ebook img

Lectures on Intelligent Systems PDF

352 Pages·2023·4.155 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lectures on Intelligent Systems

Natural Computing Series Leonardo Vanneschi Sara Silva Lectures on Intelligent Systems Natural Computing Series Founding Editor Grzegorz Rozenberg Series Editors Thomas Bäck , Natural Computing Group–LIACS, Leiden University, Leiden, The Netherlands Lila Kari, School of Computer Science, University of Waterloo, Waterloo, ON, Canada Susan Stepney, Department of Computer Science, University of York, York, UK Scope Natural Computing is one of the most exciting developments in computer science, and there is a growing consensus that it will become a major field in this century. This series includes monographs, textbooks, and state-of-the-art collections covering the whole spectrum of Natural Computing and ranging from theory to applications. Leonardo Vanneschi Sara Silva (cid:129) Lectures on Intelligent Systems 123 Leonardo Vanneschi SaraSilva NOVAInformation Management School LASIGE, Departamento deInformática Universidade NovadeLisboa Faculdade deCiências Lisbon, Portugal Universidade deLisboa Lisbon, Portugal ISSN 1619-7127 NaturalComputing Series ISBN978-3-031-17921-1 ISBN978-3-031-17922-8 (eBook) https://doi.org/10.1007/978-3-031-17922-8 ©SpringerNatureSwitzerlandAG2023 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland ToourchildrenDani,DavidandLara. ToourparentsAltina,Eurico,GiovannaandMarco. LeonardoandSara Tomydad.Hewouldbeproud. Sara Acknowledgements MyfirstacknowledgmentgoestoMarcoTomassini.AsmyformerPhDsupervisor, he is the person who introduced me to the area of Computational Intelligence. He has been a central figure for the development of my profession. This book would surelynotexistwithouthim. MysecondacknowledgmentgoestoMauroCastelli.Hewasanundergraduatestu- dentwhenIfirstusedsomeoftheideasofthisbookinmyclasses.Thenhebecame myMastersstudent,andlatermyPhDstudent.Finally,heisnowmycolleagueand my great friend. His collaboration has been invaluable for at least the past twelve years.Ithadatremendousimpactonmyworkandso,indirectly,alsoonthisbook. Then,IwouldliketothankallthecollaboratorsthatIhavehadfromthebeginning ofmycareeruntiltoday.Theyaremany,soIcannotmentionthemall,buteachone ofthemhasbeen,intheirownway,specialandimportantformywork. Lastbutnotleast,Iwouldliketoexpressmygratitudetomyfamilyfortheirinfinite support and for making me grow up in an environment where value was given to studyingandeducation. Leonardo First things first, thank you to my family for never having tried to convince me that “scientist of artificial intelligence” was not what a young teenage girl should want to be. In a country where there is still no such thing as a research career, it took (and still takes) a lot of stubbornness on my part, but also a lot of support frommanypeople,toachieveit.IacknowledgeeverysingleresearchgrantIhave everreceived,everytravelgrantthatallowedmetoparticipateinconferences,every researchcentrethattookmein,andeveryonewhobelievedinmeandrespectedmy wishtotaketheroadlesstraveled. Sara ix Contents 1 Introduction................................................... 1 1.1 MotivationforIntelligentSystems ............................ 3 1.2 IntelligentSystemsandBioinspiredAlgorithms ................. 5 1.3 ApplicationsofIntelligentSystems............................ 6 1.4 ObjectivesandLimitsofThisBook ........................... 7 1.5 OrganizationoftheBook .................................... 8 PartI ComputationalIntelligenceforOptimization 2 OptimizationProblemsandLocalSearch ......................... 13 2.1 IntroductiontoOptimization ................................. 13 2.2 ExamplesofOptimizationProblems........................... 16 2.3 NoFreeLunchTheorem..................................... 19 2.4 HillClimbing.............................................. 22 2.5 FitnessLandscapes ......................................... 28 2.6 SimulatedAnnealing........................................ 34 2.6.1 TheoryofSimulatedAnnealing ........................ 40 3 GeneticAlgorithms............................................. 45 3.1 SelectionAlgorithms ....................................... 47 3.1.1 FitnessProportionateSelection(or“RouletteWheel”) ..... 48 3.1.2 RankingSelection ................................... 50 3.1.3 TournamentSelection ................................ 50 3.2 GeneticOperators .......................................... 51 3.3 GeneralFunctioningofGeneticAlgorithms .................... 55 3.4 TheoryofGeneticAlgorithms................................ 61 3.5 AdvancedMethodsforGeneticAlgorithms..................... 77 3.5.1 PrematureConvergence............................... 77 3.5.2 PositionProblemofStandardCrossover ................. 84 3.5.3 UniquenessoftheFitnessFunction ..................... 90 3.6 HowtoOrganizeanExperimentalComparison.................. 94 xi xii Contents 3.6.1 ComparisonAgainstIterations ......................... 94 3.6.2 ComparisonAgainstComputationalEffort ............... 98 3.7 GeneticAlgorithmsforContinuousOptimization................102 4 ParticleSwarmOptimization....................................105 4.1 TheAlgorithm.............................................105 4.2 ParameterSetting ..........................................109 4.3 Variants...................................................110 PartII MachineLearning 5 IntroductiontoMachineLearning ...............................115 5.1 FromDatatoModel ........................................122 5.1.1 EstimatingthePredictiveError.........................124 5.1.2 ChoosingMethodandParameters ......................125 5.1.3 InducingandTestingtheFinalModel ...................126 5.1.4 PreprocessingtheData................................127 5.2 DataSplitting..............................................128 5.3 Cross-Validation ...........................................129 5.4 MeasuresofPerformanceofaClassifier .......................131 5.5 FeatureProcessing .........................................136 5.6 Regularization .............................................140 5.6.1 RidgeRegression ....................................141 5.6.2 LassoRegression ....................................142 5.6.3 ElasticNet..........................................143 5.7 SomeSimpleMachineLearningMethods ......................143 5.7.1 K-NearestNeighbors .................................143 5.7.2 LinearRegression....................................145 5.7.3 LogisticRegression ..................................146 6 DecisionTreeLearning .........................................149 6.1 ID3Algorithm.............................................152 6.2 ContinuousAttributesandTargets.............................157 7 ArtificialNeuralNetworks ......................................161 7.1 Perceptron ................................................162 7.1.1 SingleNeuronPerceptron .............................162 7.1.2 MulticlassClassificationandMultineuron,Single-Layer Perceptron..........................................172 7.1.3 NonlinearlySeparableProblems.AnExample............173 7.1.4 NonlinearlySeparableProblemsandMultilayerANNs.....176 7.2 AdaptiveLinearElement(ADALINE)andDeltaRule............178 7.3 Backpropagation ...........................................183 7.3.1 WeightsUpdate–OutputLayer ........................186 7.3.2 WeightsUpdate–HiddenLayer........................190 7.3.3 TheBackpropagationAlgorithm .......................195

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.