ebook img

Learning and Coordination: Enhancing Agent Performance through Distributed Decision Making PDF

193 Pages·1994·6.268 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Learning and Coordination: Enhancing Agent Performance through Distributed Decision Making

Learning and Coordination International Series on MICROPROCESSOR-BASED AND INTELLIGENT SYSTEMS ENGINEERING VOLUME 13 Editor Professor S. G. Tzafestas, National Technical University, Athens, Greece Editorial Advisory Board Professor C. S. Chen, University of Akron, Ohio, US.A. Professor T. Fokuda, Nagoya University, Japan Professor F. Harashima, University of Tokyo, Tokyo, Japan Professor G. Schmidt, Technical University of Munich, Germany Professor N. K. Sinha, McMaster University, Hamilton, Ontario, Canada Professor D. Tabak, George Mason University, Fairfax, Virginia, US.A. Professor K. Valavanis, University of Southern Louisiana, Lafayette, U S.A. Learning and Coordination Enhancing Agent Performance through Distributed Decision Making by STEVEN H. KIM Lightwelllnc., Charlottesville, Virginia, U.SA SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Library of Congress Cataloging-in-Publication Data Kim. Steven H. Learning and coordination : enhancing agent performance through distributed decision making / by Steven H. Kim. p. cm. -- (International series on microprocessor-based and intell igent systems engineering ; v. 13) Inc 1u des index. ISBN 978-94-010-4442-4 ISBN 978-94-011-1016-7 (eBook) DOI 10.1007/978-94-011-1016-7 1. Neural networks (Computer science) 2. Machine learning. 3. Artificial intelligence. 1. Title. II. Series. OA76.87.K56 1994 003' .7--dc20 94-30344 ISBN 978-94-010-4442-4 Printed on acid-free paper AH Rights Reserved © 1994 Springer Science+Business Media Dordrecht OriginaHy published by Kluwer Academic Publishers in 1994 Softcover reprint of the hardcover 1s t edition 1994 No part ofthe material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. To the memory of my grandfather YongJooKim Contents Preface .............................................................................................................................. xi Chapter 1 Introduction and Framework ............................................................... 1 Introduction .................................................................................................................. 1 General Framework for Learning Systems .................................................................. 2 Application to Production-Rule Systems ..................................................................... 5 Structure ...................................................................................................... 5 Operation .................................................................................................... 6 Interpretation for Classifier Systems .......................................................... 8 Application to Neural Networks ................................................................................. 10 Explicit vs. Implicit Representation ........................................................................... 11 Software Structure ...................................................................................................... 11 illustrative Applications ............................................................................................. 12 Mobile Robot ............................................................................................. 12 Production Process Control ...................................................................... 13 Discussion .................................................................................................................. 14 Scope of the Book ...................................................................................................... 16 References .................................................................................................................. 17 Chapter 2 Learning Speed in Neural Networks .................................................. 21 Introduction ................................................................................................................ 21 Neural Nets ................................................................................................................. 22 Learning Rate as a Performance Metric ................................................... 23 Types of Learning ...................................................................................... 23 Activation Rules ........................................................................................ 24 Output Rules .............................................................................................. 26 Examples ofA ctivation Rules .................................................................... 27 Multiplicative Links ................................................................................... 32 Weight Training ........................................................................................ 34 Training Procedures ................................................................................. 39 Deterministic, Closed-form Training ........................................................ 41 Open-form Training .................................................................................. 45 Probabilistic Algorithms ........................................................................... 47 Pattern Associator ..................................................................................... 54 Graceful Degradation ............................................................................... 54 Biological Systems ..................................................................................................... 56 Vision System ............................................................................................ 56 Anatomy of Vision ..................................................................................... 56 viii Contents Architecture of Vision ............................................................................... 57 Implications for Artificial Systems ............................................................ 59 A Hybrid Organization for Artificial Networks ........................................ 60 Efficiency in Weights ................................................................................. 61 Effect on Computational Speed ................................................................. 63 Efficiency in Operation ............................................................................. 63 Conclusion .................................................................................................................. 64 References .................................................................................................................. 64 Chapter 3 Principles of Coordination .................................................................. 69 Introduction ................................................................................................................ 69 Limitations of Centralized Control ............................................................................. 70 Decentralization based on Explicit Valuation ............................................................ 71 Games and Strategies ................................................................................................. 72 Deadlock among Independent Systems ...................................................................... 76 Concurrent Design ...................................................................................................... 77 Cooperative Systems .................................................................................................. 78 Characteristic Functions '" .......................................................................................... 79 Imputations ................................................................................................................. 81 Essential and Inessential Games ................................................................................. 82 Strategic Equivalence ................................................................................................. 84 Zero Game .................................................................................................................. 87 Binary Game ............................................................................................................... 88 Geometric Interpretation " .......................................................................................... 90 Games with Few Players ............................................................................................ 91 Dominance of Imputations ......................................................................................... 95 Core of a Game ......................................................................................................... 104 Examples of Cores .................................................................................................... 108 Solution Principles ................................................................................................... 110 Assumptions of the Shapley Solution ...................................................................... 113 Properties of Shapley Vector .................................................................................... 116 Application to Supervisor and Workers ................................................................... 127 Learning systems and Nested Agents ....................................................................... 128 Conclusion and discussion ....................................................................................... 129 References ................................................................................................................ 131 Chapter 4 Case Study in Coordination .............................................................. 135 Introduction .............................................................................................................. 135 Analytical models ..................................................................................................... 136 Map of the Environment .......................................................................... 137 Time to Respond to an Event ................................................................... 142 Simulation Model ..................................................................................................... 147 Simulation Specifics ................................................................................................. 153 Deployment Rules .................................................................................................... 154 Conclusion ................................................................................................................ 164 References ................................................................................................................ 164 Chapter 5 Conclusion .......................................................................................... 167 Summary .................................................................................................................. 167 Implications .............................................................................................................. 169 Contents ix Appendix Dynamic Models in Statistical Physics ............................................. 171 Emergence ................................................................................................................ 171 Statistical Mechanics ................................................................................................ 172 Dual State System .................................................................................... 172 Multi-state System ................................................................................... 173 Modal Configuration ............................................................................... 175 Temperature Parameter .......................................................................... 177 Use of the Exponential Distribution ......................................................................... 180 References ................................................................................................................ 182 Index .............................................................................................................................. 185 Preface Learning is a hallmark of intelligence. As such, the subject fascinates us all, whether we are participants at a technical conference, students of intelligent systems, or guests at a cocktail party. The psychologist might define learning as a relatively permanent change in behavior as a result of experience. But this perspective ignores the positive factor implicit in the term learning. In everyday parlance, we associate learning with an improvement in performance rather than neutral or even degraded behavior. In operational terms, then, we may define learning as the enhancement ofpeiformance over time. When a system is a product of human fabrication rather than the natural environment, its performance is often specified in terms of a set of functional requirements. These requirements indicate the level of performance expected of the system. In an uncertain world subject to stochastic disturbances, the fulfillment of functional requirements is a probabilistic rather than deterministic affair. In fact all systems-whether of the learning variety or not-operate in an uncertain environment. But there is a second aspect of uncertainty: that of the system itself. The components of the system, both in terms of hardware and software, may be subject to stochastic influences. This book examines a number of models which exhibit learning behavior, ranging from the human brain to artificial systems. The stochastic nature and learning behavior of intelligent systems are explored. Intelligent systems must often interact in the attainment of their goals. For such systems, the ability to coordinate their activities prudently may prove to be more instrumental in fulfilling objectives than their portfolio of individual capabilities. As with individual strategies, the formulation of effective policies for coordination relies as well on probabilistic arguments. The resulting models and tools can then be used as a basis for improving collective performance with experience. Given the universality of the subjects - namely, learning behavior and coordinative strategies in uncertain environments - this book should be of interest to students and researchers in diverse disciplines. These fields range from all areas of xii Preface engineering to the computing disciplines; from the life sciences to the physical sciences; and frpm the management arts to societal studies. I would like to thank Elias Towe and Mark Novick for reviewing the manuscript. Much of the word processing and proofreading were ably performed by Tasha Seitz. The thoughtful comments from these contributors were invaluable in improving the readability of the book. S.K.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.