ebook img

Lecture notes on the dynamics of the Weil-Petersson flow PDF

0.7 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lecture notes on the dynamics of the Weil-Petersson flow

LECTURE NOTES ON THE DYNAMICS OF THE WEIL-PETERSSON FLOW CARLOSMATHEUS 6 1 0 2 n a CONTENTS J 4 1. Introduction 2 1.1. Somewordsontheoriginofthesenotes 2 ] S 1.2. AnoverviewofthedynamicsofWPflow 2 D 1.3. ErgodicityofWPflow:outlineofproof 5 . 1.4. RatesofmixingofWPflow 11 h t 1.5. Organizationofthetext 12 a m 2. ModulispacesofRiemannsurfacesandtheWeil-Peterssonmetric 12 2.1. Definitionandexamplesofmodulispaces 13 [ 2.2. Teichmüllermetric 14 1 2.3. Teichmüllerspacesandmappingclassgroups 15 v 2.4. Fenchel-Nielsencoordinates 16 0 9 2.5. CotangentbundletomodulispacesofRiemannsurfaces 18 6 2.6. Integrablequadraticdifferentials 20 0 2.7. TeichmüllerandWeil-Peterssonmetrics 21 0 . 2.8. ErgodicityofWPflow:outlineofproofrevisited 24 1 3. GeometryoftheWeil-Peterssonmetric 26 0 6 3.1. Items(I)and(II)ofTheorem1.5forWPmetric 26 1 3.2. Item(III)ofTheorem1.5forWPmetric 29 : v 3.3. Item(IV)ofTheorem1.5forWPmetric 30 Xi 3.4. Item(V)ofTheorem1.5forWPmetric 42 3.5. Item(VI)ofTheorem1.5forWPflow 43 r a 4. DecayofcorrelationsfortheWeil-Peterssongeodesicflow 48 4.1. RatesofmixingoftheWPflowonT1M I:ProofofTheorem4.1 50 g,n 4.2. RatesofmixingoftheWPflowonT1M II:ProofofTheorem4.2 55 g,n References 70 2010MathematicsSubjectClassification: Primary:37D20;Secondary:57N10. Keywordsandphrases: Riemannsurfaces,modulispaces,Teichmüllerspaces,Weil-Petersson metric,Weil-Peterssongeodesicflow,ergodicity,mixing,ratesofmixing. ThisworkwaspartiallysupportedbytheFrenchANRgrant“GeoDyM”(ANR-11-BS01-0004) andtheBalzanResearchProjectofJ.Palis. 1 ©2016THEAUTHOR 2 CARLOSMATHEUS 1. INTRODUCTION 1.1. Some words on the origin of these notes. This text is an expanded ver- sion of some lecture notes prepared by the author in the occasion of a series ofthreelecturesduringtheworkshopYoungmathematiciansindynamicalsys- temsorganizedbyFrançoiseDal’bo,LouisFunar,BorisHasselblattandBarbara Schapira in November 2013 at Centre International de Rencontres Mathéma- tiques(CIRM),Marseille,France. AsitisexplainedintheintroductionofHasselblatt’stext[29]inthisvolume, the three lectures at the origin of this text were part of a minicourse by Keith Burns, Boris Hasselblatt and the author around the recent theorem of Burns- Masur-Wilkinson[15]ontheergodicityoftheWeil-Petersson(WP)geodesicflow. Of course, the goal of these notes is the same of the author’s lectures: we wanttocoversomeoftheaspectsrelatedtomodulispacesofRiemannsurfaces (andTeichmüllertheory)intheproofsoftheergodicityofWPflow[15](seealso Theorem1.1below)andtherecentresultsofBurns,Masur,Wilkinsonandthe author[14]ontheratesofmixingofWPflow(seealsoTheorem1.2below). 1.2. AnoverviewofthedynamicsofWPflow. Beforegivingprecisedefinitions ofthe terms introducedabove (e.g.,moduli spaces ofRiemann surfaces,Weil- Peterssongeodesicflow,etc.),letuslistandcomparesomepropertiesoftheWP flow and its close cousin the Teichmüller (geodesic) flow (see [69]) in order to getaflavoroftheirdynamicalbehaviors. Teichmüllerflow WPflow (a) comesfromaFinslermetric comesfromaRiemannianmetric (b) complete incomplete (c) ispartofaSL(2,(cid:82))-action isnotpartofaSL(2,(cid:82))-action (d) non-uniformlyhyperbolic singularhyperbolic (e) related to flat geometry of Rie- related to hyperbolic geometry of mannsurfaces Riemannsurfaces (f) transitive transitive (g) periodicorbitsaredense periodicorbitsaredense (h) finitetopologicalentropy infinitetopologicalentropy (i) ergodic for the Liouville measure ergodic for the Liouville measure µ µ T WP (j) metricentropy0<h(µ )<∞ metricentropy0<h(µ )<∞ T WP (k) exponentialrateofmixing mixingatmostpolynomial(ingen- eral) Letusmakesomecommentsonboththecommonfeaturesandthesignifi- cantdifferencesbetweentheTeichmüllerandWPflowshighlightedintheitems above. LECTURENOTESONTHEDYNAMICSOFTHEWEIL-PETERSSONFLOW 3 TheTeichmüllerflowisassociatedtoaFinslermetric(i.e.,acontinuousfamily ofnorms)onthefibersofthecotangentbundleofthemodulispaces1,whilethe WPflowisassociatedtoaRiemannian(and,actually,Kähler)metriccalledWeil- Petersson (WP) metric. In particular,the item (a) says that the WP flow comes fromametricthatissmoother thanthemetricgeneratingtheTeichmüllerflow. WewillcomebacktothispointlaterwhendefiningtheWPmetric. Ontheotherhand,theitem(b)saysthatthedynamicsofWPflowisnotso nicebecauseitisincomplete,thatis,therearecertainWPgeodesicsthat“goto infinity”infinitetime.Inparticular,theWPflowisnot definedforalltimet∈(cid:82) when we start from certain initial data. We will make more comments on this later.Nevertheless,Wolpert[62]showedthattheWPflowisdefinedforalltime t∈(cid:82)foralmostevery initialdatawithrespecttotheLiouville(volume)measure inducedbyWPmetric,and,thus,theWPflowisalegitimeflowfromthepoint ofviewofErgodicTheory. The item (c) says that WP flow is less algebraic than Teichmüller flow be- cause the former is not part of a SL(2,(cid:82))-action while the latter corresponds tothediagonalsubgroup g =diag(et,e−t)ofSL(2,(cid:82))acting(inanaturalway) t ontheunitcotangentbundleofthemodulispacesofRiemannsurfaces.Here, it is worth to mention that the mere fact that the Teichmüller flow is part of a SL(2,(cid:82))-action makes its dynamics very rich: for instance, once one shows that the Teichmüller flow is ergodic (with respect to some SL(2,(cid:82))-invariant probabilitymeasure),itispossibletoapplyHowe-Moore’stheorem(orvariants of it) to improve ergodicity into mixing (and, actually, exponential mixing) of Teichmüllerflow(see,e.g.,[2]and[3]formoredetails). Theitem(d)saysthatWPandTeichmüllerflows(morally)arenon-uniformly hyperbolicinthesenseofPesintheory[44],buttheyaresofordistinct reasons. The non-uniform hyperbolicity of the Teichmüller flow was shown by Veech [58](for“volume”/Masur-Veechmeasure)andForni[26](forarbitraryinvariant probabilitymeasures)anditfollowsfromuniformestimatesforthederivative oftheTeichmüllerflowoncompactsets.Ontheotherhand,thenon-uniform hyperbolicityoftheWPflowrequiresaslightlydifferentargumentbecausesome sectionalcurvaturesofWPmetricapproach−∞or0atcertainplacesnearthe “boundary”ofthemodulispaces.Wewillreturntothispointinthefuture. Theitem(e)partlyexplainstheinterestofseveralauthorsinTeichmüllerand WPflows.Indeed,sincetheirintroductionbyBernardRiemannin1851(inhis PhD thesis), the study of Riemann surfaces and their moduli spaces became an important topic of research in both Mathematics and Physics (for reasons whoseexplanationsarebeyondthescopeofthesenotes).Inparticular,thefact that the properties of the Teichmüller and WP flows on moduli spaces allows torecovergeometricalinformationaboutRiemannsurfacesmotivatedpartof theliteratureonthedynamicsoftheseflows.Concerningapplicationsofthese 1Actually,theFinslermetriccorrespondingtoTeichmüllerflowisaC1butnotC2familyof norms:see,e.g.,pages308and309ofHubbard’sbook[31]. 4 CARLOSMATHEUS flowstotheinvestigationofRiemannsurfaces,itisnaturaltostudytheTeich- müller flow whenever one is interested in the properties of flat metrics with conical singularities on Riemann surfaces (cf. Zorich’s survey [69]), while it is more natural to study the WP metric/flow whenever one is interested in the propertiesofhyperbolicmetricsonRiemannsurfaces:forinstance,Wolpert[63] showedthatthehyperboliclengthofaclosedgeodesicinafixedfreehomotopy classisaconvexfunction alongorbitsoftheWPflow,Mirzakhani [41]proved thatthegrowthofthehyperboliclengthsofsimplegeodesicsonhyperbolicsur- faces is relatedto the WP volume ofthe moduli space,and,afterthe works of Bridgeman[8],McMullen[38]andmorerecentlyBridgeman-Canary-Labourie- Sambarino[9](amongotherauthors),weknowthattheWeil-Peterssonmetric isintimatelyrelatedtothermodynamicalinvariants(entropy,pressure,etc.)of thegeodesicflowonhyperbolicsurfaces. Concerning items (f) to (h),Pollicott-Weiss-Wolpert [46] showed the transi- tivityanddensenessofperiodicorbitsoftheWPflowintheparticularcaseof the unit cotangent bundle of the moduli space M (of once-punctured tori). 1,1 In general,the transitivity,the denseness of periodic orbits and the infinitude ofthetopologicalentropyoftheWPflowontheunitcotangentbundleofthe moduli space M of genus g Riemann surfaces with n marked points (for g,n any g ≥1,n≥1) were shown by Brock-Masur-Minsky [10]. Moreover,Hamen- städt[27]provedtheergodicversionofthedensenessofperiodicorbits,i.e.,the densenessofthesubsetofergodicprobabilitymeasuressupportedonperiodic orbitsinthesetofallergodicWPflowinvariantprobabilitymeasures. TheergodicityofWPflow(mentionedinitem(i))wasfirststudiedbyPollicott- Weiss [45] in the particular case of the unit cotangent bundle T1M of the 1,1 moduli space M of once-punctured tori: they showed that if the first two 1,1 derivatives of the WP flow on T1M are suitably bounded, then this flow is 1,1 ergodic.Morerecently,Burns-Masur-Wilkinson[15]wereabletocontrolingen- eral the first derivatives of WP flow and they used theirestimates to show the followingtheorem: THEOREM 1.1 (Burns-Masur-Wilkinson). The WP flow on the unit cotangent bundleT1M ofthe moduli space M ofRiemann surfacesofgenus g with g,n g,n n markedpointsisergodicwithrespecttotheLiouvillemeasureµ oftheWP WP metric whenever 3g −3+n ≥ 1. Actually, it is Bernoulli (i.e., it is measurably isomorphictoa Bernoulli shift)and,afortiori,mixing. Furthermore,itsmetric entropyh(µ )ispositiveandfinite. WP TheTeichmüller-theoreticalaspectsofthistheoremwilloccupythenexttwo sections of this text. For now, we will just try to describe the general lines of Burns-Masur-WilkinsonargumentsinSubsection1.3below. However, before passing to this topic, let us make some comments about item(k)aboveontherateofmixingofTeichmüllerandWPflows. Generallyspeaking,itisexpectedthattherateofmixingofasystem(diffeo- morphism or flow) displaying a “reasonable” amount of hyperbolicity is expo- nential:forexample,thepropertyofexponentialrateofmixingwasshownby LECTURENOTESONTHEDYNAMICSOFTHEWEIL-PETERSSONFLOW 5 Dolgopyat[24](seealsothisarticleofLiverani[34])foralargeclassofcontact Anosov flows2, and by Avila-Gouëzel-Yoccoz [3] and Avila-Gouëzel [2] for the Teichmüllerflowequippedwith“nice”measures. Here,werecallthattherateofmixing/decayofcorrelationsofamixingflow ψt isthespeedofconvergencetozeroofthecorrelationsfunctionsC (f,g):= t (cid:82) f ·g◦ψt−(cid:161)(cid:82) f(cid:162)(cid:161)(cid:82) g(cid:162)ast→∞(forchoicesof“sufficientlysmooth”observables f and g). Intuitively,the rate of mixing is a quantitative measurement of how fasttheflowψt mixdistinctregionsofthephasespace(suchasthesupportsof theobservables f andg).See,e.g.,Subsection6.16ofHasselblatt’slecturenotes [29]formorecomments. In this context, given the ergodicity and mixing theorem of Burns-Masur- Wilkinsonstatedabove,itisnaturaltotryto“determine”therateofmixingof WPflow.Inthisdirection,weobtainedthefollowingresult(cf.[14]): THEOREM 1.2(Burns-Masur-M.-Wilkinson). The rate of mixing of WP flow on T1M (for“reasonablysmooth”observables)is g,n • atmostpolynomialfor3g−3+n>1and • rapid(super-polynomial)for3g−3+n=1. Wewillpresentasketchofproofofthisresultinthelastsectionofthistext. Fornow,wewillcontentourselveswithavaguedescriptionofthegeometrical reasonforthedifferenceintherateofmixingoftheTeichmüllerandWPflows inSubsection1.4below. 1.3. Ergodicity of WP flow: outline of proof. The initial idea to prove Burns- Masur-Wilkinsontheoremisthe“usual”argumentfortheproofofergodicityof asystemexhibitingsomehyperbolicity,namely,Hopf’sargument. 1.3.1. A quick review of Hopf’s argument. Traditionally,Hopf’s argument runs asfollows(cf.Subsection4.3ofHasselblatt’slecturenotes[29]).Givenasmooth flow(ψt)t∈(cid:82):X →X onacompactRiemannianmanifold(X,d)preservingthe corresponding volume measure µ and a continuous observable f :X →(cid:82),we considerthefutureandpastBirkhoffaverages: f+(x):= lim 1 (cid:90) T f(ψs(x))ds and f−(x):= lim 1 (cid:90) T f(ψs(x))ds T→+∞T 0 T→−∞T 0 By Birkhoff’s ergodic theorem (cf. Subsection 6.3 of [29]), for µ-almost every x∈X,thequantities f+(x)and f−(x)existand,actually,theycoincide f+(x)= f−(x):=f(cid:101)(x).Intheliterature,apointxsuchthat f+(x), f−(x)existand f+(x)= f−(x)=f(cid:101)(x)iscalledaBirkhoffgeneric point(withrespecttoµ). Bydefinition,theergodicityofψt (withrespecttoµ)isequivalenttothefact thatthefunctions f+ and f− areconstant atµ-almosteverypoint. Inordertoshowtheergodicityofaflowψt withsomehyperbolicity,Hopf[30] + − observesthatthefunction f ,resp. f ,isconstantalongstable,resp.unstable, 2IncludingcertaingeodesicflowsoncompactRiemannianmanifoldswithnegativecurvature. 6 CARLOSMATHEUS sets Ws(x):={y: lim d(ψt(y),ψt(x))=0},resp.Wu(x)={y: lim d(ψt(y),ψt(x))=0}, t→+∞ t→−∞ i.e., f+(x)=f+(y)whenever y∈Ws(x),resp. f−(x)=f−(z)wheneverz∈Wu(x). Weleavetheverificationofthisfactasanexercisetothereader. InthecaseofanAnosovflow ψt on X,weknowthatthestableandunstable setsareimmersedsubmanifolds(cf.Subsection5.5ofHasselblatt’snotes[29]). Moreover,ifoneforgetsabouttheflowdirection,thestableandunstablemani- foldshavecomplementarydimensionsandintersecttransversely.Hence,given twopoints p,q∈X (lyingindistinctorbitsofψt),wecanconnectthemusing piecesofstableandunstablemanifoldsasshowninthefigurebelow: q p FIGURE 1. Connectingp and q withpiecesofstableandunsta- blemanifolds. In particular, this indicates that a volume-preserving Anosov flow ψt is er- + − godic because the functions f and f are constant along stable and unsta- ble manifolds, they coincide almost everywhere and any pair of points can be connected via pieces of stable and unstable manifolds. However,this argu- menttowardsergodicityofψt isnot completeyet:indeed,oneneedstoknow that the intersection points z ,...,z between the pieces of stable and unsta- 1 n blemanifoldsconnectingp andq areBirkhoffgenericinordertoconludethat f(cid:101)(p)=f(cid:101)(z1)=···=f(cid:101)(zn)=f(cid:101)(q). Intheoriginalcontextofhisarticle,Hopf[30]studiesageodesicflowψt of acompactsurfaceofconstant negativecurvature,andheusesthefactthatthe stableandunstablemanifoldsformC1foliationstodeducethattheintersection points z ,...,z can be taken to be Birkhoff generic points. Indeed, since the 1 n invariantfoliations areC1 in his context,Hopfapplies Fubini’s theorem to the setB offullµ-volumeconsistingofBirkhoffgenericpointsinordertoensure thatalmostallstableandunstablemanifoldsWs(x)andWu(x)intersectB in asubsetoftotallengthmeasureofWs(x)andWu(x)(comparewiththeproof ofProposition4.10of[29]). LECTURENOTESONTHEDYNAMICSOFTHEWEIL-PETERSSONFLOW 7 On the other hand, it is known that the stable and unstable manifolds of a general Anosovflow(suchasgeodesicflowsoncompactmanifoldsofvariable negativecurvature)donot formnecessarilyaC1-foliation,butonlyHöldercon- tinuousfoliations(seee.g.thepapersofAnosov[1]and/orHasselblatt[28]for concreteexamples).Inparticular,thisisanobstacletotheargumentàlaFubini ofthepreviousparagraph.Nevertheless,Anosov[1]showedthatthestableand unstable foliations of a smooth Anosov flow are always absolutely continuous, so that one can still apply Fubini’s theorem to conclude ergodicity along the linesofHopf’sargumentpresented. In summary, we know that a smooth (C2) volume-preserving Anosov flow onacompactmanifoldisergodicthankstoHopf’sargumentandtheabsolute continuityofstableandunstablefoliations. REMARK 1.3. Robinson-Young [51] showed that the stable and unstable folia- tionsofaC1 Anosovsystemarenotnecessarilyabsolutelycontinuous. Inpar- ticular,thesmoothness(C2)assumptionontheAnosovflowisnecessaryforthe ergodicityargumentdescribedabove. REMARK 1.4. The absolute continuity of a foliation invariant under some sys- tem depends on some hyperbolicity. In fact,Shub-Wilkinson [55] constructed examplesofinvariantcentral(alongwhichthedynamicsisneutral)foliationsof certainpartiallyhyperbolicdiffeomorphismsfailingtosatisfyFubini’stheorem: eachleafofthesecentralfoliationsintersectsasetoffullvolumeexactlyatone point!ThisphenomenonissometimesreferredtoasFubini’snightmareinthe literature(see,e.g.,thisarticleofMilnor[40])andsometimesafoliation“failing” Fubini’stheoremiscalledapathologicalfoliation. AfterthisbriefsketchofHopf’sargumentfortheergodicityofsmoothvolume- preservingAnosovflowsoncompactmanifolds,letusexplainthedifficultiesof extendingthisargumenttothesettingofWPflow. 1.3.2. Hopf’sargumentinthecontextofWPflow. Aswealreadymentioned(cf. item(d)ofthetableabove),theWPflowissingularhyperbolic.Inanutshell,this means that,even thoughWP flow is notAnosov,itis (morally) non-uniformly hyperbolicinthesenseofPesintheoryanditsatisfiessomehyperbolicityesti- matesalongpiecesoforbitsstayingincompactpartsofmodulispace. Inparticular,thanksto(Katok-Strelcyn[33]versionof)Pesin’sstablemanifold theorem[44],thestableandunstablesetsofalmosteverypointareimmersed submanifolds,and,ifwe forgetaboutthe flowdirection,the stable andunsta- ble manifolds have complementary dimensions. Furthermore, the stable and unstable manifolds are part of absolutely continuous laminations. Here, it is importantthatthedynamicsissufficientlysmooth(see,e.g.,thispaperofPugh [47],andthispreprintofBonatti-Crovisier-Shinohara[7]). Thus, this gives hopes that Hopf’s argument could be applied to show the ergodicityofvolume-preservingnon-uniformlyhyperbolicsystems. 8 CARLOSMATHEUS However,byinspectingthefigure1above,weseethatHopf’sargumentrelies onthefactthatstableandunstablemanifoldsofAnosovflowshaveanice,well- controlled,geometry. Forinstance,ifwestartwithapointp andwewanttoconnectitwithpieces of stable and unstable manifolds to a point q at a large distance, we have to make sure that the pieces of stable and unstable manifolds used in figure 1 are“uniform”,e.g.,theyaregraphsofdefinitesizeandboundedcurvaturewith respecttothesplittingintostableandunstabledirections,and,moreover,the anglesbetweenthestableandunstabledirectionsareuniformlyboundedaway fromzero. Indeed,ifthepiecesofstableandunstablemanifoldsgetshorterandshorter, and/orifthey“curve”alot,and/ortheanglesbetweenstableandunstabledi- rectionsarenotboundedawayfromzero,onemightnotbeabletoreach/access q fromp withstableandunstablemanifolds: p FIGURE 2. Pesinstableandunstablemanifoldswith“bad”geometry. Asitturnsout,whilethesekindsofnon-uniformitydonotoccurforAnosov flows, they can actually occur for certain non-uniformly hyperbolic systems. Moreprecisely,thesizesandcurvaturesofstableandunstablemanifolds,and the angles between stable andunstable directions ofa generalnon-uniformly hyperbolicsystemvaryonlymeasurably frompointtopoint. Inparticular,thisexcludesapriorianaivegeneralizationofHopf’sergodicity argumentfornon-uniformlyhyperbolicsystems,and,infact,thereareconcrete examples3 byDolgopyat-Hu-Pesin[5]ofvolume-preservingnon-uniformlyhy- perbolicsystemswithcountablymanyergodiccomponentsconsistingofinvari- antsetsofpositivevolumesthatareessentiallyopen. Insummary,theergodicityofanon-uniformlyhyperbolicsystemdependson theparticulardynamicalfeaturesofthegivensystem. 3As a matter of fact,these examples are “sharp”: Pugh-Shub [48] showed that a volume- preservingnon-uniformlyhyperbolicsystemhasatmostcountablymanyergodiccomponents. LECTURENOTESONTHEDYNAMICSOFTHEWEIL-PETERSSONFLOW 9 In this direction,there is an important literature dedicated to the construc- tion of large classes of ergodic non-uniformly hyperbolic systems: for exam- ple,theergodicityofseveralclassesofbilliards wasshownbySinai[56],Buni- movich[11],Bunimovich-Chernov-Sinai[12]amongothers(seealsoChernov- Markarian’sbook[18])andtheergodicityofnon-uniformlyhyperbolicsystems exhibiting partial hyperbolicity (or dominated splitting) was shown by Pugh- Shub[49],Rodriguez-Hertz[52],Tahzibi[57],Burns-Wilkinson[16],Rodriguez- Hertz–Rodriguez-Hertz–Ures[53]amongothers. FortheproofoftheirergodicityresultfortheWPflow,Burns-Masur-Wilkinson takepartoftheirinspirationfromtheworkofKatok-Strelcyn[33]wherePesin’s theory [44] (of existence and absolute continuity of stable manifolds) is ex- tendedtosingularhyperbolicsystems. Inanutshell,thebasicphilosophybehindKatok-Strelcyn’sworkisthefollow- ing.Givenanon-uniformlyhyperbolicsystemwithsomenon-trivialsingularset, alldynamicalfeaturespredictedbyPesintheoryinvirtueofthe(non-uniform) exponential contraction and expansion are not affected if the loss of control on the system is at most polynomial as one approaches the singular set. In other terms,the exponential (hyperbolic) behavior of a singular system is not disturbedbythepresenceofasingularsetwherethefirsttwoderivativesofthe systemlosecontrolinapolynomial way.Inparticular,thishintsthatHopf’sar- gumentcanbeextendedtosingularhyperbolicsystemswithpolynomiallybad singularsets. Inthiscontext,Burns-Masur-Wilkinsonshowsthefollowingergodicitycrite- rionforsingularhyperbolicgeodesicflows(cf.Theorem3.1of[15]). LetN bethequotientN =M/Γofacontractible,negativelycurved,possibly incomplete,RiemannianmanifoldM byasubgroupΓofisometriesofM acting freelyandproperlydiscontinuously.Byslightlyabusingnotation,wedenoteby d themetricsonN andM inducedbytheRiemannianmetricofM. We consider N the (Cauchy) metric completion of the metric space (N,d), i.e.,the(complete)metricspaceconsistingofallequivalenceclassesofCauchy sequences{x }⊂N undertherelation{x }∼{y }ifandonlyif lim d(x ,y )=0 n n n n→∞ n n equippedwiththemetricd({x },{z })= lim d(x ,z ),andwedefinethe(Cauchy) n n n→∞ n n boundary ∂N :=N−N. THEOREM1.5(Burns-Masur-Wilkinsonergodicitycriterionforgeodesicflows). Let N =M/Γbeamanifoldasabove.Supposethat: (I) the universal cover M of N is geodesically convex, i.e., for every p,q ∈M, thereexistsanuniquegeodesicsegmentinM connecting p and q. (II) themetriccompletionN of(N,d)iscompact. (III) theboundary∂N isvolumetricallycusplike,i.e.,forsomeconstantsC >1 andν>0,thevolumeofaρ-neighborhoodoftheboundarysatisfies Vol({x∈N :d(x,∂N)<ρ})≤Cρ2+ν foreveryρ>0. 10 CARLOSMATHEUS (IV) N has polynomially controlled curvature, i.e., there are constants C >1 andβ>0suchthatthecurvaturetensorR ofN anditsfirsttwoderivatives satisfythefollowingpolynomialbound max{(cid:107)R(x)(cid:107),(cid:107)∇R(x)(cid:107),(cid:107)∇2R(x)(cid:107)}≤Cd(x,∂N)−β foreveryx∈N. (V) N haspolynomiallycontrolledinjectivityradius,i.e.,thereareconstants C >1andβ>0suchthat inj(x)≥(1/C)d(x,∂N)β foreveryx∈N (whereinj(x)denotestheinjectivityradiusat x). (VI) Thefirstderivativeofthegeodesicflowϕ ispolynomiallycontrolled,i.e., t thereareconstantsC >1andβ>0suchthat,foreveryinfinitegeodesicγ on N andevery t∈[0,1]: (cid:107)Dγ.(0)ϕt(cid:107)≤Cd(γ([−t,t]),∂N)β Then, the Liouville (volume) measure m of N is finite, the geodesic flow ϕ t on the unit cotangent bundle T1N of N is defined at m-almost every point for alltimet,andthegeodesicflowϕ isnon-uniformlyhyperbolic(inthesenseof t Pesin’stheory)andergodic. Actually,thegeodesicflowϕ isBernoulliand,furthermore,itsmetricentropy t h(ϕ )ispositive,finiteandh(ϕ )isgivenbyPesin’sentropyformula(i.e.,h(ϕ ) t t t isthesumofpositiveLyapunovexponentsofϕ countedwithmultiplicities). t Theproofofthisergodicitycriterionforgeodesicflowswasoneofthemain motivationsofBurns’lectures(see[13])and,forthisreason,wewillnotdiscuss it here. Instead, we will always assume Theorem 1.5 in the sequel, so that the proof of Theorem 1.1 (ergodicity of the WP flow) will be complete4 once we showthatthemodulispaceofRiemannsurfacesequippedwiththeWPmetric satisfiesthesixitems(I)to(VI)above. 1.3.3. AbriefcommentontheverificationoftheergodicitycriterionforWPflow. Incomparisonwithpreviouslyknownresultsintheliterature,someofthemain noveltiesinBurns-Masur-Wilkinsonwork[15]concerntheverificationofitems (IV) and (VI) for the WP metric: in fact, those items are the most delicate to checkandtheirverificationsarestronglybasedonimportantpreviousworksof McMullen[37]andWolpert[62],[63],[64],[66]. Inanycase,thiscompletesouroutlineoftheproofofBurns-Masur-Wilkinson theoremontheergodicityofWPflow. 4Actually,thereisasubtlepointinthereductionofTheorem1.1toTheorem1.5relatedtothe orbifoldicnatureofmodulispaces.WewilldiscussthislaterinSubsection2.8.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.