ebook img

Leavitt Path Algebras PDF

296 Pages·2017·5.838 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Leavitt Path Algebras

Lecture Notes in Mathematics 2191 Gene Abrams Pere Ara Mercedes Siles Molina Leavitt Path Algebras Lecture Notes in Mathematics 2191 Editors-in-Chief: Jean-MichelMorel,Cachan BernardTeissier,Paris AdvisoryBoard: MichelBrion,Grenoble CamilloDeLellis,Zurich AlessioFigalli,Zurich DavarKhoshnevisan,SaltLakeCity IoannisKontoyiannis,Athens GáborLugosi,Barcelona MarkPodolskij,Aarhus SylviaSerfaty,NewYork AnnaWienhard,Heidelberg Moreinformationaboutthisseriesathttp://www.springer.com/series/304 Gene Abrams (cid:129) Pere Ara (cid:129) Mercedes Siles Molina Leavitt Path Algebras 123 GeneAbrams PereAra DepartmentofMathematics DepartamentdeMatemàtiques UniversityofColorado UniversitatAutònomadeBarcelona ColoradoSprings,USA Barcelona,Spain MercedesSilesMolina DepartamentodeÁlgebra,Geometríay Topología UniversidaddeMálaga Málaga,Spain ISSN0075-8434 ISSN1617-9692 (electronic) LectureNotesinMathematics ISBN978-1-4471-7343-4 ISBN978-1-4471-7344-1 (eBook) DOI10.1007/978-1-4471-7344-1 LibraryofCongressControlNumber:2017946554 Mathematics Subject Classification (2010): 16Sxx, 16D25, 16D40, 16D50, 16E20, 16E40, 16E50, 16N60,16P20,16P40,46L05 ©Springer-VerlagLondonLtd.2017 Theauthor(s)has/haveassertedtheirright(s)tobeidentifiedastheauthor(s)ofthisworkinaccordance withtheCopyright,DesignsandPatentsAct1988. Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringer-VerlagLondonLtd. Theregisteredcompanyaddressis:TheCampus,4CrinanStreet,London,N19XW,UnitedKingdom AJuan Luis.Graciaspor tugenerosidady porhacer tuyosmiséxitos. A Fina.Gràciesper la tevagenerositati perfer teusels meus èxits. To Mickey. Unboundedthanksforall youdo. Preface The great challenge in writing a book about a topic of ongoing mathematical researchinterestliesin determiningwhoandwhat.Whoarethereadersforwhom thebookisintended?Whatpiecesoftheresearchshouldbeincluded? The topic of Leavitt path algebras presents both of these challenges, in the extreme.Indeed,muchofthebeautyinherentinthistopicstemsfromthefactthat itmaybeapproachedfrommanydifferentdirections,andonmanydifferentlevels. The topic encompasses classical ring theory at its finest. While at first glance theseLeavittpathalgebrasmayseemsomewhatexotic,infactmanystandard,well- understoodalgebrasariseinthiscontext:matrixringsandLaurentpolynomialrings, to namejusttwo. Manyofthe fundamental,classical ring-theoreticconceptshave beenandcontinuetobeexploredhere,includingtheidealstructure,Z-grading,and structureoffinitelygeneratedprojectivemodules,tonamejustafew. Thetopiccontinuesalongtraditionofassociatinganalgebrawithanappropriate combinatorial structure (here, a directed graph), the subsequent goal being to establish relationships between the algebra and the associated structures. In this particular setting, the topic allows for (and is enhanced by) visual, pictorial representation via directed graphs. Many readers are no doubt familiar with the by-nowclassical way of associating an algebra overa field with a directed graph, the standard path algebra. The construction of the Leavitt path algebra provides another such connection.The path algebra and Leavitt path algebra constructions areindeedrelated,viaalgebrasofquotients.However,onemayunderstandLeavitt pathalgebraswithoutanypriorknowledgeofthepathalgebraconstruction. Thetopichassignificant,deepconnectionswithotherbranchesofmathematics. For instance, many of the initial results in Leavitt path algebras were guided and motivatedbyresultspreviouslyknownabouttheiranalyticcousins,thegraphC(cid:2)- algebras.ThestudyofLeavittpathalgebrasquicklymaturedtoadolescence(when it became clear that the algebraic results are not implied by the C(cid:2) results), and almostimmediatelythereaftertoadulthood(wheninfactsomeC(cid:2)results,including somenewC(cid:2) results,wereshowntofollowfromthealgebraicresults).A number vii viii Preface oflong-standingquestionsinalgebrahaverecentlybeenresolvedusingLeavittpath algebrasasatool,thusfurtherestablishingthematurityofthesubject. The topic continues a deep tradition evident in many branchesof mathematics in which K-theory plays an important role. Indeed, in retrospect, one can view Leavitt path algebras as precisely those algebras constructed to produce specified K-theoretic data in a universal way, data arising naturally from directed graphs. Much of the currentwork in the field is focusedon better understandingjust how largearoletheK-theoreticdataplaysindeterminingthestructureofthesealgebras. Ourgoalinwritingthisbook,theWhy?ofthisbook,simultaneouslyaddresses boththeWho?andWhat?questions.Weprovidehereaself-containedpresentation ofthetopicofLeavittpathalgebras,apresentationwhichwillallowreadershaving different backgroundsand different topical interests to understand and appreciate these structures. In particular, graduate students having only a first year course in ringtheoryshouldfindmostofthematerialinthisbookquiteaccessible.Similarly, researchers who don’t self-identify as algebraists (e.g., people working in C(cid:2)- algebrasorsymbolicdynamics)willbe able to understandhow these Leavittpath algebras stem from, or apply to, their own research interests. While most of the resultscontainedherehaveappearedelsewhereintheliterature,afewofthecentral results appear here for the first time. The style will be relatively informal. We willoftenprovidehistoricalmotivationandoverview,bothtoincreasethereader’s understanding of the subject and to play up the connections with other areas of mathematics. Although space considerations clearly require us to exclude some otherwise interesting and important topics, we provide an extensive bibliography forthosereaderswhoseekadditionalinformationaboutvarioustopicswhicharise herein. More candidly, our real Why? for writing this book is to share what we know aboutLeavittpathalgebrasin sucha waythatothersmightbecomeprepared,and subsequentlyinspired,tojoininthegame. ColoradoSprings,USA GeneAbrams Barcelona,Spain PereAra Málaga,Spain MercedesSilesMolina Acknowledgments Throughout the years during which this book was being written, dozens of individualsofferedtopicsuggestions,pointedouttypos,andhelpedtoimprovethe finalversion.Wearedeeplyappreciativeoftheircontributions. While much of the time and energy which went into writing this book was expendedwhileeachoftheauthorswasinresidenceather/hisownuniversity,the threeauthorswereableonanumberofoccasionstospendtimevisitingeachother’s home institutions to help more effectively move the project toward completion. We collectivelythankthe UniversitatAutònomade Barcelona,the Universidadde Málaga,andtheUniversityofColoradoColoradoSpringsfortheirwarmhospitality duringthesevisits. The first authorwas partiallysupportedby a SimonsFoundationCollaboration Grant,#20894. The second author was partially supported by the Spanish MEC and Fondos FEDER through projects MTM2008-06201-C02-01, MTM2011-28992-C02-01, and MTM2014-53644-P and by the Generalitat de Catalunya through project 2009SGR1389. The third author was partially supported by the Spanish MEC and Fondos FEDER throughprojects MTM2010-15223,MTM2013-41208-P,and MTM2016- 76327-C3-1-PandbytheJuntadeAndalucíaandFondosFEDER,jointly,through projectsFQM-336andFQM-02467. ix Contents 1 TheBasicsofLeavittPathAlgebras:Motivations,Definitions andExamples................................................................. 1 1.1 AMotivatingConstruction:TheLeavittAlgebras .................... 2 1.2 LeavittPathAlgebras................................................... 5 1.3 TheThreeFundamentalExamplesofLeavittPathAlgebras......... 10 1.4 ConnectionsandMotivations:TheAlgebrasofBergman,and GraphC(cid:2)-Algebras ..................................................... 12 1.5 TheCohnPathAlgebrasandConnectionstoLeavittPath Algebras................................................................. 14 1.6 DirectLimitsintheContextofLeavittPathAlgebras................ 23 1.7 ABriefRetrospectiveontheHistoryofLeavittPathAlgebras....... 30 2 Two-SidedIdeals............................................................. 33 2.1 TheZ-Grading .......................................................... 36 2.2 TheReductionTheoremandtheUniquenessTheorems.............. 46 2.3 AdditionalConsequencesoftheReductionTheorem................. 54 2.4 GradedIdeals:BasicPropertiesandQuotientGraphs ................ 56 2.5 TheStructureTheoremforGradedIdeals,andtheInternal StructureofGradedIdeals.............................................. 65 2.6 TheSocle ............................................................... 76 2.7 TheIdealGeneratedbytheVerticesinCyclesWithoutExits ........ 83 2.8 TheStructureTheoremforIdeals,andtheInternalStructure ofIdeals.................................................................. 89 2.9 AdditionalConsequencesoftheStructureTheoremforIdeals. TheSimplicityTheorem................................................ 97 3 Idempotents,andFinitelyGeneratedProjectiveModules .............. 103 3.1 PurelyInfiniteSimplicity,andtheDichotomyPrinciple.............. 104 3.2 FinitelyGeneratedProjectiveModules:TheV-Monoid.............. 108 3.3 TheExchangeProperty................................................. 116 3.4 VonNeumannRegularity............................................... 121 3.5 PrimitiveNon-MinimalIdempotents................................... 125 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.