduction ................................................ 37 2 Geometry and Dynamics in A+A.............................. 39 3 Preliminary Results from RHIC ............................... 45 3.1 Global Constraints on Initial Conditions ................... 45 3.2 Global Barometric Observable E /N .................... 49 T ch 3.3 Discovery of Jet Quenching .............................. 50 3.4 Where Have All the Baryons Gone? ....................... 53 3.5 Quenching of Elliptic Flow............................... 58 3.6 Where Did the Slowly Burning Plasma Log Vanish?......... 59 4 Jet Quenching: Theory....................................... 62 4.1 GLV Formalism ........................................ 63 4.2 Non-Abelian Energy Loss at Finite Opacity ................ 67 4.3 The Opacity of the QGP at RHIC ........................ 69 4.4 Jet Tomography from Quenched Elliptic Flow .............. 72 5 Summary................................................... 74 References ..................................................... 76 VIII Contents Dense Quark Matter in Compact Stars Mark Alford.................................................... 81 1 Introduction ................................................ 81 1.1 The Fermi Surface and Cooper Instability.................. 81 1.2 The Gap Equation...................................... 83 2 Two Massless Quark Flavors.................................. 86 3 Three Massless Quark Flavors ................................ 88 4 Two Massless + One Massive Quark Flavors.................... 91 4.1 Description of the Phase Diagram......................... 93 4.2 Quark-Hadron Continuity................................ 97 5 Color-Flavor Unlocking and the Crystalline Color Superconducting Phase ............... 98 5.1 The (Un)locking Transition .............................. 99 5.2 The Crystalline Color-Superconducting Phase .............. 100 6 Compact Stars and Color-Superconducting Quark Matter ........ 103 6.1 The Mixed Phase ....................................... 103 6.2 Cooling by Neutrino Emission ............................ 105 6.3 The Neutrino Pulse at Birth ............................. 106 6.4 r-Mode Instability ...................................... 107 6.5 Magnetic Field Decay ................................... 109 6.6 Glitches and the Crystalline Color Superconductor.......... 110 7 Conclusions................................................. 112 References ..................................................... 112 Theory of the Quark-Gluon Plasma Jean-Paul Blaizot ............................................... 117 1 Introduction ................................................ 117 2 The Quark-Hadron Transition in the Bag Model................. 118 3 Quantum Fields at Finite Temperature ........................ 121 3.1 Finite Temperature Calculations.......................... 121 3.2 Free Propagators ....................................... 123 3.3 Classical Field Approximation and Dimensional Reduction ... 125 4 Effective Theories for the Quark-Gluon Plasma ................. 128 4.1 Scales and Degrees of Freedom in Ultrarelativistic Plasmas... 129 4.2 Effective Theory at Scale gT ............................. 132 5 Kinetic Equations for the Plasma Particles ..................... 133 5.1 One-Loop Polarization Tensor from Kinetic Theory ......... 133 5.2 Kinetic Equations for Quantum Particles .................. 135 5.3 QCD Kinetic Equations and Hard Thermal Loops .......... 138 6 Collective Phenomena in the Quark-Gluon Plasma............... 140 6.1 Collective Modes ....................................... 141 6.2 Debye Screening ........................................ 142 6.3 Landau Damping ....................................... 143 7 The Entropy of the Quark-Gluon Plasma....................... 143 Contents IX 7.1 Results from Perturbation Theory ........................ 144 7.2 Skeleton Expansion for Thermodynamic Potential and Entropy ........................................... 147 7.3 A Simple Model ........................................ 149 7.4 Comparison with Thermal Perturbation Theory ............ 152 7.5 Approximately Self-consistent Solutions ................... 155 7.6 Some Results for QCD .................................. 156 References ..................................................... 158 Thermal Gauge Field Theories Anton Rebhan.................................................. 161 1 Overview................................................... 161 2 Basic Formulae ............................................. 162 3 Complex Time Paths ........................................ 164 3.1 Imaginary-Time (Matsubara) Formalism................... 165 3.2 Real-Time (Schwinger-Keldysh) Formalism................. 166 4 Gauge Theories – Feynman Rules ............................. 168 4.1 Path Integral – Faddeev-Popov Trick...................... 169 4.2 Covariant Operator Quantization ......................... 170 4.3 Frozen Ghosts.......................................... 173 5 Gauge Dependence Identities ................................. 174 5.1 Gauge Independence of the Partition Function.............. 174 5.2 Gauge Dependence of Green Functions .................... 176 5.3 Gauge Independence of Propagator Singularities ............ 180 6 Quasiparticles in HTL Perturbation Theory..................... 187 6.1 Long-Wavelength Plasmon Damping ...................... 189 6.2 NLO Correction to Gluonic Plasma Frequency.............. 189 6.3 NLO Correction to the Non-Abelian Debye Mass ........... 190 6.4 Dynamical Damping and Screening ....................... 194 6.5 NLO Corrections to Real Parts of Dispersion Laws.......... 197 7 Conclusions................................................. 204 References ..................................................... 205 Lattice QCD at High Temperature and Density Frithjof Karsch ................................................. 209 1 Introduction ................................................ 209 2 The Lattice Formulation of QCD Thermodynamics .............. 210 2.1 The Basic Steps from the Continuum to the Lattice... ....... 210 2.2 ...and Back from the Lattice to the Continuum............. 213 3 The QCD Phase Diagram at Finite Temperature ................ 215 4 Deconfinement versus Chiral Symmetry Restoration ............. 218 4.1 Deconfinement ......................................... 220 4.2 Chiral Symmetry Restoration ............................ 222

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.