ebook img

Lecture Notes on Acoustics and Noise Control PDF

381 Pages·2022·12.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lecture Notes on Acoustics and Noise Control

Hejie Lin Turgay Bengisu Zissimos P. Mourelatos Lecture Notes on Acoustics and Noise Control Lecture Notes on Acoustics and Noise Control (cid:129) Hejie Lin Turgay Bengisu Zissimos P. Mourelatos Lecture Notes on Acoustics and Noise Control HejieLin TurgayBengisu GeneralMotors OaklandUniversity Warren,MI,USA Rochester,MI,USA ZissimosP.Mourelatos MechanicalEngineering OaklandUniversity Rochester,MI,USA ISBN978-3-030-88212-9 ISBN978-3-030-88213-6 (eBook) https://doi.org/10.1007/978-3-030-88213-6 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Objectives of the Book Lecture Notes on Acoustics and Noise Control provides a mathematical backbone for acoustics and noise control. This mathematical foundation is comprised of straightforward mathematical derivations and formulations of sound waves. All formulations are builtfrom the acousticwave equation based on thekinetictheory of gases. The mathematical formulations are condensed into a minimalistic yet complete acousticfoundation for a one-semestercourse. The formulations covered inthisbookcanbeusedasreliablereferencesforresearchersandengineersworking inthefieldofacousticsandnoisecontrol. Style Thisbookiswritteninacoursenotesformatforaone-semestercourseof“acoustics and noise control.” This course is offered to senior undergraduates and beginning graduate students without a prior background of acoustics or noise control. The materialsinthisbookarecompiledfromaseriesofnoise,vibration,andharshness (NVH)coursestaughtbytheauthorsofthisbookduringthepast14yearsatOakland University. Straightforward derivations of formulations are presented in the course notes. Whenthederivationofformulasisthemainobjectiveofasection,thefinalformulas areplacedatthebeginningofthatsectiontoserveasacompassofderivation.The properties of sound can be observed and understood through the derivation of the formulation. Class examples and homework are included to support and reinforce the derivations. Through the derivations, examples, and homework, students can understandthephysicsbehindtheformulas. v vi Preface Twosignificantprojectsinnumericalanalysisofsoundpropagationareincluded in this course. The first project revolves around numerically calculating the sound pressure induced by a vibrating plate. This project requires students to understand the formulations for acoustic point sources and apply them to the real-world situa- tions.Thefirstprojectconcludesthefundamentalacousticstheoryinthefirsthalfof the course (Chaps 1, 2, 3, 4, 5 and 6). The second project requires numerical calculationofthesoundpowertransmissioninpipes.Thisprojectrequiresstudents tounderstandtheformulaforpowertransmissioninpipesasfiltersandapplythemto real-world problems. The second project concludes the filter design in the second halfofthecourse(Chaps.7,8,9,10,11and12). Prerequisites Students should have a basic knowledge of practical experience with calculus and differentialequations. The Big Picture The first half of this book covers the fundamentals of acoustic wave formulations. Chapter 1 reviews complex numbers and introduces four equivalent forms of complex numbers for harmonic waves. Understanding these four equivalent forms of complex numbers is crucial for understanding the mathematical formulations of acousticsandnoisecontrol.Chapters2,3,and4deriveandsolvetheplaneacoustic wave equation. Chapters 5 and 6 derive and solve the spherical wave equation. At theendofChap.6,Project#1isincluded toreinforceandconsolidatethelearning from Chaps. 1 to 6 (the first half of the course). This project requires students to numericallycalculatesoundpressureusingthepointsourceformulationobtainedin Chap.6. Thesecondhalfofthisbookcoversapplicationsofacousticsinthefieldofnoise control.Chapters7and8explainandformulatethesoundresonanceinrectangular cavitiesandsoundpropagationinwaveguides.Chapter9introducestheconceptof weighted sound pressure levels. Chapter 10 introduces the basic formulations for noisecontrolofroomacoustics.Chapters11and12coverthetheoryofthreebasic acoustic filters: the high-pass filter, the low-pass filter, and the band-stop (Helm- holtz)filters. Preface vii AttheendofChapter11,Project2Aisincludedtonumericallycalculatesound powertransmissioninpipelinesusingtheformulasdevelopedinthischapter.Atthe endofChapter12,Project2Bisincludedtomodellow-passfilters,high-passfilters, and band-stop filters as pipes with side branches. In this project, sound power transmissionoffilterswillbecalculated. Warren,MI,USA HejieLin Rochester,MI,USA TurgayBengisu Rochester,MI,USA ZissimosP.Mourelatos Contents 1 ComplexNumbersforHarmonicFunctions. . . . . . . . . . . . . . . . . . 1 1.1 ReviewofComplexNumbers. . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 ComplexNumbersinPolarForm. . . . . . . . . . . . . . . . . . . . . . 3 1.3 FourEquivalentFormstoRepresentHarmonicWaves. . . . . . . 4 1.4 MathematicalIdentity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 DerivationofFourEquivalentForms. . . . . . . . . . . . . . . . . . . 8 1.5.1 ObtainForm2fromForm1. . . . . . . . . . . . . . . . . . . 8 1.5.2 ObtainForm3fromForm2. . . . . . . . . . . . . . . . . . . 9 1.5.3 ObtainForm4fromForm3. . . . . . . . . . . . . . . . . . . 9 1.6 VisualizationandNumericalValidationofForm1 andForm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.7 Space-TimeHarmonicFunctionsExpressedinFour EquivalentForms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.8 HomeworkExercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.9 ReferencesofTrigonometricIdentities. . . . . . . . . . . . . . . . . . 21 1.9.1 TrigonometricIdentitiesofaSingleAngle. . . . . . . . . 21 1.9.2 TrigonometricIdentitiesofTwoAngles. . . . . . . . . . . 23 1.10 AMATLABCodeforVisualizationofForm1 andForm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2 DerivationofAcousticWaveEquation. . . . . . . . . . . . . . . . . . . . . . 27 2.1 Euler’sForceEquation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 EquationofContinuity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 EquationofState. .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . .. 34 2.3.1 EnergyIncreaseduetoWorkDone. . . . . . . . . . . . . . 35 2.3.2 PressureduetoCollidingofGases. . . . . . . . . . . . . . 37 2.3.3 DerivationofEquationofState. . . . . . . . . . . . . . . . . 38 2.4 DerivationofAcousticWaveEquation. . . . . . . . . . . . . . . . . . 39 2.5 FormulasfortheSpeedofSound. . . . . . . . . . . . . . . . . . . . . . 42 2.5.1 FormulaUsingPressure. . . . . . . . . . . . . . . . . . . . . . 42 2.5.2 FormulaUsingBulkModulus. . . . . . . . . . . . . . . . . . 43 ix x Contents 2.5.3 FormulaUsingTemperature. . . . . . . . . . . . . . . . . . . 45 2.5.4 FormulaUsingCollidingSpeed. . . . . . . . . . . . . . . . . 46 2.6 HomeworkExercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3 SolutionsofAcousticWaveEquation. . . . . . . . . . . . . . . . . . . . . . . 49 3.1 ReviewofPartialDifferentialEquations. . . . . . . . . . . . . . . . . 51 3.1.1 ComplexSolutionsofaPartialDifferential Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.2 TrigonometricSolutionsofaPartialDifferential Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2 FourBasicComplexSolutions. . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 FourBasicTravelingWaves. . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4 FourBasicStandingWaves. . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5 ConversionBetweenTravelingandStandingWaves. . . . . . . . 63 3.6 Wavenumber,AngularFrequency,andWaveSpeed. . . . . . . . 68 3.7 VisualizationofAcousticWaves. . . . . . . . . . . . . . . . . . . . . . 71 3.7.1 PlottingTravelingWave. . . . . . . . . . . . . . . . . . . . . . 71 3.7.2 PlottingStandingWave. . . . . . . . . . . . . . . . . . . . . . 72 3.8 HomeworkExercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 AcousticIntensityandSpecificAcousticImpedance. . . . . . . . . . . . 81 4.1 Pressure-VelocityRelationship. . . . . . . . . . . . . . . . . . . . . . . . 82 4.1.1 Pressure-VelocityRelationshipsforBTW. . . . . . . . . 83 4.1.2 Pressure-VelocityRelationshipsforBSW. . . . . . . . . . 86 4.1.3 Pressure-VelocityRelationshipsinComplex FunctionForm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.2 RMSPressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.2.1 RMSPressureofBTW. . . . . . . . . . . . . . . . . . . . . . . 90 4.2.2 RMSPressureofBSW. . . . . . . . . . . . . . . . . . . . . . . 91 4.3 AcousticIntensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.3.1 AcousticIntensityofBTW. . . . . . . . . . . . . . . . . . . . 94 4.3.2 AcousticIntensityofBSW. . . . . . . . . . . . . . . . . . . . 95 4.4 SpecificAcousticImpedanceExpressedasRealNumbers. . . . 96 4.4.1 SpecificAcousticImpedanceofBTW. . . . . . . . . . . . 97 4.4.2 SpecificAcousticImpedanceofBSW. . . . . . . . . . . . 98 4.5 SpecificAcousticImpedanceExpressedasComplex Numbers. . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . 103 4.5.1 IssueswithRealImpedance. . . . . . . . . . . . . . . . . . . 103 4.5.2 DefinitionofComplexImpedance. . . . . . . . . . . . . . . 103 4.6 ComputerProgram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.7 HomeworkExercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.8 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.8.1 DerivativesofTrigonometricandComplex ExponentialFunctions. . . . . . . . . . . . . . . . . . . . . . . 114 4.8.2 TrigonometricIntegrals. . . . . . . . . . . . . . . . . . . . . . . 115 Contents xi 5 SolutionsofSphericalWaveEquation. . . . . . . . . . . . . .. . . . . . . . . 117 5.1 SphericalCoordinateSystem. . . . . . . . . . . . . . . . . . . . . . . . . 118 5.2 WaveEquationinSphericalCoordinateSystem. . . . . . . . . . . 119 5.3 PressureSolutionsofWaveEquationinSpherical CoordinateSystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.4 FlowVelocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.4.1 FlowVelocityinRealFormat. . . . . . . . . . . . . . . . . . 124 5.4.2 FlowVelocityinComplexFormat. . . . . . . . . . . . . . . 126 5.5 RMSPressureandAcousticIntensity. . . . . . . . . . . . . . . . . . . 128 5.6 SpecificAcousticImpedance. . . . . . . . . . . . . . . . . . . . . . . . . 132 5.7 HomeworkExercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6 AcousticWavesfromSphericalSources. . . . . . . . . . . . . . . . . . . . . 137 6.1 ReviewofPressureandVelocityFormulas forSphericalWaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.2 AcousticWavesfromaPulsatingSphere. . . . . . . . . . . . . . . . 139 6.3 AcousticWavesfromaSmallPulsatingSphere. . . . . . . . . . . . 141 6.3.1 Near-FieldSolutionsofaSmallSpherical Source(kr(cid:1)1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.3.2 Far-FieldSolutionsofaSmallSpherical Source(kr(cid:3)1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.4 AcousticWavesfromaPointSource. . . . . . . . . . . . . . . . . . . 146 6.4.1 PointSourcesFormulatedwithSourceStrength. . . . . 146 6.4.2 FlowRateasSourceStrength. . . . . . . . . . . . . . . . . . 147 6.4.3 PointSourceinanInfiniteBaffle. . . . . . . . . . . . . . . . 149 6.5 AcousticIntensityandSoundPower. . . .. . . . . . . . . . . . . .. . 150 6.6 ComputerProgram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.7 Project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.8 Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 6.9 HomeworkExercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 7 ResonantCavities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.1 1DStandingWavesBetweenTwoWalls. . . . . . . . . . . . . . . . 168 7.2 NaturalFrequenciesandModeShapesinaPipe. . . . . . . . . . . 170 7.3 2DBoundaryConditionsBetweenFourWalls. . . . . . . . . . . . 177 7.3.1 2DStandingWaveSolutionsoftheWave Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.3.2 2DNatureFrequenciesBetweenFourWalls. . . . . . . 179 7.3.3 2DModeShapesBetweenFourWalls. . . . . . . . . . . . 181 7.4 3DBoundaryConditionsofRectangularCavities. . . . . . . . . . 184 7.4.1 3DStandingWaveSolutionsoftheWave Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.4.2 3DNaturalFrequenciesandModeShapes. . . . . . . . . 184 7.5 HomeworkExercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.