ebook img

Lectures on Duflo Isomorphisms in Lie Algebra and Complex Geometry PDF

114 Pages·2011·3.373 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lectures on Duflo Isomorphisms in Lie Algebra and Complex Geometry

EMS Series of Lectures in Mathematics Edited by Andrew Ranicki (University of Edinburgh, U.K.) EMS Series of Lectures in Mathematicsis a book series aimed at students, professional mathematicians and scientists. It publishes polished notes arising from seminars or lecture series in all fields of pure and applied mathematics, including the reissue of classic texts of continuing interest. The individual volumes are intended to give a rapid and accessible introduction into their particular subject, guiding the audience to topics of current research and the more advanced and specialized literature. Previously published in this series: Katrin Wehrheim, Uhlenbeck Compactness Torsten Ekedahl, One Semester of Elliptic Curves Sergey V. Matveev, Lectures on Algebraic Topology Joseph C. Várilly, An Introduction to Noncommutative Geometry Reto Müller, Differential Harnack Inequalities and the Ricci Flow Eustasio del Barrio, Paul Deheuvels and Sara van de Geer,Lectures on Empirical Processes Iskander A. Taimanov, Lectures on Differential Geometry Martin J. Mohlenkamp andMaría Cristina Pereyra,Wavelets, Their Friends, and What They Can Do for You Stanley E. Payne and Joseph A. Thas, Finite Generalized Quadrangles Masoud Khalkhali, Basic Noncommutative Geometry Helge Holden, Kenneth H. Karlsen, Knut-Andreas Lie and Nils Henrik Risebro, Splitting Methods for Partial Differential Equations with Rough Solutions Koichiro Harada,“Moonshine” of Finite Groups Yurii A. Neretin,Lectures on Gaussian Integral Operators and Classical Groups Damien Calaque Carlo A. Rossi Lectures on Duflo Isomorphisms in Lie Algebra and Complex Geometry Authors: Damien Calaque Carlo A. Rossi ETH (D-MATH) Max Planck Institute for Mathematics Rämistrasse 101 Vivatsgasse 7 8092 Zürich 53111 Bonn Switzerland Germany [email protected] [email protected] 2010 Mathematics Subject Classification: 13D03, 17B56, 14F43 Key words: Lie algebra, Hochschild cohomology, complex manifolds, deformation theory, Kontsevich’s graphical calculus, Atiyah class, Duflo isomorphism, Todd class ISBN 978-3-03719-096-8 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. ©2011 European Mathematical Society Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum FLI C4 CH-8092 Zürich Switzerland Phone: +41 (0)44 632 34 36 Email: [email protected] Homepage: www.ems-ph.org Typeset using the authors’ TEX files: I. Zimmermann, Freiburg Printing and binding: Druckhaus Thomas Müntzer GmbH, Bad Langensalza, Germany ∞Printed on acid free paper 9 8 7 6 5 4 3 2 1 Preface Since the fundamental results by Harish-Chandra and others, it is now well known that the algebra of invariant polynomials on the dual of a Lie algebra of a particular type (solvable [18], simple [24] or nilpotent) is isomorphic to the center of the cor- responding universal enveloping algebra. This fact was generalized to an arbitrary finite-dimensional real Lie algebra by M. Duflo in 1977 [19]. His proof is based on Kirillov’s orbits method that parametrizes infinitesimal characters of unitary irre- ducible representations of the corresponding Lie group in terms of co-adjoint orbits (seee.g.[28]). ThisisomorphismiscalledtheDufloisomorphism. Ithappenstobea composition of the well-known Poincaré–Birkhoff–Witt isomorphism (which is only an isomorphism at the level of vector spaces) with an automorphism of the space of polynomials(whichdescendstoinvariantpolynomials),whosedefinitioninvolvesthe powerseriesj.x/´sinh.x=2/=.x=2/. In 1997 Kontsevich [29] proposed another proof, as a consequence of his con- struction of deformation quantization for general Poisson manifolds. Kontsevich’s approachhastheadvantageofworkingalsoforLiesuper-algebrasandextendingthe Dufloisomorphismtoagradedalgebraisomorphismonthewholecohomology. Theinversepowerseriesj.x/(cid:2)1 D.x=2/=sinh.x=2/alsoappearsinKontsevich’s claim that the Hochschild cohomology of a complex manifold is isomorphic as an algebra to the cohomology ring of holomorphic poly-vector fields on this manifold. Wecansummarizetheanalogybetweenthetwosituationsinthefollowingtable: Liealgebra Complexgeometry symmetricalgebra sheafofalgebraofholomorphic poly-vectorfields universalenvelopingalgebra sheafofalgebraofholomorphic poly-differentialoperators takinginvariants takingglobalholomorphicsections Chevalley–Eilenbergcohomology sheafcohomology Theselecturenotesprovideaself-containedproofoftheDufloisomorphismandits complexgeometricanalogueinaunifiedframework,andgivesinparticularaunifying explanation of the reason why the series j.x/ and its inverse appear. The proof is strongly based on Kontsevich’s original idea, but actually differs from it (the two approachesarerelatedbyaKoszultypedualityrecentlypointedoutin[39]andproved in[8],thisdualitybeingitselfamanifestationofCattaneo–Felderconstructionsforthe quantizationofaPoissonmanifoldwithtwocoisotropicsubmanifolds[12]). Note that the series j.x/ also appears in the wheeling theorem by Bar-Natan, Le andThurston[4]whichshowsthattwospacesofgraphhomologyareisomorphicas vi Preface algebras(seealso[31]foracompletelycombinatorialproofofthewheelingtheorem, based on Alekseev and Meinrenken’s proof [1], [2] of the Duflo isomorphism for quadraticLiealgebras). Furthermorethispowerseriesalsoshowsupinvariousindex theorems(e.g.Riemann–Rochtheorems). Throughout these notes we assume that k is a field with char.k/ D 0. Unless otherwisespecified,algebras,modules,etc.areoverk. Eachchapterconsists(moreor less)ofasinglelecture. Acknowledgements. Theauthorsthanktheparticipantsofthelecturesfortheirinterest andexcitement. Theyareresponsiblefortheveryexistenceofthesenotes,aswellas forimprovementoftheirquality. ThefirstauthorisgratefultoG.Felderwhooffered him the opportunity to give this series of master course lectures in the fall semester oftheacademicyear2007–08atETHZurich. HealsothanksM.VandenBerghfor hiskindcollaborationin[9]andmanyenlighteningdiscussionsaboutthisfascinating subject. HisresearchisfullysupportedbytheEuropeanUnionthankstoaMarieCurie Intra-EuropeanFellowship(contractnumberMEIF-CT-2007-042212). Contents Preface v 1 LiealgebracohomologyandtheDufloisomorphism 1 1.1 TheoriginalDufloisomorphism . . . . . . . . . . . . . . . . . . . . 2 1.2 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Chevalley–Eilenbergcohomology . . . . . . . . . . . . . . . . . . . 6 1.4 ThecohomologicalDufloisomorphism . . . . . . . . . . . . . . . . 8 2 Hochschildcohomologyandspectralsequences 11 2.1 Hochschildcohomology . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Spectralsequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Application: Chevalley–EilenbergversusHochschildcohomology . . 16 3 DolbeaultcohomologyandtheKontsevichisomorphism 19 3.1 Complexmanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 AtiyahandToddclasses . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Hochschildcohomologyofacomplexmanifold . . . . . . . . . . . . 22 3.4 TheKontsevichisomorphism . . . . . . . . . . . . . . . . . . . . . . 24 4 SuperspacesandHochschildcohomology 25 4.1 Supermathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Hochschildcohomologystrikesback . . . . . . . . . . . . . . . . . . 28 5 TheDuflo–KontsevichisomorphismforQ-spaces 33 5.1 Statementoftheresult . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 Application: proofoftheDufloTheorem . . . . . . . . . . . . . . . . 35 5.3 Strategyoftheproof . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6 Configurationspacesandintegralweights 41 6.1 TheconfigurationspacesCC . . . . . . . . . . . . . . . . . . . . . 41 n;m 6.2 CompactificationofC andCC àlaFulton–MacPherson . . . . . . 42 n n;m 6.3 Directedgraphsandintegralsoverconfigurationspaces . . . . . . . . 46 7 ThemapU anditsproperties 51 Q 7.1 Thequasi-isomorphismproperty . . . . . . . . . . . . . . . . . . . . 51 7.2 Thecupproductonpoly-vectorfields . . . . . . . . . . . . . . . . . 54 7.3 Thecupproductonpoly-differentialoperators . . . . . . . . . . . . . 57 viii Contents 8 ThemapH andthehomotopyargument 61 Q 8.1 Thecompletehomotopyargument . . . . . . . . . . . . . . . . . . . 61 8.2 ContributiontoW2 ofboundarycomponentsinY . . . . . . . . . . . 63 (cid:2) 8.3 TwistingbyasupercommutativeDGalgebra . . . . . . . . . . . . . . 68 9 TheexplicitformofU 71 Q 9.1 GraphscontributingtoU . . . . . . . . . . . . . . . . . . . . . . . 71 Q 9.2 U asacontraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Q 9.3 Theweightofanevenwheel . . . . . . . . . . . . . . . . . . . . . . 76 10 Fedosovresolutions 79 10.1 Bundlesofformalfiberwisegeometricobjects . . . . . . . . . . . . . 79 10.2 Resolutionsofalgebras . . . . . . . . . . . . . . . . . . . . . . . . . 81 10.3 Fedosovdifferential . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 10.4 Fedosovresolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 10.5 ProofofTheorem3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Appendix Deformation-theoreticalinterpretationofHochschild cohomology 89 A.1 Cˇechcohomology: a(very)briefintroduction . . . . . . . . . . . . . 89 A.2 ThelinkbetweenCˇechandDolbeaultcohomology: Dolbeault’sTheorem 90 A.3 Twistedpresheavesofalgebras . . . . . . . . . . . . . . . . . . . . . 93 Bibliography 101 Index 105 1 Lie algebra cohomology and the Duflo isomorphism Let g be a finite-dimensional Lie algebra over k. In this chapter we state the Duflo theoremanditscohomologicalextension. Wetakethisopportunitytointroducestan- dardnotionsofhomologicalalgebraanddefinethecohomologytheoryassociatedto Liealgebras,whichiscalledChevalley–Eilenbergcohomology. Preliminaries: tensor, symmetric, and universal enveloping algebras. For a k- vectorspaceV wedefinethetensoralgebraT.V/ofV asthevectorspace M T.V/´ V˝n .V˝0 Dk byconvention/ n(cid:3)0 equipped with the product given by the concatenation. It is a graded algebra, whose subspaceofhomogeneouselementsofdegreenisTn.V/´V˝n. ThesymmetricalgebraofV,whichwedenotebyS.V/,isthequotientofthetensor algebraT.V/byitstwo-sidedidealgeneratedby v˝w(cid:2)w˝v .v;w 2V/: Sincethepreviousrelationsarehomogeneous,thenS.V/inheritsagradingfromthe oneonT.V/. Finally,ifV Dg,onecandefinetheuniversalenvelopingalgebraU.g/ofgasthe quotientofthetensoralgebraT.g/byitstwo-sidedidealgeneratedby x˝y(cid:2)y˝x(cid:2)Œx;y(cid:2) .x;y 2V/; whereŒx;y(cid:2)denotestheLiebracketbetweenx andy. Astherelationsarenothomo- geneous,theuniversalenvelopingalgebraonlyinheritsafiltrationfromthegradingon thetensoralgebra. Notation. Dealingwithnon-negativelygradedvectorspaces,wewillusethesymboly to denote the corresponding degree completions. Namely, if M is a graded k-vector space,then Y My ´ Mn n(cid:3)0 isthesetofformalseries X m.n/; .m.n/ 2Mn/: n(cid:3)0 2 1 LiealgebracohomologyandtheDufloisomorphism 1.1 The original Duflo isomorphism The Poincaré–Birkhoff–Witt theorem. Recall the Poincaré–Birkhoff–Witt (PBW) theorem: thesymmetrizationmap X 1 I W S.g/!U.g/; x :::x 7! x :::x ; PBW 1 n nŠ (cid:3)1 (cid:3)n (cid:3)2Sn isanisomorphismoffilteredvectorspaces,whichfurtherinducesanisomorphismof thecorrespondinggradedalgebrasS.g/!Gr.U.g//. Let us write (cid:3) for the associative product on S.g/ defined as the pullback of the multiplicationonU.g/throughI . Foranytwohomogeneouselementsu;v 2S.g/, PBW u(cid:3)v DuvClowerorderterms. I is obviously not an algebra isomorphism, unless g is abelian (since S.g/ is PBW commutativewhileU.g/isnot). Remark1.1. TherearedifferentproofsofthePBWTheorem: standardproofsmaybe foundin[16],towhichwereferformoredetails. Moreconceptualproofs,involving Koszuldualitybetweenquadraticalgebras,maybefoundin[6],[37]. Aproofofthe PBWTheoremstemmingfromKontsevich’sDeformationQuantizationmaybefound in[39],[8]. Geometric meaning of the PBW theorem. We consider a connected, simply con- nectedLiegroupG withcorrespondingLiealgebrag. Then S.g/ can be viewed as the algebra of distributions on g supported at the origin 0 with (commutative) product given by the convolution with respect to the (abelian)additivegrouplawong. InthesamewayU.g/canbeviewedasthealgebraofdistributionsonGsupported at the origin e with product given by the convolution with respect to the group law onG. OneseesthatI isnothingbutthetransportofdistributionsthroughtheexponen- PBW tialmapexpW g ! G (recallthatitisalocaldiffeomorphism). Theexponentialmap isobviouslyAd-equivariant. Inthenextsectionwewilltranslatethisequivariancein algebraicterms. g-modulestructureonS.g/andU.g/. Ontheonehandthereisag-actiononS.g/ obtainedfromtheadjointactionad ofgonitself, extendedtoS.g/byLeibniz’rule: foranyx;y 2gandn2N(cid:4), ad .yn/DnŒx;y(cid:2)yn(cid:2)1: x OntheotherhandthereisalsoanadjointactionofgonU.g/: foranyx 2 gand u2U.g/, ad .u/Dxu(cid:2)ux: x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.