FFeeii--FFeeii LLii && JJuussttiinn JJoohhnnssoonn && SSeerreennaa YYeeuunngg LLeeccttuurree 88 -- 11 AApprriill 2266,, 22001188 Last time Regularization: Dropout Transfer Learning Optimization: SGD+Momentum, FC-C Nesterov, RMSProp, Adam FC-4096 Reinitialize FC-4096 this and train MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Freeze these Conv-256 Regularization: Add noise, then Conv-256 marginalize out MaxPool Conv-128 Train Conv-128 MaxPool Conv-64 Test Conv-64 Image Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - 22 April 26, 2018 Today - Deep learning hardware - CPU, GPU, TPU - Deep learning software - PyTorch and TensorFlow - Static vs Dynamic computation graphs Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - 33 April 26, 2018 Deep Learning Hardware FFeeii--FFeeii LLii && JJuussttiinn JJoohhnnssoonn && SSeerreennaa YYeeuunngg LLeeccttuurree 88 -- 44 AApprriill 2266,, 22001188 My computer Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - 55 April 26, 2018 Spot the CPU! (central processing unit) This image is licensed under CC-BY 2.0 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - 66 April 26, 2018 Spot the GPUs! (graphics processing unit) This image is in the public domain Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - 77 April 26, 2018 NVIDIA AMD vs Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - 88 April 26, 2018 NVIDIA AMD vs Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - 99 April 26, 2018 CPU vs GPU Cores Clock Memory Price Speed CPU: Fewer cores, Speed but each core is much faster and CPU 4 4.2 GHz System $339 ~540 GFLOPs FP32 much more (Intel Core (8 threads with RAM capable; great at hyperthreading) i7-7700k) sequential tasks GPU 3584 1.6 GHz 11 GB $699 ~11.4 TFLOPs FP32 GPU: More cores, (NVIDIA GDDR5 but each core is GTX 1080 Ti) X much slower and “dumber”; great for parallel tasks Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - 1100 April 26, 2018
Description: