ebook img

Leccinum molle (Bon) Bon and Leccinum vulpinum Watling PDF

12 Pages·2016·0.61 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Leccinum molle (Bon) Bon and Leccinum vulpinum Watling

molecules Article Leccinum molle (Bon) Bon and Leccinum vulpinum Watling: The First Study of Their Nutritional and Antioxidant Potential FilipaS.Reis1,2,3,4,LillianBarros1,AnabelaMartins1,M.HelenaVasconcelos3,4,5, PatriciaMorales2andIsabelC.F.R.Ferreira1,* 1 MountainResearchCenter(CIMO),SchoolofAgriculture,PolytechnicInstituteofBragança,Apartado1172, Bragança5301-855,Portugal;[email protected](F.S.R.);[email protected](L.B.);[email protected](A.M.) 2 Dpto.NutriciónyBromatologíaII,FacultaddeFarmacia,UniversidadComplutensedeMadrid(UCM), PzaRamónyCajal,s/n,MadridE-28040,Spain;[email protected] 3 i3S-InstitutodeInvestigaçãoeInovaçãoemSaúdedaUniversidadedoPorto,RuaAlfredoAllen,208, Porto4200-135,Portugal;[email protected] 4 CancerDrugResistanceGroup,InstituteofMolecularPathologyandImmunologyoftheUniversityof Porto,IPATIMUP,RuaJúlioAmaraldeCarvalho,45,Porto4200-135,Portugal 5 LaboratoryofMicrobiology,DepartmentofBiologicalSciences,FacultyofPharmacyoftheUniversityof Porto,RuadeJorgeViterboFerreira228,Porto4050-313,Portugal * Correspondence:[email protected];Tel.:+351-273-303-219;Fax:+351-273-325-405 AcademicEditor:DerekJ.McPhee Received:21December2015;Accepted:18February2016;Published:20February2016 Abstract: This work presents the chemical profile of two edible species of mushrooms from the genus Leccinum: Leccinum molle (Bon) Bon and Leccinum vulpinum Watling, both harvested on theoutskirtsofBragança(NortheasternPortugal). Bothspecieswerepreparedandcharacterized regardingtheircontentinnutrients(i.e.,freesugars,fattyacidsandvitamins),non-nutrients(i.e., phenolicandotherorganicacids)andantioxidantactivity. Tothebestofourknowledge,noprevious studies on the chemical characterization and bioactivity of these species have been undertaken. Accordingly,thisstudyintendstoincreasetheavailableinformationconcerningediblemushroom species,aswellastohighlightanotherimportantfactorregardingtheconservationofthemycological resources—theirpotentialassourcesofnutraceutical/pharmaceuticalcompounds. Overall,both speciesrevealedsimilarnutrientprofiles, withlowfatlevels, fructose, mannitolandtrehaloseas theforemostfreesugars,andhighpercentagesofmono-andpolyunsaturatedfattyacids. Theyalso revealed the presence of bioactive compounds, namely phenolic (e.g., gallic acid, protocatechuic acid and p-hydroxybenzoic acid) and organic acids (e.g., citric and fumaric acids) and presented antioxidantproperties. Keywords: chemical profile; nutritional value; nutraceuticals; bioactive compounds; antioxidantpotential 1. Introduction FewstudiesexistontheLeccinummolle(Bon)BonandLeccinumvulpinumWatlingmushroom species. IntheliteratureitispossibletofindadescriptionofthemorphologicalfeaturesofL.molle[1], andsomeecological[2–4]andenzymatic[5,6]studieswithL.vulpinumareavailable. Asfaraswe know,thesearetheonlystudiesperformedtodate,soevenconsideringtheyaretwospeciesofedible mushrooms,theydonotseemtobethemostconsumedbyaficionados. However,theirinterestfrom thepointofviewofobtainingnutraceuticalscannotbeexcluded. Furthermore,apartfromtryingto Molecules2016,21,246;doi:10.3390/molecules21020246 www.mdpi.com/journal/molecules Molecules2016,21,246 2of12 valorizethesenaturalresourcesbyprovidingnewinformationabouttheirpotentialasasourceof bioactivecompoundsandnutraceuticals,thisstudyalsoaimstohelpintheconstructionofwildedible mushroomsdatabases. SinceBragança(Portugal)isoneoftheregionsofEuropewithgreatermycologicalbiodiversity, itisimportanttoundertakeacarefulidentificationandcharacterizationofalargenumberofwild mushroom species. In addition, being also a region where mushroom picking is a tradition, the scientificcommunityplaysanimportantroleintheformationofthegeneralpopulation. Furthermore, publicawarenessoftheneedforacarefulandhealthydiethasincreased.Inthissense,theconsumption ofvegetableproteinsisincreasinglyadvisedandhasbeenincreasingovertheyears.Thisisduetomany reasonsincludingtheprevalenceofanimaldiseases,shortageofanimalproteinworldwide,thestrong demandforhealthyfood,religion,aswellaseconomicreasons[7]. Inthisregard,mushroomshave beenrecommendedasanalternativeproteinsourcetomeat,sincetheyarerichinproteins,essential aminoacids,vitaminsandessentialminerals[7,8]. Additionally,asfurtherdemonstratedinthiswork, manyresearchershaveshownthatmushroomsarealsolowincaloriesandfat[9–13]. Moreover,their primary(e.g.,polysaccharidesandglycoproteins)andsecondary(e.g.,phenoliccompounds)bioactive compounds,makethemasourceofnutraceuticalsandmoleculeshavingmedicinalfunctionssuchas antioxidant,immunomodulating,andantitumouractivity[14,15]. The present study is the first to quantify the nutritional and antioxidant potential of the aforementionedLeccinumspecies,pavingthewayfornewandfuturestudiesrelatedtothebioactivity of these species and wild mushrooms in general. Moreover, we intend to valorize these natural resourcesbyadvocatingspeciesconservation. 2. Results 2.1. NutrientComposition ThenutrientcompositionofthestudiedspeciesispresentedinTable1. Table1.NutrientscompositionofwildsamplesofLeccinummolle(Bon)BonandLeccinumvulpinum Watling(mean˘SD). Nutrients Leccinummolle(Bon)Bon LeccinumvulpinumWatling p-Value Ash(g/100gdw) 5.70˘0.55 13.61˘0.86 <0.01 Proteins(g/100gdw) 13.07˘1.00 10.48˘0.50 0.0156 Fat(g/100gdw) 2.80˘0.16 2.97˘0.13 0.1090 Carbohydrates(g/100gdw) 78.43˘0.86 72.94˘0.51 0.0007 Energy(kcal/100gdw) 391.18˘0.99 360.41˘2.89 <0.001 Fructose(g/100gdw) 3.06˘0.03 4.52˘0.14 <0.0001 Mannitol(g/100gdw) 11.32˘0.30 2.68˘0.01 <0.0001 Trehalose(g/100gdw) 2.71˘0.09 8.31˘0.01 <0.0001 Totalsugars(g/100gdw) 17.09˘0.24 15.51˘0.14 0.0002 C16:0(relativepercentage) 11.23˘0.21 12.25˘0.25 0.0011 C18:0(relativepercentage) 1.79˘0.01 2.77˘00.04 <0.0001 C18:1n9(relativepercentage) 38.61˘0.33 27.06˘0.09 <0.0001 C18:2n6(relativepercentage) 43.49˘0.10 53.60˘0.37 <0.0001 SFA(relativepercentage) 16.94˘0.41 17.09˘0.31 0.4377 MUFA(relativepercentage) 39.29˘0.31 28.59˘0.04 <0.0001 PUFA(relativepercentage) 43.77˘0.10 54.32˘0.27 <0.0001 α-Tocopherol(µg/100gdw) 12.48˘0.70 14.76˘1.13 0.0137 β-Tocopherol(µg/100gdw) 12.88˘0.99 216.18˘0.90 <0.0001 γ-Tocopherol(µg/100gdw) nd 296.67˘0.19 0.0032 Totaltocopherols(µg/100gdw) 25.36˘0.29 527.61˘2.22 0.0008 dw:dryweight;nd:notdetected;mainfattyacids:C16:0(palmiticacid),C18:0(stearicacid),C18:1n9(oleic acid)andC18:2n6(linoleicacid);20morefattyacidswereidentifiedintraceamounts;SFA:saturatedfattyacids; MUFA:monounsaturatedfattyacids;PUFA:polyunsaturatedfattyacids. Molecules2016,21,246 3of12 Regarding fat contents, there were no significant differences between both samples (p-value 0.1090). Moreover,bothspeciesrevealedalowfatcontent(2.80–2.97g/100gdw)comparedtoproteins (10.48–13.07g/100gdw)andparticularlycarbohydrates(72.94–78.43g/100gdw). Fromanutritionalstandpoint,itisalsoimportanttoidentifythesolublesugarspresentinthe samples. Thesolublesugarsidentifiedinthestudiedspecieswerefructose(3.06–4.52g/100gdw), mannitol(2.68–11.32g/100gdw)andtrehalose(2.71–8.31g/100gdw)(Table1). Consideringthefattyacidscomposition,bothspeciesrevealedasimilarprofile,withpalmitic acid (C16:0), stearic (C18:0), oleic (C18:1n9) and linoleic acid (C18:2n6) being the main fatty acids present(Table1). Althoughpalmiticandstearicacidsaresaturatedfattyacids(SFA),thesearepresent inmuchlowerquantitiesinbothspecies,comparedtooleic(amonounsaturatedfattyacid—MUFA) andlinoleic(apolyunsaturatedfattyacid—PUFA)acids. Inadditiontothelowervalues,bothspecies revealedsimilarSFAcontents,withoutsignificantdifferencesbetweenthem(16.94%and17.09%). Apart from the abovementioned nutrients, we also assessed the presence of certain vitamins, namelysomeisoformsofvitaminE(especiallyknownforitsantioxidantactivity). α-andβ-tocopherol werepresentinbothspecies,butonlyL.vulpinumrevealedthepresenceoftheγ-isoform(Table1). Infact,γ-tocopherolwastheprevailingisoforminthisspecies,whichcontributedheavilytothemuch highervalueoftotaltocopherols(527.61µg/100gdw)comparedwithL.molle(25.36µg/100gdw). 2.2. Non-NutrientComposition Thestudyofsomecompoundsotherthannutrients,i.e.,phenolicandotherorganicacids,was performedinbothsamples. TheresultsaresummarizedinTable2. Table2.Non-nutrientcompositionofwildsamplesofLeccinummolle(Bon)BonandLeccinumvulpinum Watling(mean˘SD). Compounds Leccinummolle(Bon)Bon LeccinumvulpinumWatling p-Value Oxalicacid(g/100gdw) 0.29˘0.03 0.11˘0.01 0.0002 Quinicacid(g/100gdw) nd 0.13˘0.01 <0.0001 Citricacid(g/100gdw) 2.62˘0.16 nd <0.0001 Fumaricacid(g/100gdw) 1.04˘0.02 0.25˘0.01 <0.0001 Totalorganicacids(g/100gdw) 3.95˘0.19 0.49˘0.01 <0.0001 Gallicacid(mg/100gdw) nd 0.08˘0.01 <0.0001 Protocatechuicacid(mg/100gdw) nd 0.35˘0.05 <0.0001 p-Hydroxybenzoicacid(mg/100gdw) 0.06˘0.01 0.09˘0.01 0.0002 Totalphenolicacids(mg/100gdw) 0.06˘0.01 0.52˘0.05 <0.0001 Cinnamicacid(mg/100gdw) 0.13˘0.01 0.17˘0.01 <0.0001 nd:notdetected;dw:dryweight. Analysingtheresultsobtained,oxalic,quinic,citricandfumaricacidswerethemainorganicacids identified. Oxalicandfumaricacidwerefoundinbothmushrooms(0.11–1.04g/100gdw). However, theprofilesdifferduetothepresenceofquinicacidonlyinL.vulpinum(0.13g/100gdw)andcitric acidinL.molle(2.62g/100gdw). Regardingphenolicacids,theprofilesalsodiffersubstantiallyamongspecies(Table1;Figure1). L.mollehasonlypresentinitschemicalconstitutionp-hydroxybenzoicacid(0.06mg/100gdw)and therelatedcompoundcinnamicacid(0.13mg/100gdw). Ontheotherhand,theL.vulpinumprofile, besidesp-hydroxybenzoicacid(0.09mg/100gdw)andtherelatedcompoundcinnamicacid(0.17 mg/100gdw),alsoincludesgallicacid(0.08mg/100gdw)andprotocatechuicacid(0.35mg/100g dw). Molecules2016,21,246 4of12 Molecules 2016, 21, 246  4 of 12  FFiigguurree 11. .PPhheennoolilcic aaccididss pprrooffiilele ooff LL. .mmoolllele (A(A) )aanndd LL. .vvuulplpininuumm (B(B) )rreeccoorrddeedd aatt 228800 nnmm. .11: :ggaalllilci caacicdid; ;22: : pprroottooccaatteecchhuuiicc aacciidd;; 33:: pp‐-hhyyddrrooxxyybbeennzzooiicc aacciidd aanndd 44:: cciinnnnaammiicc aacciidd. . 2.3. Antioxidant Potential  2.3. AntioxidantPotential The antioxidant properties of the samples were evaluated through different assays (Table 3). In  The antioxidant properties of the samples were evaluated through different assays (Table 3). order to estimate the reducing power of the samples, two different methodologies were performed:  Inordertoestimatethereducingpowerofthesamples,twodifferentmethodologieswereperformed: the  Folin‐Ciocalteu  assay  and  the  ferricyanide/Prussian  blue  assay.  To  evaluate  the  radical  theFolin-Ciocalteuassayandtheferricyanide/Prussianblueassay. Toevaluatetheradicalscavenging scavenging capacity, the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) radical was used, and to assess the  capacity, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical was used, and to assess the lipid lpipeirdo xpiedraotxioidnaitniohnib iintihoinb,ittihoenβ, t-hcea rβo‐tceanreo/telinneo/lleinatoeleaantde aTnBdA TRBSAaRssSa yassswayesr ewpeerref opremrfeodrm. ed.  TTaabbllee 33.. AAnnttiiooxxiiddaanntt pprrooppeerrttiieess oofft htheem metehtahnaonloiclice xetxratrcatsctos fowf iwldilsda msapmlepsloesf Loefc cLiencucminummo lmleo(lBleo n(B)oBno)n  Baonnd aLnedcc Lineuccminvuumlp vinuulpminWumat Wlinagtl(imnge a(mn˘eanSD ± )S.D).  Leccinum molle  Leccinum vulpinum  Activity  Assay  p‐Value  (Bon) LBeocnc inummolle WaLtleinccgi num Activity Assay p-Value Folin‐Ciocalteu assay   (Bon)Bon vulpinumWatling 17.76 ± 0.26  30.14 ± 0.70  <0.001  Reducing  (mg GAE/g extractF) olin-Ciocalteuassay Power  Ferricyanide/Pruss(imang bGluAeE a/ssgayex  tract) 2.13 ± 107.0.17 6˘0.26 0.543 0± .01.401˘  0.70 <0.<000.10 01 ReducingPowe(rEC50; mg/mL)  Ferricyanide/Prussian Radical  2.13˘0.01 0.54˘0.01 <0.001 DPPH radical‐scavbelnugeinags saacytiv(EitCy as;smayg /mL) scavenging  50 10.68 ± 0.55  1.19 ± 0.02  <0.001  (EC50; mg/mL)  activity  DPPHradical-scavenging Radicalscavengβin‐cgaraoctteivniet/ylinoleataec atisvsaityy  assay 10.68˘0.55 1.19˘0.02 <0.001 Lipid  2.23 ± 0.05  0.11 ± 0.01  <0.001  peroxidation  (EC50; mg/mL)  (EC50;mg/mL) TBARS assay   inhibition  β-carotene/linoleateass1a.y48 ± 0.02  0.03 ± 0.00  <0.001  (EC50; mg/mL)  2.23˘0.05 0.11˘0.01 <0.001 (EC ;mg/mL) LipRidegpaerrdoixnidga tthioen Fionlhinib‐Citiioocnalteu ass5a0y, higher values mean higher reducing power; regarding the other  TBARSassay assays, the results are presented as EC50 values, which m1e.4a8n˘ th0a.0t 2higher val0u.0e3s ˘co0r.r0e0spond to lo<w0e.0r0 1 (EC ;mg/mL) 50 reducing power or antioxidant potential. EC50 is the extract concentration corresponding to 50% of  RegardingtheFolin-Ciocalteuassay,highervaluesmeanhigherreducingpower;regardingtheotherassays, antthioexriedsaunltts aacretipvrietyse onrte 0d.5a soEf Cab50svoarbluaens,cwe hfoicrh thmee aFnertrhiactyhaingihdeer/vParluuesssicaonr rbelsupeo nadsstaoylo. wTreorlroexd uEcCin5g0 vpaolwueers:  41 oμrga/nmtiLox (irdeadnutcpiontge nptioawl.eErC),5 402is μtghe/mexLt r(aDctPcPoHnc esncatrvaetinognincogr raecstpivonitdyi)n, g18to μ5g0/%moLf (aβn‐tcioaxroidtaenntea bclteivaictyhionrg  inh0i.b5iotifoanb)s oarnbdan 2c3e μfogr/tmheLF (eTrrBicAyRanSi dine/hPibruitsisoinan). bGluAeEa:s sgaayl.liTcr oalcoixdE eCq5u0ivvaallueenst:s4. 1µg/mL(reducingpower), 42µg/mL(DPPHscavengingactivity),18µg/mL(β-carotenebleachinginhibition)and23µg/mL(TBARS inhibition).GAE:gallicacidequivalents. Generally, L. vulpinum revealed the highest antioxidant potential. This species displayed the  highest reducing power, exhibiting the highest levels of reducing compounds evaluated by the  Generally, L. vulpinum revealed the highest antioxidant potential. This species displayed the Folin‐Ciocalteu assay (30.14 mg GAE/g extract). Assessed through the ferricyanide/Prussian blue  highest reducing power, exhibiting the highest levels of reducing compounds evaluated by the assay, the highest reducing power also belonged to L. vulpinum (lowest EC50 value—0.54 mg/mL).  Folin-Ciocalteu assay (30.14 mg GAE/g extract). Assessed through the ferricyanide/Prussian blue This species also revealed the highest free radical scavenging activity (1.19 mg/mL) and lipid  assay,thehighestreducingpoweralsobelongedtoL.vulpinum(lowestEC value—0.54mg/mL). 50 peroxidation inhibition, assessed through the β‐carotene bleaching inhibition (0.11 mg/mL) and by  Thisspeciesalsorevealedthehighestfreeradicalscavengingactivity(1.19mg/mL)andlipid the TBARS assay (0.03 mg/mL).  peroxidationinhibition,assessedthroughtheβ-carotenebleachinginhibition(0.11mg/mL)andby   theTBARSassay(0.03mg/mL). Molecules2016,21,246 5of12 3. Discussion 3.1. NutrientComposition As aforementioned, the nutritional value of the studied species was evaluated in order to recognize and value these species as healthy food. Table 1 shows that both species have low fat content,beingricherinproteinsandmostlyincarbohydrates. Actually,thelatteraredescribedasthe representativecompoundsofmushrooms,constitutingnearbyone-halfofmushroomdrymatter[11]. However,thisgroupincludesseveralcompounds,suchassugars(monosaccharides,theirderivatives andoligosaccharides)andthereserveandstructuralpolysaccharides(glycans). So,giventhatitwas intend to evaluate the nutritional value of the mushrooms, the soluble sugars presented by both specieswasassessed. Thesolublesugarsidentifiedinthestudiedspecieswerefructose,mannitoland trehalose(Table1). Mannitolandtrehaloseareverycommoninmushrooms[11]. Regardingfructose, therearesomestudiesrelatingthepresenceofthissugartothetrophismofthespecies. According to some authors [9], this sugar is mainly present in mycorrhizal species, which could justify its identification in these Leccinum species. However, this compound has already been identified in saprotrophicspecies[13]. Therefore,itspresenceseemsthentoberelatedtodifferentfactorsother thanthetrophism. Overall,bothspeciesrevealedatypicalnutritionalprofiledescribedformushrooms[10,11],so thattheycanbereferredtoasvaluablenutritionalhealthyfoods,sincetheyarerichinproteinand poorincaloriesandfat. Moreover, although the fat levels are low, these include primarily unsaturated fatty acids. As presented in Table 1, although the saturated palmitic and stearic acids represented part of the mainfattyacidsfoundinthetargetspecies,oleic(MUFA)andlinoleic(PUFA)acidswereidentifiedin muchhigherquantities. Thesefindingsareimportantbothforthechemicalcharacterizationofthe speciesaswellastopromotetheirhealthbenefits. Itiswellknownthatmanybeneficialeffectshave beenattributedtotheconsumptionofunsaturatedfattyacids,particularlyinrelationtopreventionof cardiovasculardiseases[16,17]. Asdescribedintheprevioussection(Results), vitaminEwasalsofoundinthepresentstudy. Giventheimportanceofthisvitamininpreventinglipidperoxidation[18],itsconsumptionthrough ourdailydietisoftheutmostimportance. Regardingtheobtainedresults,α-andβ-isoformswere presentinbothspecies,whileγ-tocopherolwasonlypresentinL.vulpinum(Table1). Thisdifference canbeexplainedbythespecificityofproductionofdifferentmetabolitescharacteristicofeachspecies. As described in literature [19], some compounds may be produced by all varieties of a particular speciesorgenusduringtheirnormalmetabolism,whileothersmaybespecificofanorganism. Accordingtothefindingsofthiswork,andpresentedinTable1,bothL.molleandL.vulpinumseem tobevaluablehealthyfoods,beingasourceofmono-andoligosaccharides,mono-andpolyunsaturated fattyacidsandvitaminE. 3.2. Non-NutrientComposition Thestudyofnutrientcompositionisveryimportanttovalorisethe studiedLeccinumspecies, sinceitprovidesinformationabouttheimportance/benefitsoftheirconsumption. However,itisalso importanttostudyothermoleculesthatmaybebiologicallyactive. Forthisreason,ananalysisof phenolicandotherorganicacidswasundertakeninbothsamples(Table2). As mentioned above, both profiles were quite different between species. Therefore, some particular compounds may be mostly produced by a specific species, or their production may be relatedtothesurroundingenvironment(e.g., possiblesubjectiontostressconditions). Infact, the activationofsecondarymetabolismandincreasedproductionofphenoliccompoundsinresponseto variousstressconditionsiswelldocumented[20]. Aspreviousreferred,althoughorganicacidsareconsiderednon-nutrients,theyareconsidered importantmoleculesgiventheirbiologicalactivities. Forexample,citricacidisknownworldwidefor Molecules2016,21,246 6of12 itsantioxidantactivityandasanaturalconservative. ThismakesL.molleasanalternativesourceof suchinterestingmolecules. Quinicacidisalsoknownforitsantioxidantpotential[21],whichmaybe anindicatorofsuchactivitybyL.vulpinumspecies. Theotherorganicacids,oxalicandfumaricacids arealsorecognisedbioactivecompoundswithpharmacologicalproperties[22,23]. AspresentedinTable2andFigure1, thechemicalprofileofL.vulpinumisricherinphenolic acids. Thepresenceofthesecompoundsisimportantbecausetheyarepointedoutasbiologically activemolecules. Theyareoftenassociatedwithhyperglycaemiaandhypertensionprevention[24], beneficialcardiovasculareffects[25],ortheantioxidant,antimicrobialandantitumorpotentialofthe species[26,27]. Althoughthereisaplethoraofphenoliccompoundsoccurringinnature,inourstudy (asinmanystudiesaboutmushrooms)onlytheprecursorcinnamicacidandtwogroupsofphenolics wereidentified: somehydroxybenzoicacids(gallic,protocatechuicandp-hydroxybenzoicacids)and hydroxycinnamicacids(p-coumaricacid). Itshouldbenotedthatalthoughflavonoidsareoccasionally reportedascompoundspresentinmushrooms,thesematricesdonothavethebiosyntheticpathway toproducethem. Thus,itisbelievedthattheflavonoidsexceptionallypresentinsomemushroom species,couldbeduetothesymbioticrelationshipsestablishedwithplants[28]. Wealsoshouldbear inmindthatthechemicalcompositionofmushroomsdependsontheenvironmentinwhichthey grow. Thisisappliedevenmoretosecondarymetabolites,suchasphenoliccompounds,whichare usuallyproducedinresponsetostressconditions[29]. Nonetheless,thesecompoundsarepresent insmallamountsinoursample,andthebioactivitypresentinthisstudycouldbecorrelatedwith thesecompounds,butalsocouldberelatedtoothercompoundsnotidentifiedinthisstudy. Thus,the obtainedresultsindicatethatLeccinumspeciesareagoodsourceofnutrientsandnutraceuticals,and theirconsumptionisalsoawaytoobtainphenolicandotherorganicacids. 3.3. AntioxidantPotential The antioxidant properties of the samples were evaluated through different assays (Table 3). As mentioned, L. vulpinum revealed the highest antioxidant potential in all the performed assays. Asexpected,thebioactivepropertiesoffoodsaredirectlyrelatedtothebioactivemoleculespresentin theirchemicalconstitution. Therefore,theantioxidantpropertiesofthestudiedfruitingbodiesmust berelatedtosomeofthecompoundsstudiedinthisworktopresentsuchantioxidantactivity. L.molle showedhigherlevelsoforganicacids(3.95g/100gdw),whichmaybethebasisofitsantioxidant activity. Ontheotherhand,L.vulpinumexhibitedgreatercontentsofphenolicacidsandmuchhigher values of tocopherols (527.61 µg/100 g dw). Thus, vitamin E and phenolic acids may be largely responsibleforthehigherantioxidantactivityofthespeciesL.vulpinum. However,theseresultsdo notinvalidatethatothermolecules(e.g.,vitaminC,carotenoids,lycopene)mayalsoberesponsiblefor theseproperties. 4. ExperimentalSection 4.1. StandardsandReagents Acetonitrile 99.9%, n-hexane 95% and ethyl acetate 99.8% were of HPLC grade and obtained from Fisher Scientific (Lisbon, Portugal). The fatty acids methyl ester (FAME) reference standard mixture 37 (standard 47885-U) was purchased from Sigma (St. Louis, MO, USA) as were also other individual fatty acid isomers, standards of sugars, tocopherols, and organic acids, Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) and phenolic standards. Racemic tocol (50mg/mL),waspurchasedfromMatreya(PleasantGap,PA,USA).2,2-Diphenyl-1-picrylhydrazyl (DPPH)wasobtainedfromAlfaAesar(WardHill,MA,USA).Allotherreagentswereacquiredfrom specializedsellers. WaterwastreatedinaMilli-Qwaterpurificationsystem(TGIPureWaterSystems, Greenville,SC,USA). Molecules2016,21,246 7of12 4.2. MushroomSpeciesandSamplePreparation Leccinummolle(Bon)BonandLeccinumvulpinumWatlingwildsampleswerecollectedinBragança inthenortheasternregionofPortugalintheautumnof2012. Authenticationswereundertakenat thePolytechnicInstituteofBragançaandvoucherspecimensweredepositedattheherbariumofthe SchoolofAgricultureofthePolytechnicInstituteofBragança,Portugal. Afterlyophilisation(FreeZone 4.5model7750031,Labconco,KansasCity,MO,USA),allthesamplesweremilledandmixedtoobtain afinedriedandhomogeneouspowder(«20mesh),andthenstoredinadesiccator,untilthetimeof theanalysis. 4.3. NutrientComposition 4.3.1. NutritionalValue Thenutritionalvalueofthestudiedsampleswascalculatedbasedonprotein,fat,carbohydrate andashcontentsobtainedfollowingstandardprocedures[30]. Thecrudeproteincontent(Nˆ4.38) of the samples was estimated as nitrogen content by the macro-Kjeldahl method; the crude fat by extracting a known weight of milled samples with petroleum ether, by means of a Soxhlet apparatus;andtheashcontentassessedafterincinerationat600˘15˝C.Totalcarbohydrateswere calculatedbydifference. EnergywascalculatedaccordingtoRegulation(EC)No. 1169/2011ofthe EuropeanParliamentandoftheCouncil,of25October2011,ontheProvisionofFoodInformationto Consumers[31],followingtheequation: Energy(kcal/100gdw)=4ˆ(gprotein+gcarbohydrate)+ 9ˆ(gfat). 4.3.2. SolubleSugars Solublesugarswereassessedthroughchromatographictechniques—highperformanceliquid chromatograph(HPLC)—followingaprocedurealreadydescribed[32].TheHPLCapparatusconsisted ofapump(Smartlinesystem1000,Knauer,Berlin,Germany),adegassersystem(Smartlinemanager 5000) and an auto-sampler (AS-2057 Jasco, Easton, MD, USA), coupled to a refraction index (RI) detector(KnauerSmartline2300). ThechromatographicseparationwasachievedwithaEurospher 100-5NH column(5µm,4.6ˆ250mm,Knauer)operatingat30˝C(7971RGraceoven). Themobile 2 phasewasacetonitrile/deionizedwater,70:30(v/v)ataflowrateof1mL/min. Theidentificationofthe sugarswasundertakenbycomparingtheirpeakrelativeretentiontimeswithcommercialstandards. Data were analysed through the Clarity 2.4 Software (DataApex, Podohradska, Czech Republic). Finally,thequantificationwasbasedontheRIsignalresponseofeachstandard,relyingontheinternal standard(IS,raffinose)methodandusingcalibrationcurvesobtainedfromthecommercialstandards ofeachcompound. Theresultswereexpressedingper100gofdryweight. 4.3.3. FattyAcids Beforetheanalysisoffattyacids,atrans-esterificationprocedurewasperformed,followinga procedurepreviouslyreported[32]. Thedetectionwasalsomadebychromatographictechniques, in this specific case, by gas chromatography (GC). The GC equipment was composed by a gas chromatograph (DANI 1000, Contone, Switzerland), equipped with a split/splitless injector and aflameionizationdetector(FID).SeparationwasachievedusingaMacherey–Nagel(Düren,Germany) column(50%cyanopropyl-methyl-50%phenylmethylpolysiloxane,30mˆ0.32mmi.d. ˆ0.25µm df). Theoventemperatureprogramwasasfollows: theinitialtemperatureofthecolumnwas50˝C, held for 2 min, then a 30 ˝C/min ramp to 125 ˝C, 5 ˝C/min ramp to 160 ºC, 20 ºC/ min ramp to 180˝C,3˝C/minrampto200˝C,20˝C/minrampto220˝Candheldfor15min. Thecarriergas (hydrogen)flow-ratewas4.0mL/min(0.61bar),measuredat50˝C.Splitinjection(1:40)wascarried outat250˝C.Theidentificationwascarriedoutbycomparingtherelativeretentiontimesofthefatty acidmethylesters(FAME)ofthesampleswithcommercialstandards. Thequantificationwasmade Molecules2016,21,246 8of12 usingtheClarity4.0.1.7Software(DataApex),beingtheresultsexpressedasrelativepercentagesof eachfattyacid. 4.3.4. Tocopherols VitaminEisoformswerealsoseparatedbyHPLC(abovementionedanddescribed),accordingto aprocedurepreviouslydescribedbyotherauthors[33]. Theanalysiswasperformedbycouplingwith afluorescencedetector(FP-2020;Jasco,Easton,MD,USA),whichwasprogrammedforexcitationat 290nmandemissionat330nm. ThechromatographicseparationwasachievedwithaPolyamideII (5µm,250ˆ4.6mm)normal-phasecolumnfromYMCWaters(YMCAmerica,Inc.,Allentown,PA, USA)operatingat30˝C.Themobilephaseusedwasamixtureofn-hexaneandethylacetate(70:30, v/v) at a flow rate of 1 mL/min. The peaks detected were compared with commercial standards, beingthequantificationbasedonthefluorescencesignal,usingtheinternalstandard(tocol)method. Theresultswereexpressedinµgper100gofdryweight. 4.4. Non-NutrientComposition 4.4.1. OrganicAcids OrganicacidsweredetectedbyUltraFastLiquidChromatography(UFLC).Detectionwascarried outcouplingthechromatograph(Shimadzu20Aseries,ShimadzuCorporation,Kyoto,Japan)toa photodiodearraydetector(PDA),using215nmand245nmaspreferredwavelengths. Separation was achieved on a SphereClone (Phenomenex, Torrance, CA, USA) reverse phase C18 column (5µm,250mmˆ4.6mmi.d.) thermostatted at 35 ˝C. The elution was performed with sulphuric acid(3.6mM)usingaflowrateof0.8mL/min. Theorganicacidsfoundwerequantifiedcomparing theareaoftheirpeaksrecordedat215nmwithcalibrationcurvesobtainedfromcommercialstandards ofeachcompound[34]. Theresultswereexpressedingper100gofdryweight. 4.4.2. PhenolicAcids Phenolic acids analysis was performed using the Shimadzu 20A series ultra-fast liquid chromatograph(UFLC,ShimadzuCorporation, equipmentdescribedabove)[35]. Separationwas achievedusingaWatersSpherisorbS3ODS-2C (3µm,4.6mmˆ150mm)columnthermostatted 18 at 35 ˝C. The solvents used were: (A) 0.1% formic acid in water; (B) acetonitrile. The elution gradient established was 10% A to 15% B over 5 min, 15%–25% A in B over 5 min, 25%–35% A in B over 10 min, isocratic 50% B for 10 min, and re-equilibration of the column, using a flow rate of 0.5 mL/min. Double online detection was carried out in the PDA using 280 nm as preferred wavelength and in a mass spectrometer (MS) connected to HPLC system via the DAD cell outlet. The quantification of the phenolic compounds identified was made by comparison of the area of their peaks recorded at 280 nm with calibration curves obtained from the commercial phenolic standards: Gallic acid (y=224,587x´129,097; R2 = 0.9997; LOD 0.19 µg/mL; LOQ 0.63 µg/mL); protocatechuic acid (y=116,749x´38733; R2 = 1; LOD 0.29 µg/mL; LOQ 0.97 µg/mL); p-hydroxybenzoic acid (y=164,204x+12,917; R2 = 0.9999; LOD 0.11 µg/mL; LOQ 0.36 µg/mL); cinnamicacid(y=863,668x´884,517;R2=0.9998;LOD0.42µg/mL;LOQ1.41µg/mL).Theresults wereexpressedinmgper100gofdryweight. 4.5. AntioxidantProperties 4.5.1. ExtractionProcedure The lyophilized samples (1 g) were extracted by stirring with 40 mL of methanol at room temperature for 1 h and subsequently filtered through Whatman No. 4 paper. The residue was then extracted with an additional portion of methanol (20 mL) for 1 h. The combined methanolic Molecules2016,21,246 9of12 extractswereevaporatedunderreducedpressureat40˝C(R-210rotaryevaporator,Büchi,Flawil, Switzerland)andre-dissolvedinmethanol(20mg/mL)andstoredat4˝Cforfurtheruse. 4.5.2. AntioxidantActivityEvaluation From the stock solution, successive dilutions were made and submitted to the invitro assays alreadydescribed[35]. Thesampleconcentrations(mg/mL)providing50%ofantioxidantactivityor 0.5ofabsorbance(EC )werecalculatedfromthegraphsofantioxidantactivitypercentages(DPPH, 50 β-carotene/linoleateandTBARSassays)orabsorbanceat690nm(ferricyanide/Prussianblueassay) againstsampleconcentrations. Troloxwasusedasapositivecontrol. ‚ Reducingpower ThereducingpowerofthesampleswasmeasuredthroughtheFolin-Ciocalteuassayandthe Ferricyanide/Prussianblueassays. TheFolin-Ciocalteuassayallowstoquantifythetotalphenolicsandotherreducingspeciespresent inthesamples,relyingontheirelectrontransfercapability. Theabsorbancewasmeasuredat765nm (Analytikijena200-2004spectrophotometer,Jena,Germany)andgallicacidwasusedtoobtainthe standardcurve. Theresultswereexpressedasmgofgallicacidequivalents(GAE)pergofextract. Regarding the Ferricyanide/Prussian blue assay, the methodology of which is based on the capacitytoconvertFe3+ intoFe2+,theabsorbancewasmeasuredat690nminaELX800Microplate Reader(Bio-TekInstruments,Inc;Winooski,VT,USA). ‚ Radicalscavengingactivity Intheperformedassay,thepurplechromogen2,2-diphenyl-1-picrylhydrazyl(DPPH)radicalis reducedbyantioxidantcompoundstothecorrespondingpaleyellowhydrazine. Thismethodology wasaccomplishedusingthemicroplatereadermentionedabove,andtheabsorptionmeasuredat515 nm. Theradicalscavengingactivity(RSA)wascalculatedasapercentageofDPPHdiscolorationusing theequation: %RSA=[(ADPPH´AS)/ADPPH]ˆ100,whereASistheabsorbanceofthesolution containingthesample,andADPPH,theabsorbanceoftheDPPHsolution. ‚ Lipidperoxidationinhibition Thelipidperoxidationinhibitionwasevaluatedthroughtheinhibitionofβ-carotenebleaching (orβ-carotene/linoleateassay)andtheTBARSassay. Intheβ-carotene/linoleateassay,thepresenceofantioxidantsinthesamplesandtheircapacityto neutralizethelinoleatefreeradicals,avoidsβ-carotenebleaching,whichcanbeevaluatedmeasuring the absorbance at 470 nm. Therefore, β-carotene bleaching inhibition was calculated using the followingformula: pAbsorbanceafter2hofassay{initialabsorbanceqˆ100. Thethiobarbituricacidreactivesubstances(TBARS)assayisbasedonthedecreasingofTBARS caused by the lipid peroxidation inhibition in porcine (Sus scrofa) brain homogenates due to the presence of antioxidants. This decrease can be measured spectrophotometrically at 532 nm. Theinhibitionratio(%)wascalculatedusingthefollowingformula: Inhibitionratiop%q “ rpA´Bq{Asˆ100%, whereAandBweretheabsorbanceofthecontrolandsamplesolution,respectively. 4.6. StatisticalAnalysis Foreachspecies,threerandomlychosensampleswereusedandallassayswerecarriedoutin triplicate. Resultswereexpressedasmeanvaluesandstandarddeviation(SD).Theresultsofeach Molecules2016,21,246 10of12 parameterwerecomparedbymeansofaStudent’sttesttodeterminethesignificantdifferenceamong samples,withα=0.05. ThisanalysiswascarriedoutusingJMPStatisticalDiscoveryV.10program (IBMSPSSsoftware,Armonk,NY,USA). 5. Conclusions This work is the first to report the nutritional, chemical and bioactive properties of Leccinum molle(Bon)BonandLeccinumvulpinumWatling. Giventhechemicalcompositionofbothspecies,we concludethattheyareagoodfoodoptionforinclusionintoday’sdiet, beingasourceofessential nutrients,aswellasnutraceuticalsandotherbiologicallyactivecompounds. Theyrevealedagood nutritionalvalue(lowinfat)andprovedtoberichinMUFAandPUFA,solublesugars(otherthan sucroseorglucose)andvitaminE.Additionally,theyalsoexhibitedantioxidantproperties,which corroboratesthestatementofthesemushroomsashealthfoods. Acknowledgments: IPATIMUP integrates the i3S Research Unit, which is partially supported by FCT, the Portuguese Foundation for Science and Technology. The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for the grant of F.S. Reis (SFRH/BD/111753/2015) and L. Barros (SFRH/BPD/107855/2015), and COMPETE/QREN/EU for the financial support to CIMO (strategic project PEst-OE/AGR/UI0690/2014). AuthorContributions:F.S.Reis,I.C.F.R.Ferreira,P.MoralesandM.H.Vasconcelosconceivedthestudy.F.S.Reis, P.MoralesandI.C.F.R.Ferreiradesignedtheexperiments. F.S.ReisandA.Martinsperformedthetaxonomic identificationofthespecies, andtheF.S.Reiscarriedouttheassays. F.S.ReisandL.Barrosperformeddata organizationandanalysisoftheresults.F.S.Reis,L.BarrosandI.C.F.R.Ferreirawrotethemanuscript.A.Martins, P.MoralesandM.H.Vasconcelosrevisedthemanuscript. ConflictsofInterest:Theauthorsdeclarenoconflictofinterest. References 1. Kibby,G.Auser-friendlykeytothegenusLeccinuminGreatBritain.FieldMycol.2000,1,20–29.[CrossRef] 2. Iwan´ski, M.; Rudawska, M. Ectomycorrhizal colonization of naturally regenerating Pinus sylvestris L. seedlingsgrowingindifferentmicro-habitatsinborealforest. Mycorrhiza2007, 17, 461–467. [CrossRef] [PubMed] 3. Saxén,R.;Ilus,E.Transferandbehaviourof137CsintwoFinnishlakesandtheircatchments. Sci. Total Environ.2008,394,349–360.[CrossRef][PubMed] 4. Vaaramaa, K.; Solatie, D.; Aro, L. Distribution of 210Pb and 210Po concentrations in wild berries and mushroomsinborealforestecosystems.Sci.TotalEnviron.2009,408,84–91.[CrossRef][PubMed] 5. Chen,D.M.;Bastias,B.A.;Taylor,A.F.S.;Cairney,J.W.G.Identificationoflaccase-likegenesinectomycorrhizal basidiomycetes and transcriptional regulation by nitrogen in Piloderma byssinum. New Phytol. 2003, 157,547–554.[CrossRef] 6. Chen,D.M.;Taylor,A.F.S.;Burke,R.M.;Cairney,J.W.G.Identificationofgenesforligninperoxidasesand manganeseperoxidasesinectomycorrhizalfungi.NewPhytol.2001,152,151–158.[CrossRef] 7. Asgar,M.A.;Fazilah,A.;Huda,N.;Bhat,R.;Karim,A.A.Nonmeatproteinalternativesasmeatextenders andmeatanalogs.Compr.Rev.FoodSci.FoodSaf.2010,9,513–529.[CrossRef] 8. Guillamón,E.;García-Lafuente,A.;Lozano,M.;D’Arrigo,M.;Rostagno,M.A.;Villares,A.;Martínez,J.A. Ediblemushrooms:Roleinthepreventionofcardiovasculardiseases.Fitoterapia2010,81,715–723.[CrossRef] [PubMed] 9. Grangeia,C.;Heleno,S.A.;Barros,L.;Martins,A.;Ferreira,I.C.F.R.Effectsoftrophismonnutritionaland nutraceuticalpotentialofwildediblemushrooms.FoodRes.Int.2011,44,1029–1035.[CrossRef] 10. Kalacˇ,P.ChemicalcompositionandnutritionalvalueofEuropeanspeciesofwildgrowingmushrooms:A review.FoodChem.2009,113,9–16.[CrossRef] 11. Kalacˇ,P.Areviewofchemicalcompositionandnutritionalvalueofwild-growingandcultivatedmushrooms. J.Sci.FoodAgric.2013,93,209–218.[CrossRef][PubMed] 12. Pereira,E.;Barros,L.;Martins,A.;Ferreira,I.C.F.R.TowardschemicalandnutritionalinventoryofPortuguese wildediblemushroomsindifferenthabitats.FoodChem.2012,130,394–403.[CrossRef]

Description:
mushrooms, they do not seem to be the most consumed by aficionados. Nutrients composition of wild samples of Leccinum molle (Bon) Bon and
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.