ebook img

Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications PDF

263 Pages·04.199 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications

p h p a. s oj s/ al Lectures on BSDEs, n r u o g/j or Stochastic Control, and m. a si w. w Stochastic Differential w p:// htt e Games with Financial e s ht; g yri Applications p o c r o e s n e c M li A I S o ct t e bj u s n o uti b ri st di e R 1. 3 2 1. 9. 3 2 2. 3 1 o 7 t 1 0/ 1 4/ 0 d e d a o nl w o D FM01_Carmona_FM-01-14-16.indd 1 1/14/2016 9:19:16 AM Financial Mathematics p h p a. s oj Carmona, René, Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial s/ al Applications n r u o g/j r o m. a si w. w w p:// htt e e s ht; g ri y p o c r o e s n e c M li A I S o ct t e bj u s n o uti b ri st di e R 1. 3 2 1. 9. 3 2 2. 3 1 o 7 t 1 0/ 1 4/ 0 d e d a o nl w o D FM01_Carmona_FM-01-14-16.indd 2 1/14/2016 9:19:16 AM RENÉ CARMONA Princeton University p h p a. ojs Princeton, New Jersey s/ al n r u o g/j r o m. a si w. w w p:// htt Lectures on BSDEs, e e s ht; g Stochastic Control, and ri y p o c r o Stochastic Differential e s n e c M li Games with Financial A I S o ct t Applications e bj u s n o uti b ri st di e R 1. 3 2 1. 9. 3 2 2. 3 1 o 7 t 1 0/ 1 4/ 0 d e d a o nl w o D Society for Industrial and Applied Mathematics Philadelphia FM01_Carmona_FM-01-14-16.indd 3 1/14/2016 9:19:16 AM p h p a. Copyright © 2016 by the Society for Industrial and Applied Mathematics s oj s/ 10 9 8 7 6 5 4 3 2 1 al rn All rights reserved. Printed in the United States of America. No part of this book may u o be reproduced, stored, or transmitted in any manner without the written permission of rg/j the publisher. For information, write to the Society for Industrial and Applied Mathematics, o m. 3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688 USA. a si Trademarked names may be used in this book without the inclusion of a trademark symbol. w. w These names are used in an editorial context only; no infringement of trademark is intended. w p:// Royalties from the sale of this book will be donated to the SIAG/FME to be used for a prize. htt Publisher David Marshall ee Acquisitions Editor Elizabeth Greenspan s ht; Developmental Editor Gina Rinelli g Managing Editor Kelly Thomas ri y Production Editor Ann Manning Allen p o c Copy Editor Nicola Howcroft r o Production Manager Donna Witzleben e s Production Coordinator Cally Shrader n e c Compositor Techsetters, Inc. M li Graphic Designer Lois Sellers A I S o Library of Congress Cataloging-in-Publication Data ct t e bj Names: Carmona, R. (René) u n s Title: Lectures on BSDEs, stochastic control, and stochastic differential o games with financial applications / René Carmona, Princeton University, uti b Princeton, New Jersey. stri Other titles: Lectures on backward stochastic differential equations, di stochastic control, and stochastic differential games with financial e R 1. applications 3 Description: Philadelphia : Society for Industrial and Applied Mathematics, 2 1. [2016] | Series: Financial mathematics ; 01 | Includes bibliographical 9. 3 references and index. 2 2. Identifiers: LCCN 2015038344 | ISBN 9781611974232 3 1 Subjects: LCSH: Stochastic differential equations. | Stochastic control o 7 t theory. | Business mathematics. 1 Classification: LCC QA274.23 .C27 2016 | DDC 519.2/7--dc23 0/ 1 LC record available at http://lccn.loc.gov/2015038344 4/ 0 d e d a o nl w o D is a registered trademark. FM01_Carmona_FM-01-14-16.indd 4 1/14/2016 9:19:16 AM p h p a. s oj s/ al n r u o Contents g/j r o m. a si w. w w p:// Preface vii htt e ListofNotation ix e s ht; I StochasticCalculusPreliminaries 1 g ri y p 1 StochasticDifferentialEquations 3 o c r 1.1 NotationandFirstDefinitions . . . . . . . . . . . . . . . . . . . . . . 3 o e 1.2 ExistenceandUniquenessofStrongSolutions:TheLipschitzCase . . 4 s n 1.3 SDEsofMcKean–VlasovType . . . . . . . . . . . . . . . . . . . . . 11 e c M li 1.4 ConditionalPropagationofChaos . . . . . . . . . . . . . . . . . . . . 18 1.5 Notes&Complements. . . . . . . . . . . . . . . . . . . . . . . . . . 26 A I S o 2 BackwardStochasticDifferentialEquations 27 ct t 2.1 IntroductionandFirstDefinitions . . . . . . . . . . . . . . . . . . . . 27 e bj 2.2 Mean-FieldBSDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 u s 2.3 ReflectedBackwardStochasticDifferentialEquations(RBSDEs) . . . 37 n o 2.4 Forward-BackwardStochasticDifferentialEquations(FBSDEs). . . . 40 buti 2.5 ExistenceandUniquenessofSolutions . . . . . . . . . . . . . . . . . 46 stri 2.6 TheAffineCase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 di 2.7 Notes&Complements. . . . . . . . . . . . . . . . . . . . . . . . . . 63 e R 1. 3 2 1. II StochasticControl 65 9. 3 2 3 ContinuousTimeStochasticOptimizationandControl 67 2. 3 3.1 OptimizationofStochasticDynamicalSystems. . . . . . . . . . . . . 67 1 o 3.2 FirstFinancialApplications . . . . . . . . . . . . . . . . . . . . . . . 75 17 t 3.3 DynamicProgrammingandtheHJBEquation . . . . . . . . . . . . . 79 0/ 3.4 InfiniteHorizonCase . . . . . . . . . . . . . . . . . . . . . . . . . . 85 1 4/ 3.5 ConstraintsandSingularControlProblems . . . . . . . . . . . . . . . 87 0 d 3.6 ViscositySolutionsofHJBEquationsandQVIs . . . . . . . . . . . . 101 e d a 3.7 ImpulseControlProblems . . . . . . . . . . . . . . . . . . . . . . . . 107 o nl 3.8 ErgodicControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 w o D 4 ProbabilisticApproachestoStochasticControl 119 4.1 BSDEsandStochasticControl . . . . . . . . . . . . . . . . . . . . . 119 4.2 PontryaginStochasticMaximumPrinciple . . . . . . . . . . . . . . . 125 4.3 Linear-Quadratic(LQ)Models . . . . . . . . . . . . . . . . . . . . . 136 v vi Contents 4.4 OptimalControlofMcKean–VlasovDynamics . . . . . . . . . . . . 141 p h 4.5 Notes&Complements. . . . . . . . . . . . . . . . . . . . . . . . . . 160 p a. s oj als/ III StochasticDifferentialGames 163 n r u o 5 StochasticDifferentialGames 165 g/j 5.1 IntroductionandFirstDefinitions . . . . . . . . . . . . . . . . . . . . 165 r o m. 5.2 SpecificExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 a 5.3 WeakFormulationandtheCaseofUncontrolledVolatility . . . . . . . 182 si w. 5.4 GameVersionsoftheStochasticMaximumPrinciple . . . . . . . . . 186 w 5.5 ASimpleModelforSystemicRisk . . . . . . . . . . . . . . . . . . . 198 w p:// 5.6 APredatoryTradingGameModel . . . . . . . . . . . . . . . . . . . 204 htt 5.7 Notes&Complements. . . . . . . . . . . . . . . . . . . . . . . . . . 216 e e s 6 Mean-FieldGames 219 ht; 6.1 IntroductionandFirstDefinitions . . . . . . . . . . . . . . . . . . . . 219 g ri 6.2 AFullSolutionWithouttheCommonNoise . . . . . . . . . . . . . . 226 y op 6.3 PropagationofChaosandApproximateNashEquilibriums . . . . . . 236 c r 6.4 ApplicationsandOpenProblems . . . . . . . . . . . . . . . . . . . . 243 o e 6.5 Notes&Complements. . . . . . . . . . . . . . . . . . . . . . . . . . 250 s n e M lic Bibliography 253 A AuthorIndex 261 I S o ct t SubjectIndex 263 e bj u s n o uti b ri st di e R 1. 3 2 1. 9. 3 2 2. 3 1 o 7 t 1 0/ 1 4/ 0 d e d a o nl w o D p h p a. s oj s/ al n r u o Preface g/j r o m. a si w. ThisbookgrewoutofthelecturenotesIpreparedforagraduateclassItaughtatPrince- w w tonUniversityin2011–12,andagainin2012–13. Mygoalwastointroducethestudents p:// tostochasticanalysistools,whichplayanincreasingroleintheprobabilisticapproachto htt optimization problems, including stochastic control and stochastic differential games. I ee hadinvestedquiteabitofeffortintryingtounderstandthegroundbreakingworksofLasry s ht; and Lions on mean field games, and of Caines, Huang, and Malhame´ on Nash certainty g equivalence. These initial results were intriguing, and definitely screaming for a proba- ri y bilisticinterpretation. Whilethetoolsofoptimalcontrolofstochasticdifferentialsystems p co are taughtin many graduateprogramsin applied mathematicsand operationsresearch, I or was intriguedby the factthat gametheory,and especially the theoryof stochastic differ- e s ential games, are rarely taught in these programs. In fact, I was shocked by the lack of n ce publishedliteratureinbookform,asadstateofaffairswhichpromptedmetowritelecture M li notesfortheclass. A This would have been the end of the story if I hadn’tshared some of my notes with I S a friend andco-authorof mine, Jean-PierreFouque, who decidedto convinceme to turn o ct t these lecture notes into a book. His perseverance, together with my desire to help those e appliedmathematicianstryingto learn the theoryofstochastic differentialgamesdespite bj u the lack of sources in textbookform, helped me to find the time to clean up my original s n classnotes. Still,thisshortprefaceshouldcontainacleardisclaimeremphasizingthefact o uti that the present manuscriptis more a set of lecture notes than a polished and exhaustive b ri textbookonthesubjectmatter. Manyexpertsonthesubjectcouldproducebettertreatises. dist But untilthen, I hopethese noteswill behelpfulto youngresearchersandnewcomersto Re stochasticanalysis,eagertounderstandthesubtletiesofthemodernprobabilisticapproach 1. tostochasticcontrolandstochasticdifferentialgames. 3 2 1. Acknowledgments. Iwouldlike tothankthestudentswhosepatienceallowedmetome- 9. 3 anderthroughthemazeofconceptsandtheoriesIwasdiscoveringwhileteaching.Special 2 2. thanksaredueto DanLacker,KevinWebster andGeoffreyZhu, whoseregularfeedback 3 1 helped me keep the lectures on track. Last but not least, I want to thank Franc¸ois De- o 7 t larue, not only for a couple of enlightening guest lectures, but for an enjoyable collabo- 0/1 ration which taught me the subtle intricacies of forward-backwardstochastic differential 1 equations—nothingcanrivallearningfromthemaster! 4/ 0 d ImportantAside. Theroyaltiesgeneratedbythesales(ifany)ofthisbookwillbeused,in e d a theirentirety,tofundastudentprizeawardedeveryotheryearduringtheSIAMConference o nl onFinancialMathematics. w o D Rene´Carmona Princeton,NJ August6,2015 vii p h p a. s oj s/ al n r u o List of Notation g/j r o m. a si w. w w p:// BSDE(Ψ,ξ),27 S2,3 DPP,81 htt C([0,T];Rn),69 PW0,19 ee Cb2(Rd),7 μN,16 FBSDE,41,42 ght; s DC1,,925([0,T]×Rd),8 μLNxs,,82,2100 FPS,167 yri Mhf,8 Lt,10 HJB,67,82,119 op W(0),11,12 Lt∗,10 r c W(2),11,12 σ†,71 LQ,63,136,179 e o Fx,69 var{η},73 ns H2(A),123 H˜,71 MFG,172,216 e M lic QPX,3,313 aa==((aa1t),t·∈·[·0,,Ta],N6)8,167 MMPRST,,12677 A Ξ,244 gconv,80 SI A,68,167 v∗,102 NCE,251 ect to AB(iE,1)6,768 (vE∗,),110021 ODE,84 bj C,69 OL,68,167 u n s E,33,74 BAU,76 OLNE,170 butio LM(X(R)d,)1,384 BSDE,27 PDE,7,42 stri P,27,68,69 CL,68 di Pp(E),142 CLFFNE,170 QVI,44,87,94,109 e R δx,16,220 CLNE,170 1. (cid:2)ϕ,μ(cid:3),10 CLPS,167 RBSDE,37 3 2 Bk,3 CRRA,89,98,132,246 9.1. H0,k,3 SDE,3,16,42 23 H2,k,3 DNE,170 SPDE,222 2. 3 1 o 7 t 1 0/ 1 4/ 0 d e d a o nl w o D ix p h p a. s Chapter 1 oj s/ nal Stochastic Differential r u o g/j r Equations o m. a si w. w w p:// htt e e s ht; Thisintroductorychapterisdevotedtotheanalysisofstochasticdifferentialequations g ri ofItoˆ type. Inpreparationforthestudyofstochasticcontrolproblemsandstochastic y p differentialgames,weproveexistenceanduniquenessforequationswhosecoefficients o c canberandom. Next,wediscusstheMarkovpropertyandtheconnectionwithpartial r o differentialequationswhenthecoefficientsdonotdependuponthepast. Thelasttwo e s sectionsarenotclassicalinnatureandtheycanbeskippedinafirstreading. Theyare n ce devotedtoMcKean–Vlasovequations,whosecoefficientsdependuponthedistribution M li of thesolution and totheir connection withtheso-called propagation of chaos. The A lastsectionconsidersthecasewhenthemarginaldistributionsareconditionedbythe SI knowledgeofaseparateItoˆ diffusion. o ct t e 1.1 Notation and First Definitions bj u n s Weassumethat(Ω,F,F,P)isastochasticbasiswherethefiltrationF = (Ft)0≤t≤T sup- utio ports an m-dimensionalF-Brownian motion W = (Wt)0≤t≤T in Rm. For each integer b k ≥ 1, we denoteby H0,k the collectionof all Rk-valuedprogressivelymeasurablepro- ri st cesseson[0,T]×R,andweintroducethesubspaces di Re (cid:2) (cid:3) T (cid:4) (cid:2) (cid:4) 1. H2,k := Z ∈H0,k; E |Zs|2ds<∞ and S2 := Y ∈H0,k; E sup |Ys|2 <∞ . 3 2 0 0≤t≤T 1. 39. WealsousethenotationBk forthesubspaceofboundedprocesses,namely, 2 (cid:2) (cid:4) 2. 13 Bk := Z ∈H0,k; sup |Zt|<∞, P−a.s. . o 0≤t≤T 7 t 1 Whendealingwith severalpossiblefiltrations, weaddasubscripttospecifythefiltration 0/ 1 withrespecttowhichtheprogressivemeasurabilityneedstobeunderstood. Inthecaseof 4/ 0 scalarprocesses,whenk =1,weskiptheexponentkfromournotation.Weareinterested d e instochasticdifferentialequations(SDEs)oftheform d a o nl dXt =b(t,Xt)dt+σ(t,Xt)dWt, (1.1) w o D wherethecoefficientsbandσ (b,σ): [0,T]×Ω×Rd →Rd×Rd×m satisfythefollowingassumptions. 3 4 StochasticDifferentialEquations (A1) Foreachx ∈ Rd,theprocesses(b(t,x))0≤t≤T and(σ(t,x))0≤t≤T areinH2,d and hp H2,dm,respectively. p a. ojs (A2) ∃c>0,∀t∈[0,T],∀ω ∈Ω,∀x,x(cid:3) ∈Rd, s/ nal |(b,σ)(t,ω,x)−(b,σ)(t,ω,x(cid:3))|≤c|x−x(cid:3)|. r u o g/j or We shallfollowthestandardpracticeofnotmakingthedependenceuponω ∈ Ω explicit m. intheformulaswheneverpossible. a si ww. Definition1.1. We saythatanF-progressivelymeasurableprocessX = (Xt)0≤t≤T isa w strongsolutionoftheSDE(1.1)if p:// (cid:5) e htt • 0T(|b(t,Xt)(cid:5)|+|σ(t,Xt)|2)d(cid:5)t<∞ P-almostsurely, ht; se • Xt =X0+ 0tb(s,Xs)ds+ 0T σ(s,Xs)dWs, 0≤t≤T. g ri y p co 1.2 Existence and Uniqueness of Strong Solutions: The r e o Lipschitz Case s n e c M li Theorem1.2. LetusassumethatX0 ∈ L2 isindependentofWandthatthecoefficients A bandσsatisfytheassumptions(A1)and(A2)above. Then,thereexistsauniquesolution I o S of (1.1)inH2,d,andforsomec > 0dependingonlyuponT andtheLipschitzconstantof ct t bandσ,thissolutionsatisfies e subj E sup |Xt|2 ≤c(1+E|X0|2)ecT. (1.2) n 0≤t≤T o uti b Here andin the following,we use the letter c fora genericconstantwhose valuecan stri changefromlinetoline. di e 31. R cPersosoefs.,wFoerdeeaficnheXthe∈prHo2c,eds,stUhe(Xsp)acbeyofsquareintegrableprogressivelymeasurablepro- 2 1. (cid:3) (cid:3) 9. t t 23 U(X)t =X0+ b(s,Xs)ds+ σ(s,Xs)dWs. (1.3) 2. 0 0 3 1 7 to FirstweprovethatU(X) ∈ H2,d, andthen,sinceXisasolutionoftheSDE(1.1)ifand 1 onlyif U(X) = X, we provethatU is a strictcontractionin theHilbertspaceH2,d. By 10/ definitionofthenormofH2,d,wehave 4/ 0 ed (cid:9)U(X)(cid:9)2 ≤(i)+(ii)+(iii) d a o nl with w Do (i)=3TE|X0|2 <∞, and(ii)and(iii)definedbelow.Usingthefactthat |b(t,x)|2 ≤c(1+|b(t,0)|2+|x|2),

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.