Lecture 10. Factorial experiments (2-way ANOVA etc) Jesper Ryd´en Matematiska institutionen, Uppsala universitet [email protected] Regression and Analysis of Variance • autumn 2014 A factorial experiment Two factors A and B, each run at two levels (“low” and “high”) Two-factor factorial experiment Interaction plot (no interaction) (responses in corners) Another factorial experiment Two factors A and B, each run at two levels (“low” and “high”) Two-factor factorial experiment Interaction plot (interaction) (responses in corners) Data arrays (Battery data) Response: Life (in hours) of battery. Factor A: Material type (1, 2 or 3). Factor B: Temperature (in ◦F), levels 15, 70 or 125. This is a 32 factorial design. Temperature can be controlled in the laboratory. The effects model The effects model for a two-factor factorial design: i = 1,2,...,a y = µ+τ +β +(τβ) +(cid:15) j = 1,2,...,b ijk i j ij ijk k = 1,2,...,n µ Overall mean effect τ Effect of the ith level of the row factor A i β Effect of the jth level of the column factor B j (τβ) Effect of the interaction between τ and β ij i j (cid:15) Random error component ijk Both factors are assumed to be fixed and a n (cid:88) (cid:88) τ = 0, β = 0 i j i=1 j=1 and for interactions a b (cid:88) (cid:88) (τβ) = (τβ) = 0. ij ij i=1 j=1 The means model The means model for a two-factor factorial design: i = 1,2,...,a y = µ +(cid:15) j = 1,2,...,b ijk ij ijk k = 1,2,...,n where the mean of the ijth cell is µ = µ+τ +β +(τβ) . ij i j ij Testing hypotheses Testing equality of row treatment effects: H : τ = τ = ··· = τ = 0 0 1 2 a H : at least one τ (cid:54)= 0 1 i Testing equality of column treatment effects: H : β = β = ··· = β = 0 0 1 2 b H : at least one β (cid:54)= 0 1 j Test of interaction: H : (τβ) = 0, for all i,j 0 ij H : at least one (τβ) (cid:54)= 0 1 ij Estimation of parameters The Least-Squares method applied on the effects model with constraints result in the point estimates µ = y¯ , (cid:98) ••• τ = y¯ −y¯ , (cid:98)i i•• ••• β(cid:98)j = y¯•j•−y¯•••, (cid:26) i = 1,2,...,a ((cid:100)τβ) = y¯ −y¯ −y¯ +y¯ , ij ij• i•• •j• ••• j = 1,2,...,b Fitted value: y(cid:98)ijk = µ(cid:98)+τ(cid:98)i +β(cid:98)j +((cid:100)τβ)ij = y¯ij•. ANOVA table: Fixed-effects case, two factors Source of Sum of Degrees of Variation Squares Freedom Mean Square F 0 A treatments SS a−1 MS = SSA F = MSA A A a−1 0 MSE B treatments SS b−1 MS = SSB F = MSB B B b−1 0 MSE Interaction SS (a−1)(b−1) MS = SSAB F = MSAB AB AB (a−1)(b−1) 0 MSE Error SS ab(n−1) MS = SSE E E ab(n−1) Total SS abn−1 T SS = SS + SS T Treat E (cid:124)(cid:123)(cid:122)(cid:125) (cid:124) (cid:123)(cid:122) (cid:125) (cid:124)(cid:123)(cid:122)(cid:125) N−1 ab−1 N−ab = SS +SS + SS + SS A B AB E (cid:124)(cid:123)(cid:122)(cid:125) (cid:124)(cid:123)(cid:122)(cid:125) (cid:124)(cid:123)(cid:122)(cid:125) (cid:124)(cid:123)(cid:122)(cid:125) a−1 b−1 (a−1)(b−1) N−ab So-called machine formulae for computation of sums of squares, see the textbook. ANOVA table (battery data)
Description: