LLeeccttuurree 33 PPaarrttiiccllee AAcccceelleerraattiioonn UUSSPPAASS,, JJaannuuaarryy 22000099 OOuuttlliinnee • Electrostatic accelerators • RRaaddiioo-ffrreeqquueennccyy ((RRFF)) lliinneeaarr aacccceelleerraattoorrss • RF Cavities and their properties • Material is covered in Wangler, Chapter 1 (and also in Wiedemann Chapter 15) HHooww ddoo wwee aacccceelleerraattee ppaarrttiicclleess?? • We can accelerate charged particles: – eeleecctroonss ((ee-)) aandd ppoossitroonss ((ee+)) – protons (p) and antiprotons (p) – IIoonnss ((ee.gg. HH1-,NNee2+, AAuu92+, …)) • These particles are typically “born” at low- eenneerrggyy – e- : emission from thermionic gun at ~100 kV – pp//iioonnss:: ssoouurrcceess aatt ~5500 kkVV • The application usually requires that we accelleratte tthhese parttiiclles tto hhiighher energy, iin order to make use of them EElleeccttrroommaaggnneettiicc FFoorrcceess oonn CChhaarrggeedd PPaarrttiicclleess • Lorentz force equation gives the force in response to electric and magnetic fields: • The equation of motion becomes: • The kinetic energy of a charged particle increases by an amount equal to the work done (Work-Energy Theorem) r r r r r r r ΔW = ∫ F ⋅dl = q∫ E ⋅dl + q∫ (v × B)⋅dl r r r r r rr rr ΔΔWW = q∫∫ EE ⋅ddll + q∫∫ ((v × BB))⋅vddt = q∫∫ EE ⋅ddll EElleeccttrroommaaggnneettiicc FFoorrcceess oonn CChhaarrggeedd PPaarrttiicclleess • We therefore reach the important conclusion that – Magnetic fields cannot be used to change the kinetic eenneerrggyy ooff aa ppaarrttiiccllee • We must rely on electric fields for particle acceleration – Acceleration occurs along the direction of the electric field – EEnneerrggyy ggaaiinn iiss iinnddeeppeennddeenntt ooff tthhee ppaarrttiiccllee vveelloocciittyy • In accelerators: – LLoonnggiittuuddiinnaall eelleeccttrriicc ffiieellddss ((aalloonngg tthhee ddiirreeccttiioonn ooff particle motion) are used for acceleration – Magnetic fields are used to bend particles for gguuiiddaannccee aanndd ffooccuussiinngg AAcccceelleerraattiioonn bbyy SSttaattiicc FFiieellddss:: EEEElllleeeeccccttttrrrroooossssttttaaaattttiiiicccc AAAAcccccccceeeelllleeeerrrraaaattttoooorrrrssss AAcccceelleerraattiioonn bbyy SSttaattiicc EElleeccttrriicc FFiieellddss • We can produce an electric field by establishing a potential difference V between two parallel plate electrodes, 0 separated by a distance L: LL E =V / L z 0 +q •• AA cchhaarrggeedd ppaarrttiiccllee rreelleeaasseedd ffrroomm the + electrode acquires an increase in kinetic energy at the E – electrode of + - L L ΔW = ∫ F dz = q∫ E dz = qV z z 0 V 0 0 0 TThhee SSiimmpplleesstt EElleeccttrroossttaattiicc AAcccceelleerraattoorrss:: EElleeccttrroonn GGuunnss EElleeccttrroossttaattiicc AAcccceelleerraattoorrss • Some small accelerators, such as electron guns for TV picture tubes, use the parallel plate geometry just presented • Electrostatic particle accelerators generally use a slightly modified geometry in which a constant electric field is produced across an accellerattiing gap • Energy gain: Accelerating ccoolluummnn iinn ∑ W = nq V electrostatic n accelerator • LLiimmiitteedd bbyy tthhee ggeenneerraattoorr ∑ V = V generator n CCaassccaaddee GGeenneerraattoorrss,, aakkaa CCoocckkrroofftt--WWaallttoonn AAcccceelleerraattoorrss Cockroft and Waltons 800 kV accelerator, Cavendish Laboratory, Cambridge, 1932 Modern Cockroft- Waltons are still They accelerated protons to 800 kV used as proton injectors for linear and observed the first artificially accelerators produced nuclear reaction: p+Li →2 He This work earned them the Nobel Prize in 1951
Description: