ebook img

Layered Atom Arrangements in Complex Materials PDF

181 Pages·2005·6.1 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Layered Atom Arrangements in Complex Materials

LA-14205 Approved for public release; distribution is unlimited. Layered Atom Arrangements in Complex Materials This work was sponsored by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (OBES), Division of Materials Sciences and Engineering. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, appa- ratus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommenda- tion, or favoring by the Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Regents of the University of California, the United States Government, or any agency thereof. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. LA-14205 Issued: April 2006 Layered Atom Arrangements in Complex Materials Kurt E. Sickafus Robin W. Grimes* Siobhan M. Corish Antony R. Cleave* Ming Tang Chris R. Stanek Blas P. Uberuaga James A. Valdez *Department of Materials, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BP, UK Contents Section Name Page ABSTRACT.............................................................................................................. 1 I.1 Introduction: Background............................................................................... 2 Section I.1 References.................................................................................... 3 I.2 Introduction: The Basic Concepts for Layer Stacking of Triangular Atom Nets.................................................................................... 4 Section I.2 References.................................................................................... 16 II.1 Representative Crystal Structures: The Simplest Layering Motifs.................. 17 Section II.1 References.................................................................................. 24 II.2 Representative Crystal Structures: Crystallography........................................ 25 Section II.2 References.................................................................................. 26 II.3 Representative Crystal Structures: Layer Sequences....................................... 27 II.4 Representative Crystal Structures: Coordination Polyhedra ........................... 29 III.1 An Expanded Oxidation Sequence: Layering Motifs...................................... 33 III.2 An Expanded Oxidation Sequence: Partially Filled Triangular Atom Nets .... 34 Section III.2 References................................................................................. 39 III.3 An Expanded Oxidation Sequence: Crystallography...................................... 40 III.4 An Expanded Oxidation Sequence: Layer Stacking Sequences ...................... 44 III.5 An Expanded Oxidation Sequence: Lattice Parameters .................................. 65 III.6 An Expanded Oxidation Sequence: Coordination Polyhedra.......................... 66 IV.1 Real Materials: Introduction .......................................................................... 70 IV.2.1 Real Materials: MO Fluorite and M O Antifluorite ...................................... 71 2 2 Section IV.2.1 References.............................................................................. 72 IV.2.2 Real Materials: MX CdCl Structure............................................................. 73 2 2 Section IV.2.2 References.............................................................................. 76 IV.3 Real Materials: M O ................................................................................... 77 7 13 Section IV.3 References................................................................................. 84 IV.4 Real Materials: M O Pyrochlore .................................................................. 85 4 7 Section IV.4 References................................................................................. 94 IV.5 Real Materials: M O .................................................................................... 95 7 12 Section IV.5 References................................................................................. 103 IV.6.1 Real Materials: M O Sesquioxides ............................................................... 104 2 3 IV.6.2 Real Materials: A O Corundum ................................................................... 105 2 3 Section IV.6.2 References.............................................................................. 112 IV.6.3 Real Materials: A O C-Type Bixbyite .......................................................... 113 2 3 Section IV.6.3 References.............................................................................. 122 IV.6.4 Real Materials: A O A-Type Rare Earth ...................................................... 123 2 3 Section IV.6.4 References.............................................................................. 126 IV.6.5 Real Materials: ABO Perovskite .................................................................. 127 3 Section IV.6.5 References.............................................................................. 133 iii IV.7.1 Real Materials: M O Compounds................................................................. 133 3 4 IV.7.2 Real Materials: AB O Spinel........................................................................ 134 2 4 Section IV.7.2 References.............................................................................. 144 IV.7.3 Real Materials: A Hypothetical M O Compound.......................................... 145 3 4 Section IV.7.3 References.............................................................................. 147 V.1 A Generalized Geometrical Model ................................................................ 148 Section V.1 References.................................................................................. 158 V.2 Potential Applications for Layered Atom Stacking Concepts ......................... 159 Section V.2 References.................................................................................. 170 VI. Conclusions .................................................................................................. 171 List of Tables Table I.2-1............................................................................................................... 12 Table II.2-1.............................................................................................................. 25 Table II.2-2.............................................................................................................. 26 Table II.3-1.............................................................................................................. 28 Table III.3-1............................................................................................................. 40 Table III.4-1............................................................................................................. 44 Table III.4-2............................................................................................................. 47 Table III.4-3............................................................................................................. 55 Table III.4-4............................................................................................................. 56 Table III.4-5............................................................................................................. 64 Table IV.2.1-1.......................................................................................................... 71 Table IV.3-1............................................................................................................. 77 Table IV.3-2............................................................................................................. 78 Table IV.3-3............................................................................................................. 79 Table IV.4-1............................................................................................................. 86 Table IV.4-2............................................................................................................. 90 Table IV.4-3............................................................................................................. 94 Table IV.5-1............................................................................................................. 96 Table IV.5-2............................................................................................................. 97 Table IV.5-3............................................................................................................. 98 Table IV.5-4............................................................................................................. 102 Table IV.6.2-1.......................................................................................................... 105 Table IV.6.2-2.......................................................................................................... 107 Table IV.6.2-3.......................................................................................................... 112 Table IV.6.3-1.......................................................................................................... 114 Table IV.6.3-2.......................................................................................................... 117 Table IV.6.3-3.......................................................................................................... 118 Table IV.6.4-1.......................................................................................................... 123 Table IV.6.4-2.......................................................................................................... 124 iv Table IV.6.4-3.......................................................................................................... 126 Table IV.6.5-1.......................................................................................................... 128 Table IV.6.5-2.......................................................................................................... 129 Table IV.6.5-3.......................................................................................................... 131 Table IV.7.2-1.......................................................................................................... 135 Table IV.7.2-2.......................................................................................................... 137 Table IV.7.2-3.......................................................................................................... 139 Table IV.7.3-1.......................................................................................................... 146 List of Figures Figure I.2-1.............................................................................................................. 4 Figure I.2-2.............................................................................................................. 6 Figure I.2-3.............................................................................................................. 7 Figure I.2-4.............................................................................................................. 10 Figure II.1-1............................................................................................................. 18 Figure II.1-2............................................................................................................. 19 Figure II.1-3............................................................................................................. 21 Figure II.1-4............................................................................................................. 23 Figure II.1-5............................................................................................................. 24 Figure II.4-1...................................................................................................... 29–30 Figure III.2-1............................................................................................................ 35 Figure III.2-2............................................................................................................ 36 Figure III.2-3............................................................................................................ 38 Figure III.4-1............................................................................................................ 57 Figure III.4-2..................................................................................................... 58–63 Figure III.6-1............................................................................................................ 67 Figure IV.2.2-1........................................................................................................ 74 Figure IV.2.2-2................................................................................................. 75–76 Figure IV.3-1.................................................................................................... 81–83 Figure IV.4-1........................................................................................................... 87 Figure IV.4-2........................................................................................................... 88 Figure IV.4-3........................................................................................................... 93 Figure IV.5-1........................................................................................................... 100 Figure IV.5-2........................................................................................................... 101 Figure IV.6.2-1........................................................................................................ 109 Figure IV.6.2-2................................................................................................. 110–111 Figure IV.6.3-1........................................................................................................ 115 Figure IV.6.3-2........................................................................................................ 116 Figure IV.6.3-3........................................................................................................ 119 Figure IV.6.3-4........................................................................................................ 121 Figure IV.6.4-1........................................................................................................ .125 Figure IV.6.5-1........................................................................................................ .130 v Figure IV.6.5-2........................................................................................................ 132 Figure IV.7.2-1........................................................................................................ 136 Figure IV.7.2-2................................................................................................. 140–143 Figure IV.7.3-1........................................................................................................ 147 Figure V.1-1...................................................................................................... 149–152 Figure V.1-2............................................................................................................. 154 Figure V.2-1...................................................................................................... 159–160 Figure V.2-2............................................................................................................. 162 Figure V.2-3............................................................................................................. 163 Figure V.2-4............................................................................................................. 164 Figure V.2-5............................................................................................................. 166 Figure V.2-6............................................................................................................. 167 Figure V.2-7............................................................................................................. 168 vi Layered Atom Arrangements in Complex Materials Kurt E. Sickafus,1 Robin W. Grimes,2Siobhan M. Corish,1 Antony R. Cleave,2 Chris R. Stanek,1 Blas P. Uberuaga,1 and James A. Valdez1 1Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 2Department of Materials, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BP, UK ABSTRACT In this report, we develop an atom layer stacking model to describe systematically the crystal structures of complex materials. To illustrate the concepts, we consider a sequence of oxide compounds in which the metal cations progress in oxidation state from monovalent (M1+) to tetravalent (M4+). We use concepts relating to geometric subdivisions of a triangular atom net to describe the layered atom patterns in these compounds (concepts originally proposed by Shuichi Iida§). We demonstrate that as a function of increasing oxidation state (from M1+ to M4+), the layer stacking motifs used to generate each successive structure (specifically, motifs along a 3 symmetry axis), progress through the following sequence: MMO, MO, M O, MO O , MOO (where M r r u s s v and O represent fully dense triangular atom nets and r and u are fractions used to s v describe partially filled triangular atom nets). We also develop complete crystallographic descriptions for the compounds in our oxidation sequence using trigonal space group R3 . § S. Iida, “Layer Structures of Magnetic Oxides,” J. Phys. Soc. Japan 12 (3) 222–233 (1957) Abstract 1 I.1 Introduction: Background Much has been written regarding layered atom descriptions for crystalline solids. The subject is critical to many areas of crystallography, e.g., to describe polytypism and polysomatism, phenomena observed in numerous minerals and ceramics (see, for instance, [1,2]). One of the most noteworthy treatises on layer descriptions for oxides was published by Shuichi Iida in 1957 [3]. Iida introduced a graphical technique to subdivide triangular nets of atoms (often referred to as triangular Ising nets [4]) into subnets that mimic classic atomic arrangements such as the honeycomb lattice and the now famous kagome lattice [5].1,2 Iida demonstrated the efficacy of these subnets by providing simple descriptions for atomic arrangements in some exceptionally complex crystalline oxides. It is worth noting that while Iida was trying to understand magnetic properties, there are many more uses for his ‘layer’ model. The purpose of this report is to expand the layering concepts first proposed by Iida and to formalize the crystallography underlying Iida’s models. In this presentation, we will also introduce a new two-dimensional sublattice that Iida discounted in his original treatise. We will demonstrate the methodology underlying our layered atom concepts by considering a hypothetical oxidation sequence in a metal. 1 Kagome means, crudely, “woven basket” in Japanese. Mamoru Mekata published a recent letter in Physics Today [5] where he credited Kodi Husimi of Osaka University with introducing the descriptor kagome lattice to describe a new antiferromagnetic lattice he observed in a star-to-triangle transformation of a honeycomb lattice. This appellation first made print in 1951 in a paper by Itiro Syôzi, Husimi’s colleague [6]. 2 The use of the term “lattice” in this context is a misnomer. There are only five two-dimensional (plane) lattices [7], i.e., Bravais lattices, and these do not include the honeycomb or kagome lattices referred to here. However, we will (somewhat regrettably) hereafter perpetuate the terms “honeycomb lattice” and “kagome lattice,” as these are more or less accepted nomenclature in both past and present literature. 2 I.1 Introduction: Background

Description:
Layered Atom Arrangements in. Complex Materials. LA-14205. Approved for public release; distribution is unlimited.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.