ebook img

LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl, or elastane PDF

26 Pages·2014·0.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl, or elastane

IntJLifeCycleAssess(2014)19:331–356 DOI10.1007/s11367-013-0626-9 LIFECYCLEIMPACTASSESSMENT(LCIA) LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl, or elastane NataschaM.vanderVelden&MartinK.Patel& JoostG.Vogtländer Received:23October2012/Accepted:5July2013/Publishedonline:4September2013 #Springer-VerlagBerlinHeidelberg2013 Abstract nylon, and cotton. The use phase has less relative impact Purpose Thepurposeofthispaperistoprovideanimproved thanitissuggestedintheclassicalliterature. (up-to-date)insightintotheenvironmentalburdenoftextiles Conclusions The impact of spinning and weaving is rela- made of the base materials cotton, polyester (PET), nylon, tivelyhigh(foryarnthicknessesoflessthan100dtex),and acryl, and elastane. The research question is: Which base fromtheenvironmentalpointofview,knittingisbetterthan materialandwhichlifecyclestage(cradle-to-gateaswellas weaving.LCAontextilescanonlybeaccuratewhentheyarn cradle-to-grave)havethebiggestimpactontheenvironment? thickness is specified. In case the functional unit also indi- Methods Lifecycleinventory(LCI)dataarecollectedfrom catesthefabricpersquaremeter,thedensitymustbeknown. the literature, life cycle assessment (LCA) databases, and LCA results of textile products over the whole value chain emission registration database of the Dutch government, as are case dependent, especially when dyeing and finishing wellascommunicationswithbothmanufacturingcompanies processes and the use phase and end-of-life are included in ofproductionequipment andtextilecompanies. Theoutput the analysis. Further LCI data studies on textiles and gar- ofthecalculationsispresentedinfoursingleindicators:Eco- ments are urgently needed to lower the uncertainties in costs 2012 (a prevention-based indicator), CO equivalent contemporaryLCAoftextilematerialsandproducts. 2 (carbon footprint), cumulative energy demand (CED), and ReCiPe(adamage-basedindicator). Keywords Carbondioxide(CO ) .Clothing .Eco-costs . Results and discussion From an analysis of the data, it be- 2 Fibers .Spinning .Textile .Usephase .Weaving comes clear that the environmental burden is not only a function of the base materials (cotton, PET, nylon, acryl, and elastane) but also of the thickness of the yarn (for this research,therangeof50–500dtexisexamined).Theauthors 1Introduction proposethattheenvironmentalburdenofspinning,weaving, andknittingisafunctionof1/yarnsize.Thecradle-to-grave In recent years, life cycle assessment (LCA) has been in- analysis from raw material extraction to discarded textile creasinglyadoptedby textile andapparel companies. Many demonstrates that textiles made out of acryl and PET have actorsinthetextileandclothingchainsuchasfibermanufac- the least impact on the environment, followed by elastane, turers(e.g.,Lenzing,Advansa,Dupont),producersofflooring material(e.g.,InterfaceFlor,Desso,Heugaveld),fashionbrands (united in the Sustainable Apparel Coalition), and even um- Responsibleeditor:MarziaTraverso brella organizations (European Commission and the Dutch : N.M.vanderVelden(*) J.G.Vogtländer branch organization Modint) use LCA to assess the environ- DepartmentofDesignforSustainability,FacultyofIndustrial mentalimpactsoftextile-relatedproducts.Inaddition,educa- DesignEngineering,TechnicalUniversityDelft,Landbergstraat tional textile and fashion institutes (e.g., the Amsterdam 15,2628CEDelft,TheNetherlands e-mail:[email protected] Fashion Institute) have moved towards life cycle thinking, pickingupthesignalsfromcompaniesandotherorganizations. M.K.Patel Inmanycases,LCAstudiesandthedevelopmentofLCA CopernicusInstituteofSustainableDevelopment,Facultyof tools on textile products are carried out by consultancy Geosciences,UtrechtUniversity,Budapestlaan6,3584 CDUtrecht,TheNetherlands companiesorindependentresearchinstituteswhichinterpret 332 IntJLifeCycleAssess(2014)19:331–356 LCA and the International Standard Organization (ISO) (i.e.,washing clothesbythe user);however, thislacks accu- specifications in their own way. Results are presented in ratedataontheproductionphase. reportsoronlineandreachthepublicviamarketingdepart- mentsorviathemedia.DespiteofthisgrowthinLCAwork, 1.2Datacollection not many (recent) LCA studies on textile products can be foundinscientificliterature.Consequently,therearegapsin Most of the previously mentioned sources were considered the scientific framework for the interpretation of the previ- tobenotveryvaluableforourLCAontextilesconductedin ously mentioned market efforts. There is not enough litera- 2011–2012because,intheprecedingperiod,companiesmay ture available and there are no (open source) life cycle have made significant improvements on energy consump- inventory(LCI)databasestobuildfurtherscientificresearch tion,mainlydrivenbyhighenergycosts.Firmunderpinning upon. Nondisclosure of databases and company-related in- numerical data for this change was not transparent, but formationmightbeduetothefactthatconfidentialityplays percentages of 2 to 3 per year are quoted. A report of the animportantrole.Thisarticleaimstoopenupthescientific united German textile machinery manufacturers (VDMA discussiononLCAintextiles. 2009)claimsenergyefficiencyimprovementsof15%over the last 10 years. This figure was also quoted during a communication with Mr. Bernard Defraye of CIRFS, the 1.1ExistingLCAstudiesontextiles EuropeanMan-MadeFibresAssociation. An important observation is that the majority of the re- Aliteraturesurveyandsomeinvestigationsamongexpertsin searchersdonottakeintoaccountimportanttechnicalspec- thefieldofLCAstudiesontextilesshowedthatmostofthe ifications(e.g.,thethicknessoftheyarn)whichhaveamajor publicly available LCA data and process data are outdated, impactonprocessingenergy,aswillbeshowninSection3. not transparent (especially regarding system boundaries), The approach chosen in this study was, therefore, to andsometimesclearlyoutofrange(outliers).Itwasquickly collect all available data from the public domain (scientific concluded that original data reflecting today’s situation is literatureandcompanyinformation),from(LCA)databases, urgentlyneeded. fromtheemissionregistrationdatabaseoftheDutchgovern- Asummaryoftheresultsoftheliteraturesurveyisgivenin ment,andbycontactingcompaniesandexperts. thesucceedingparagraphsandsections.CollinsandAumônier We contacted (among others) the following companies/ (2002) compiled the LCI data upon references dating from associations: 1978 to 1999. Another research executed by Kalliala and – OerlikonBarmag, Talvenmaa(1999)reports,forexample,spinningenergywhich – CIRFS,theEuropeanMan-MadeFibresAssociation, isderivedfromastudyoutof1997.In-depthinvestigationon – InternationalTextileManufacturersFederation(ITMF), weavingledtotheresearchofKoçandÇinçik(2010),butan – Kuempers. analysis of the references revealed that only 5 out of 16 references were in English, which makes it very difficult to verify the results. In the recent thesis of Shen (2011), nonrenewableenergyusefortheproductionprocessesofdif- 2Goalandscope ferentfabricsisgiven,baseduponareportfrom1997(Laursen etal.1997).AnotherrecentlypublishedLCAstudyofWalser 2.1Goal et al. (2011) uses inventory data for polyester (PET) textile production,partlybuiltuponinformationdatingfrom1997as Thegoalofthestudyistodevelopanimproved(up-to-date) well. The authors also noticed that the data in the Ecoinvent insight into the environmental burden of the life cycle of database (Ecoinvent 2010) on cotton and bast fibers do not textiles, for various types of materials (cotton, PET, nylon, specify the yarn size, which has an important influence on acryl,andelastane),andasafunctionofthethicknessofthe energyuse.ThisaspectisfurtherdiscussedinSection3. yarnintherangeof50–500dtex(decitex=themassingrams In general, it appeared to be very difficult to check the per 10,000 m). The main focus is on the production of underlying datasets because researchers built up their own textiles (cradle-to-gate); some data on the use phase (wash- datasetbycombininginformation fromdifferentandsome- ingbytheuser)andtheend-of-lifephasearealsoprovided. timesveryoldorconfidentialsources. Since the goal of the study is to provide designers with Tobler-Rohr(2011)givesanexcellentoverviewoftextile environmental information, the output of the calculations is production but does not provide enough LCI data to base notpresentedintheformofasetofmidpoints,butintheform furtherLCAcalculationson. ofsingleindicators.AsingleindicatorinLCIanalysisisone Steinberger et al. (2009) present a comprehensive LCA singlescoretoexpresstheresultofthecumulativeinventory studyonclothingwhichisfocusedontheusephaseoftextiles listinoneindicator,eitheratthemidpointorendpointlevel. IntJLifeCycleAssess(2014)19:331–356 333 Fig.1 Calculationstructureof theEco-costs2012 Toprovidethereaderwithinformationontheeffectofthechoice 2.2Scope,systemboundaries,anddeclaredunit ofasingleindicator,dataonfoursingleindicatorsaregiven: The scope of this study is cradle-to-grave. It includes the – Eco-costs2012(aprevention-basedindicator), cradle-to-gate processes of the production chain from raw – CO equivalent(asingleindicatoratmidpointlevel), 2 material extraction to manufactured greige1 fabric for cot- – Cumulativeenergydemand(CED), ton, PET, nylon, acryl, and elastane, as well as the gate- – ReCiPe(adamage-basedindicator). to-grave processes for textile products made out of these Eco-costsisameasuretoexpresstheamountofenviron- materials. mentalburdenofaproductonthebasisofpreventionofthat TheLCAsforgreigetextilemanufacturingphasesarefull burden and has also been introduced in this journal before analyses. For dyeing and finishing processes, ranges and an (Vogtländer and Bijma 2000, 2001). They are the costs example ofLCA based onbestpractices aregiven.Acutoff whichshouldbemadetoreducetheenvironmentalpollution criterion of 1 % is applied to decide on the exclusion of and materials depletion in our world to a level which is in (sub)processes, inputs, and outputs, in compliance with ISO line with the carrying capacity of our earth. The eco-costs 14044 Section 4.2.3.3. For the use phase and the end-of-life system has been updated in 2007 and in 2012. The charac- phase, ranges are given based on specific cases. The scope terization(“midpoint”)tables whichareappliedintheEco- excludes the following phases related to the textile product: costs2012systemare(seeFig.1andVogtländer2013): manufacturing(sewingandassembling),distribution,market- ing,andsalesofthetextile. – IPPC2007,100years,forgreenhousegasses; Thechoiceofthedeclaredunit(functionalunit)is“1kg – USETOX,forcarcinogensandecotoxicity; of(greige)textile.”Thispapershowsthataunitinkilograms – ReCiPe, for acidification, eutrophication, and summer isalogicalchoicefromthepointofviewofproduction,since smog(photochemicaloxidantformation); theeco-burdenofthebasematerials,spinning,andweaving – IMPACT2002+,forfinedust. of all materials is a function of kilograms and yarn size Eco-costsispartofthebiggermodeloftheeco-costsvalue (decitex). However, from the point of view of textile appli- ratio (EVR) and the method of eco-efficient value creation cations (cloth, carpets, etc.), it seems logical to have a de- (WeverandVogtlander2012;MestreandVogtlander2013). claredunitin1m2,soSection8providessomeinformation Theadvantageofthesingle-issueindicators(CO equiva- persquaremeter. 2 lent and CED) is that they are simple to understand. The Table 1 summarizes the scope of this study and simulta- disadvantage,however,isthattoxicityandmaterialsdepletion neouslyexplainstheoutlineofthisarticle.Thefullcradle-to- isnottakenintoaccount.Thatisthereasonwhydataoneco- gateanalysesontheproductionofmaterialsinphaseAand costs and ReCiPe are given as well: they both incorporate phase1arebasedonEcoinventLCIs(Ecoinvent2007a,b). humantoxicity,ecotoxicity,materialsdepletion,andlanduse. These LCIs include transport and the required production ReCiPeisadamage-basedindicator.Itisthesuccessorofthe infrastructure(theso-calledthird-orderLCIs). famousEco-indicator99,introducedinthisjournal(Goedkoop etal.1998).WepresentthedatafortheEuropeH/Aweighting 1Theterm“greige”isindustryjargonfor“untreatedwovenorknitted setforhumantoxicity,ecotoxicity,andmaterialsdepletion(H/A fabric” and refers to the fabric before the final phases of dyeing and referstothedefaultReCiPeendpointmethod,H=hierarchistand finishing. In this context, “greige” is defined as “unbleached and A=averageweightingset). undyedoruntreated.” 334 IntJLifeCycleAssess(2014)19:331–356 Todeterminewhethertheimpactoftheemissionsfromthe Inconclusion,Section7givesanoverviewofthebreak- followingproductionprocessstepsstaysbelowthe1%cutoff downoftheenvironmentalburdenoverthecompletetextile criterion, the emission registration database of the Dutch gov- lifecycle.Transportationinthefirststepofmaterialproduc- ernment (http://www.emissieregistratie.nl/erpubliek/bumper.nl. tion (polymers and cotton) is included; however, we aspx, accessed on 20 January 2013) is used. This database disregarded transportation in the subsequent production showsthatemissionsfromtheproductionsitesofprocessphases chainforthefollowingreasons: BtoDand2to5arelessthan1%oftheemissionsfromthe – Theextentoftransportationservicesisverycasespecif- productionofelectricityandheat,sotheseemissionsarebelow ic and it, therefore, does not seem possible to develop the1%cutoffcriterionandarenottakenintoaccount. generic estimates; moreover, a fair part of the environ- The results of the analyses of the previously mentioned mental impacts caused by transportation cancels out processesforgreigefabricareincludedinSections4.1and4.2. acrosstheoptionsstudied(theprincipleof“streamlined TheDutchemissiondatabaseshowsthatemissionsfrom LCA”;ToddandCurran1999). production facilities for dyeing and finishing are above the – The pollution caused by the transportation of fabric is 1%cutoffcriterion,sotheseemissionscomingfromphases generallysmallcomparedtothepollutionofotherpro- E, F, 6, and 7 are included in the analyses. Note that the cesses in the production chain, in particular material emissions of these process phases are highly dependent on production. (Shipping textile products from China the fact whether or not modern best practices of green pro- causes the following extra scores per kilogram: eco- duction are used and on the specific colors and finishing costs,€0.078;carbonfootprint,0.16kgCO equivalent; processes. Only data on best practices in the Netherlands 2 CED,2.6MJ;ReCiPe,0.02Pt). havebeenanalyzed,sincedatafromproductionfacilitiesin otherareas(forinstance,IndiaandChinawherethesituation Forelectricityfromthegrid,thedataoftheUCTE(aver- is without doubt expected to be much worse) are not avail- ageelectricity production intheEuropean Union [EU]) has able.Resultsoftheanalysesofthegate-to-gateprocessesE, beenapplied.Thereasonforthischoiceisthatthesituationis F,6,and7areincludedinSection5.2. quitedependentonthespecificarea.Forinstance,thereare Theusephase(Gand8)andtheend-of-lifephase(Hand9) areas in China with old power plants which are extremely arestronglycasedependent.Forthesephases,afewscenarios polluting, but more and more areas with modern power are provided in Section 6 to show the reader how important plants with pollution standards similar to the standards in thesephasesarecomparedtotheproductionphases. Europearise(Ecoinvent2007c). Table1 Scopeofresearchandoutlineofarticle Process/lifecyclephase Specificationsofanalysis Discussedin Resultsin Cotton Synthetics(polyester,nylon, acryl,andelastane) (A)Fiberproduction 1.Polymerproduction LCAbasedonEcoinvent Section3.2 Section4.1for Figs.2,3,4,5, (cultivationand (coveringallprocess data processes(A)to 6,7,8,9,10, cottontreatment) stepsfromtheextraction (D)forgreige 11,and12 ofresources) cottontextile forprocesses (A)to(D) (B)Spinningtoyarn 2.Spinningoffilament LCAasfunctionofyarn Section3.3 and1to5 3.Texturing thickness Section3.4 Section4.2for (C)Weavingorknitting 4.Weavingorknitting Sections3.5 processes1to and3.6 5forgreige cottontextile (D)Pretreatment 5.Heatsettingoffabric LCAbasedonenergy Section3.7 includingwashing (E)Dyeingoffabric 6.Dyeingoffabric Rangesandexample Section5.1 Section5.2 Processes(E)to (F)Finalfinishing 7.Finalfinishingincluding ofLCAbasedon Section5.1 Section5.2 (H)and6to includingdrying drying bestpracticegiven 9arecase dependent (G)Usephase 8.Usephase Datagiven Section6.1 Section6.1 (H)End-of-life 9.End-of-life Datagiven Section6.2 Section6.2 AnoverviewoverthecompletelifecycleisdiscussedinSection7anddepictedinFigs.13and14 Table2 Cottonfiberproductionandspinning:datafromliteratureandprivatecommunication In t J L Processstep/source Quantity Specificationofprocess Specification Yarn Yarn Electricity Steam Natural Liquefied Diesel Light Heavy Hard Water(L) ife and/orextraremarks ofproduct count count (kWh) (MJ) gas petroleum (MJ) fueloil fueloil coal C (CO=cotton) (den) (dtex) (MJ) gas(MJ) (MJ) (MJ) (MJ) yc le A Fibermanufacturing s s e Cottonfiber Fiber ss production (2 0 IFTH2(n.a.) 1kg Intensiveproduction Cottonfiber 0.41 0.00 0.50 8.21 7,103.00 1 4 (6countries) ) 1 IFTH2(n.a.) 1kg Biologicalproduction Cottonfiber 0.41 0.00 0.50 8.21 7,103.00 9:3 (6countries) 3 1 Laursenetal.(2007) 1kg Cottoncultivationand 0.91 6.33 0.58 8.21 4.13 2,000.00 – 3 EDIPTEX harvesting 56 Laursenetal.(2007) 1kg Fiberproductionofcotton Cottonfiberincluding 13.89 EDIPTEX yarnaccordingto cultivationand figure1.3 harvest Yarnmanufacturing Spinning Yarn ITMF(2008) 1kg Rieterringspinning COcombedring,yarn 180 200 3.34 (includingwinding) 11/8in.,30Ne ITMF(2008) 1kg Rieterrotorspinning COcarded,rotor 265 300 1.42 yarn=openend11/16 in.,20Ne ITMF(2010) 1kg Rieterringspinning COcombedring,yarn 180 200 3.42 (includingwinding) 11/8in.,30Ne ITMF(2010) 1kg Rieterrotorspinning COcarded,rotoryarn= 265 300 1.46 openend11/16in.,20Ne KaplanandKoç(2010) 1kg Staplefibertoyarn+dataare COcombedringyarn 3.84 forworldaverage KaplanandKoç(2010) 1kg Staplefibertoyarn+dataare COopenendyarn 2.54 forworldaverage KaplanandKoç(2010) 1kg Thermalenergy(steam?)is 2.70 1.10 Tarakcioglua,1984 neededforfixation lowestlimit KaplanandKoç(2010) 1kg Thermalenergy(steam?)is 4.00 4.70 Tarakcioglu,1984 neededforfixation highestlimit KaplanandKoç(2010) 1kg OnlySEC+calculated COcombedweaving 180 200 3.32 yarn KaplanandKoç(2010) 1kg OnlySEC+reported COcombedweaving 180 200 3.64 yarn KaplanandKoç(2010) 1kg OnlySEC+calculated COcombedweaving 108 120 6.81 yarn KaplanandKoç(2010) 1kg OnlySEC+calculated COcombedknitting 180 200 3.06 yarn KaplanandKoç(2010) 1kg OnlySEC+calculated COcombedknitting 108 120 5.52 yarn Confidentialsourceno.7 1kg RotorspinningofCO 1.85 1.68 1.56 3 3 5 3 Table2 (continued) 3 6 Processstep/source Quantity Specificationofprocess Specification Yarn Yarn Electricity Steam Natural Liquefied Diesel Light Heavy Hard Water(L) and/orextraremarks ofproduct count count (kWh) (MJ) gas petroleum (MJ) fueloil fueloil coal (CO=cotton) (den) (dtex) (MJ) gas(MJ) (MJ) (MJ) (MJ) Dahllöf(2004)Laursen, 1kg Totalenergydemandfor 1.76 1997lowestlimit cottonspinning factory—6.33MJ— assumedonlyelectricity Dahllöf(2004)Laursen, 1kg Totalenergydemandforcotton 5.10 1997lowestlimit spinningfactory—18.31MJ— assumedonlyelectricity KaplanandKoç(2010) 1kg Ringspinningaccordingtotheir COcombedweaving 330 330 1.88 calculations yarn Kimetal.(1983) 1kg Spinningenergyusageperunit 5.40 production(kWh/kg)>no specificmaterial;reported data1972 Kimetal.(1983) 1kg Spinningenergyusageperunit 4.86 production(kWh/kg)>no specificmaterial;reported data1980 CollinsandAumônier kgproduct Spinningincludingpreparation= Forpairofcottonbriefs (2002) 29.36kWh/kg (72g)andpairof polyestertrousers (=400g) Cartwrightetal.(2011), 1kg Yarnmanufacturing Forshirt65PET/35CO 7.46 Laursenetal.(2007) staplefibers EDIPTEX Palamutcu(2010) 1kg Cardedyarnspinning 3.30 plant—averageactualand estimated Laursenetal.(2007) 1kg Combedringyarnaccording 65/35PET/CO 117 130 4.10 2.20 EDIPTEX toformula Laursenetal.(2007) 1kg Combedringyarnaccordingto 100CO 117 130 4.15 2.20 EDIPTEX formula SimaPro7.2educational, 1kg Yarnproduction,cottonfibers/kg/ 5.10 Int Idemat2012,V0.0 GLO+electricity,lowvoltage, J L atgrid/CNU ife SimaPro7.2educational, 1kg Yarnproduction,cottonfibers/kg/ 3.40 C Idemat2012,V0.0 GLO+electricity,lowvoltage, yc atgrid/USU le A DemirandBehery(1997) 1kg Ringspun 67CO/33PET 167 4.41 s s e Laursenetal.(2007) 1kg Spinningofcottonyarnaccording 11.61 2,000.00 ss EDIPTEX toFig.1.3 (2 0 Laursenetal.(2007) 1kg Figure3.3blending,carding, 5.07 1 4 EDIPTEX combing,andspinningof ) 1 COandPESstaplefibers 9 :3 (0.877kg) 3 1 Processor,2011phase1 1kg Carding+sliving+spinning+ 40PET/60CO+PES 180 200 7.00 – 3 winding staplefibers 56 IntJLifeCycleAssess(2014)19:331–356 337 L) ed of All auxiliaries in phases A and 1 are included, since the DieselLightHeavyHardWater((MJ)fueloilfueloilcoal(MJ)(MJ)(MJ) 4.76 ment.IFTH2(n.a.)referstoanunpublishl'habillement nthiscase,theyrefertoapublication Emocttts0hhocot.c0aheeomotn8erhicieurpnneakssflpvl,egaIcuexPpcudtnCtiePlyuntoarOCergtfdiis2knodat2aiugtneyl0gafoqse0efogushsni3ftr,siautvasv“tlfdma)eeffelyxasse:aesitbnbrrieeelttaceph;cesaorannCe(ran-odarEccaitctteoDopichriscnponse,tel,src2ai”cd,el.luuih7dcu€ntdiabo0ggMheurf.hdeifs0tJcr,eo1lc;aesi5rsnq.RIiit;ttuPnAheseocP,CcerueriaCoixdfrPronietbalhe2lttoile,oiea0onorfr00wgii.ae13me0ficso,nn1%pcotg1faoastom,pcr(Perdetrxotaii.t)tnngnonh.rtg.dngae,, NaturalLiquefiedgaspetroleum(MJ)gas(MJ) xtileetdel'habilleaisdutextileetde notherreference(i 33.1LCBIasdeamtaa—terciraalsdle-to-gateforgreigetextile ec a ElectricitySteam(kWh)(MJ) 12.00 1.60 3.20 2.88 2.32 stitutFrancaisdutFTH.InstitutFran eirpublicationto TE–––hcoeiCANnLvocCyertlIytonolntd,n,av“,ta52“ac0c.2eoft:%ototrno“icntnorfiytliteblo,oenanrstf,6pigb,laieannrtnt/paeRnldaEd,nRatpt/”Rof(alERyrmRmE/R”eCr=aNnpR”deel(gl5Cei0otNsn%=aErC“uenhrofyirnplooaem))n;; QuantitySpecificationofprocessSpecificationYarnYarnand/orextraremarksofproductcountcount(CO=cotton)(den)(dtex) 1kgCarding+sliving+spinning+40PET/60CO+PES90100windingstaplefibers1kgDoubling+twining40PET/60CO+PES180200staplefibers1kgDoubling+twining40PET/60CO+PES90100staplefibers1kgRingspinningCOcombed 1kg ublishedreportnamed:Extraitde“l’AnalysedeCycledeviepyjamaBébé”parl’IFTH.Indeàlapriseencomptedel’environnementdanslaconceptiond’articlestextiles”parl’I Koç(2010)Tarakcioglu,1984”meansthatKaplanandKoç(2010)arereferringinth ––3Affd6fsorrteharoeeox.ef.ol2bljerunplieFcMIImrardotlmmcoTircdiab6PaEacatuoatoehieittappi6tEltrlnmnlsosaaadteppoo,istaTedncrstollrruoaytedo,tLauaatttefatsffuhaaflnn“sCxooiniecEapnnrebtpttnttdbrceurn//hAslttuieoRRyaetlledear(frrtaleasnsEEoSonhyerdeitcat.ttenmfipreeapRRla/hnrTouefeRtbeeatatodeh.rannhchamdacn”lSeErsnyetsceinetednie”sfasRulbhloanirecen;ec,ondfenyobn”nxacaearuwadmi;le,seridcSplcftcgasieLataamueuwrtttiu,tseycaiyncbilasrtataersstatceeiulues(ientondirprloesdipcrtaenifgewoersxinalih)cnereyenlc,stfetiptesrgshfvhsoee“.lcerao4lepeadrpoaotnvrpdletaortcafatauthredsfetlenhtiofhnwoyeedlsrndieacaerduo,nschoireberm5dLfgnaeictsselorc.alr:tesChttlTcarehtrhytomauanhaIpssaiscltobunestondaaheeeullgnettainIeeapaiirnT,toostbsctarerdfhMnneegl2el,eaeoeisfsfe,nafetFxefan3acprmorrioteoS,erb2eyrwoamor4mnenl0aadledr,ccecrl1lpeiu5nectrefro0hiec.oeof,sor)ortcaaan.nWoitafutnmnohfolrmsiddy3neeer-,, Table2(continued) Processstep/source Processor,2011phase1 Processor,2011phase2 Processor,2011phase2 IFTH1(n.a.) IFTH2(n.a.) IFTH1(n.a.)referstoanunpreportnamed:Extraitde“ai n.a.notavailableaThenotation“KaplanandTarakciogluoutof1984) – RcSCuppiroaweoaolwptmivitcooezipodrnretamerrcolsfiapoo—sfnaosrtdtnhnast.iem,heIpwesITo,eThnMwrcMigcookFhFnrio’llssodit(ush2g’(lse2tb0rara01atnme1s0ctxe0s)odt,.)osilItafoeITnnncMpdtioenrdromFdtanedutapxiausstottciicronaltioenneemasnatniltrnisbadnPt—daegrseoroneoffdrdaavoustteihmsciornoetvnicoiiaeZcninalwodütasiiCrsosvtisconiodoohss-f-ft,, 3 Table3 Cottonweaving:datafromliteratureandprivatecommunications 3 8 Processstep/source Quantity Specificationof Specification Yarn Yarn Electricity Steam Natural Liquefied Diesel Light Heavy Hard Water processand/or ofproduct count count (kWh) (MJ) gas(MJ) petroleum (MJ) fueloil fueloil coal (L) extraremarks (CO=cotton) (den) (dtex) gas(MJ) (MJ) (MJ) (MJ) Fabricmanufacturing Warpingandsizing Yarn Palamutcu(2010) 1kg SECisrelativelylowcomparedto Warpyarn 0.01 steamandheat Weaving Fabric ITMF(2010) 1kg Meanof96Sultexair-jetweaving Fabricof27.6/27.6 180 200 4.38 machinesB190N2EP11,air threads/cm,Ne30 conditioning,weaving inwarpandweft, preparation,clothinspection, graywidth168cm, transportationunits,warpbeam grayweight190g/m diameter1,000mm,cloth beamdiameter600mm ITMF(2010) 1kg Meanof72Sultexair-jetweaving Fabricof24.0/24.0 265 300 2.97 machinesB190N2EP11,air threads/cm,Ne20 conditioning,weaving inwarpandweft, preparation,clothinspection, graywidth transportationunits,warpbeam 168cm,gray diameter1,000mm,cloth weight248g/m beamdiameter600mm Confidentialsource 1kg WeavingwithsizinginSweden+ 2.65 1.66 1.53 no.7 averageofthreemillsproducing CO,Trevira,andwool/PA Confidentialsourceno. 1kg 1.82 1.66 1.53 7,lowestvalue Confidentialsourceno. 1kg 4.19 1.66 1.53 7,highestvalue Dahllöf(2004),Laursen 1kg Totalenergydemandrangesbetween 10and30MJ—nobreakdown reported Kallialaand 1kg Includessingeingandsizingenergy Talvenmaa(1999) (electricity)consumption—5.4 In t MJ—nobreakdownreported J L Kimetal.(1983) 1kg Weavingenergyusageperunit 4.76 ife production(kWh/kg)>nospecific C material;1972reporteddata yc Kimetal.(1983) 1kg Weavingenergyusageperunit 3.86 le A production(kWh/kg)>nospecific s s material;1980reporteddata es s Kimetal.(1983),Van Pershirt Energyrequirementstoproducethe Clothmanufacture 18.50 (2 Winkle,1978 shirtingmaterialfor1shirtin 100%CO 0 1 kWhoffossilfuelequivalents 4) (1shirtrequires2,368m/m2of 19 fabricandtheCOshirtweighs :3 3 308g;CO/PET270gand 1– PET240g) 35 6 Table3 (continued) In t J L Processstep/source Quantity Specificationof Specification Yarn Yarn Electricity Steam Natural Liquefied Diesel Light Heavy Hard Water ife processand/or ofproduct count count (kWh) (MJ) gas(MJ) petroleum (MJ) fueloil fueloil coal (L) C extraremarks (CO=cotton) (den) (dtex) gas(MJ) (MJ) (MJ) (MJ) yc le A Kimetal.(1983),Van Pershirt Clothmanufacture 20.20 s s Winkle,1978 50/50PET/CO es s Kimetal.(1983),Van Pershirt Clothmanufacture 20.20 (2 Winkle,1978 65/35PET/CO 0 1 Kimetal.(1983),Van Pershirt Clothmanufacture 7.30 4) Winkle,1978 100%PET 19 KoçandÇinçik(2010) 1kg Warping+sizing+drawing+air-jet 180 200 5.06 :3 3 weaving—SEC+9.85kJ/kg 1– forthermalenergy 35 6 (NWE=NWA=30Ne=180 Td=20tex) KoçandÇinçik(2010), 1kg Electricalenergyconsumptionfor 2.10 Tarakcioglu,1984 1kgofwovenfabric+8.3–17kJ/kg lowestvalue forthermalenergy=negligible (+sortnotspecified) KoçandÇinçik 1kg Electricalenergyconsumptionfor 5.60 (2010), 1kgofwovenfabric+8.3–17kJ/kg Tarakcioglu,1984 forthermalenergy=negligible lowestvalue (+sortnotspecified) KoçandÇinçik(2010), 1kg 2.2–25kJ/kgforthermalenergy= 5.75 Visvanathan,2000 negligible(+sortnotspecified) BahrDahrTextileShare 1kg Weavingrequireselectricity+ 9.44 4.50 9.07 Company(2010) compressedair+steam CollinsandAumônier kg Weavingincludingbeaming+winding 12.60 (2002) product forfabricforapairofpolyester trousers(=400g)takes12,60 kWh/kgproduct Cartwrightetal.(2011), 1kg Closed-offhigh-speedair-jetloom Oneshirt(65%PET/35% 1.35 Laursenetal.(2007) CO)weighs227g EDIPTEX Palamutcu(2010) 1kg SEC 1.80 SimaPro7.2educational, 1kg Weaving,cotton/GLOU,electricity, 7.08 Idemat2012,V0.0 lowvoltage,atgrid/CNU SimaPro7.2educational, 1kg Weaving,cotton/GLOU, 3.03 Idemat2012,V0.0 electricity,lowvoltage, productionRER Kuempers,2011, 1kg 60%CO+40%PES 10.63 personal communication Laursenetal.(2007) 1kg FromFig.3.3,6.8MJper Weavingoffabric 2.15 EDIPTEX 1workingjacketof770g of65%CO+35%PES (fabric877g) Processor,2011phase3 1kg 6.5kWh/10,000picks; 40PET/60 180 200 9.39 37picks/cm;160cmwidth CO+PESstaplefibers 3 3 9 340 IntJLifeCycleAssess(2014)19:331–356 WaterL) electric power per country. Using this information, it is ( possibletocalculatebackthepoweruse. Hardcoal(MJ) – An anonymous company (named “Processor, 2011 phaseX”inTables2,3,and4),whichisaproducerof HeavyueloilMJ) (amongothertextilefabrics)shirtmaterialandhaspro- f( ductionplantsinBelgiumandFrance. Lightfueloil(MJ) – T20h1e1c”ominpTanayblOee5r)l,ikwonhiBcharimsaagm(reefcehrarendictaolaesn“gBinaeremriangg, DieselMJ) cinogmmpaancyhionfefserfionrgminann-omvaatdiveefisbpeirnsn.ing linesandtextur- ( Liquefiedpetroleumgas(MJ) – TseenhtteeurpEprDiinsIePcslTowEseXhcicoshotupcdeoyrnabttiryoibnLuwtaeuidtrhswemnitohertecatohl.ma(nm201e05n7tDs),aownnihshipcrthoexdwtuialcest alMJ) models and processes or were directly involved in the ur( collection of data and contributed with data on, e.g., Natgas chemicals being used, energy consumption, and waste. A m eaMJ) lotof(recent)LCAstudies,e.g.,theMissionLinenreport St( (Cartwrightetal.2011),refertodatacontainedinthisreport. y cit Allcollecteddata(andnotonlythechosenones)forthegate- Electri(kWh) 19.50 tex) t6o-tgoaitnefporromduthcteiorneapdreorceasbsoeustaarellirnecsluuldtsedfrionmTatbhleesda2t,a3-c,o4l,le5c,tainngd Yarncount(dtex) 100 =1/591 a(3c.t3ivtiotie3s..7Tahnedc5h.2o)seannddaretandaererejdusintifiiteadlicinsitnhethfeolTloabwleinsg2,se3c,t4io,n5s, Yarncount(den) 90 1Ne and6. s, Note that the textile industry is using several systems to s e kn expressthethicknessofyarnwhichmustnotbeconfused.Two c ES thi importantunitsare“tex”(mostlyexpressedindtex=decitex=0.1 P n ecificationproductO=cotton) PET/60CO+staplefibers aunitforyar teveqaxul)uaealsntodin1“bdgoe/tn9hiekurmn.”it.sWIfahraeilseppr1eecsdieftniectxeadtiiosinneqtohufeayltaatrobnle1tsh.gic/1k0neksmsi,s1kndoenwnis, Spof(C 40 h( glis 3.3Spinningofcottonandpolymerfilament n E er For the spinning process of cotton, only electrical power is b m 48dth nu important for the LCA calculation (the maintenance of the s;wi Ne machinecanbeneglected,aswellasthemakingofit).The pickcm me, resultsfromthedatacollectionaresummarizedinTable2. Specificationofprocessand/orextraremarks 6.5kWh/10,000picks/cm;160 11amachinena stTfooparibaenIlt,hneuwiing2saegh.sleDeprcsaresootnanc(,eaecrpwslguspiydtrthoehdodxaeuitmmftarasoatnptmhedeilcnyptinhfe5ieerc0rakpy%tiihlaooyrongnsfrio(catlhfamoeltwh,dceweharythaadraiacreinhcnctiTecsteriaazixnbse)tl,bieiciesss2,sr)oee.thelfDaenttarehietdnea- P y E fromEcoinventisalsouselessforthesamereason. Quantit 1kg mption, sizeFiagnudrew2hischhowmseetthethdeaftoalloofwTianbgleth2ewcriittheraias:pecified yarn u 3 ns 1. Ismostrecent. e o d) has yc 2. Is for the specific energy consumption (SEC) spinning Table3(continue Processstep/source Processor,2011p SECspecificenerg 3ttih.oincFkpTrpnorheoemerscsekyFsiaiilsngron.ogd2frteh,ac1imii0tctekc0yxan%an.ersbnsceoiiscsttooiwnnnicv.tlheuridsneesldyctohppareot.pthoerteionneraglytocothnesuymarpn-

Description:
of the calculations is presented in four single indicators: Eco- costs 2012 LCA results of textile products over the whole value chain .. conception d.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.