ebook img

Laughlin's wave function, plasma analogies and the fractional quantum Hall effect on infinite PDF

136 Pages·2007·1.06 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Laughlin's wave function, plasma analogies and the fractional quantum Hall effect on infinite

Laughlin’s wave function, plasma analogies and the fractional quantum Hall effect on infinite cylinders vorgelegt von Diplom-Mathematikerin Sabine Jansen aus Paris Von der Fakult¨at II - Mathematik und Naturwissenschaften der Technischen Universit¨at Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. A. Bovier Berichter: Prof. Dr. R. Seiler Berichter: Prof. Dr. H. Schulz-Baldes Zus¨atzlicher Gutachter: Prof. Dr. E.H. Lieb Tag der wissenschaftlichen Aussprache: 22. Juni 2007 Berlin 2007 D 83 Zusammenfassung GegenstanddieserDissertationistdieUntersuchungvonLaughlinsWellenfunktionaufeinem Zylinder. Die Ergebnisse sind sowohl fu¨r die Theorie des fraktionalen Quanten-Hall-Effekts als auch fu¨r die klassische statische Mechanik geladener Teilchen in einem neutralisierenden Hintergrund von Interesse. Wir zeigen, dass Laughlins Wellenfunktion als “Quanten-Polymer-System” dargestellt werden kann. Die L2-Norm ist die Zustandssumme eines Polymersystems mit translations- invarianter Aktivit¨at. Die Aktivit¨at kann zu einer stabilen Aktivit¨at reskaliert werden. Das Polymersystem steht wiederum in engem Zusammenhang mit einem Erneuerungsprozess. Unter der Voraussetzung einer endlichen mittleren Wartezeit in diesem Prozess zeigen wir, dass Laughlins Zustand einen wohldefinierten thermodynamischen Limes besitzt. Dabei lassen wir die L¨ange des Zylinders bei konstanter Dichte und konstantem Radius gegen un- endlichgehen. DerGrenzzustandistinvariantundmischendbzgl. bestimmterTranslationen l¨angs der Zylinderachse. Bei Fu¨llfaktor 1/p ist die Periode gerade das p-fache der Periode des gefu¨llten Landaubandes. Fu¨r hinreichend du¨nne Zylinder zeigen wir, dass die Wartezeit des Erneuerungsprozesses tats¨achlich endlich ist und die soeben erw¨ahnte Periode auch die kleinste Periode ist. Weiter definieren wir modifizierte Zylinder- und Torusfunktionen, die ebenfalls in Ver- bindung zu Polymersystemen stehen. Die Definition verwendet Funktionen mit kompaktem Tr¨ager. Bei hinreichend kleinem Tr¨ager entspricht die Zylinderfunktion einem Monomer- Dimer-System, w¨ahrend die Torusfunktion einem Monomer-Dimer-System auf einem Ring, m¨oglicherweise noch mit einem zus¨atzlichen langen Polymer, entspricht. Dieses Monomer- Dimer-System ist explizit l¨osbar; Torus- und Zylinder- Monomer-Dimer- Funktionen sind im Limes langer Zylinder ¨aquivalent. WirgehenaufdieBedeutungunsererErgebnisseimSinnevonLaughlin’sPlasmaanalogie ein. Wirzeigen,dassimLimesdu¨nnerZylinderunsereErgebnissebzgl. derNormierungskon- stanten bzw. freier Energien und bzgl. der Einteilchendichten konsistent mit bekannten Ergebnissenu¨bereindimensionalePlasmasystemesind. Fernerzeigenwir,dassunsereSchran- ken u¨ber Normierungskonstanten gut zu Asymptotiken der freien Energien breiter halbperi- odischer Streifen passen. Laughlins Funktion bei Fu¨llfaktor 1/3 ist der exakte Grundzustand eines geeigneten Hamiltonoperators. Wirweisennach, dassGrundzusta¨nde diesesHamiltonoperatorsmitun- endlichvielenTeilchenbeiFu¨llfaktor1/3notwendigerweiseeineSymmetriebrechungaufweisen, wenn es eine Spektrallu¨cke u¨ber dem Grundzustand gibt. Schließlich betrachten wir ein einfaches Modell fu¨r Ladungstransport auf Zylindern und untersuchen den Zusammenhang zwischen der Periodizit¨at der Einteilchendichte und frak- tionalem Ladungstransport. iii Abstract We investigate Laughlin’s wave function on a cylinder. The results are of interest for the fractional quantum Hall effect and for the classical statistical mechanics of charged particles moving in a neutralizing background. We show that Laughlin’s cylinder function is related to a “quantum polymer” system. The L2-norm squared is a polymer partition function with translationally invariant activity. The activity can be rescaled to a stable activity. The polymer system is related to a renewal process. Weshowthatiftherenewalprocesshasfinitemean,Laughlin’sstateonthecylinder has a well-defined thermodynamic limit as the cylinder gets infinitely long, the radius being keptfixed. Thelimitingstateisinvariantandmixingwithrespecttoshiftsalongtheaxis. At filling factor 1/p, the period is p times the period of the filled Landau band. On sufficiently thin cylinders, we show that the associated renewal process has indeed finite mean and the period mentioned above is the smallest period. We define a class of modified torus and cylinder Laughlin-type wave functions. These are still associated with polymer systems. The definition uses functions of compact support. If the support is small, the cylinder function is associated with a monomer-dimer system, and the torus function with a monomer-dimer system on a ring with possibly one additional long polymer. The monomer-dimer case is solvable, and monomer-dimer cylinder and torus functions are equivalent in the limit of long cylinders. We interpret our result in view of Laughlin’s plasma analogy. We show that in the limit of thin cylinders, our results on normalization / free energies and the one-particle density are consistent with existing results on one-dimensional systems. We show that our bounds on normalization constants are consistent with large strip asymptotics of the free energy of a jellium system on a semiperiodic strip. Laughlin’s function at filling factor 1/3 is the ground state of a suitable Hamiltonian. We show that, on the cylinder, gapped infinite volume ground states of this Hamiltonian necessarily display a kind of translational symmetry breaking. Finally, we look at a simple model of bulk charge transport on the cylinder and examine the relationship between our symmetry breaking result and fractional charge transport. v Contents Zusammenfassung iii Abstract v Introduction 1 1 Laughlin’s wave function 5 1.1 Particles in a magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Laughlin-type wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Filled Landau level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Truncated interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Incompressibility and gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.6 Plasma analogies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2 Thermodynamic limits 29 2.1 Laughlin’s cylinder wave function . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.1.2 Associated polymer system . . . . . . . . . . . . . . . . . . . . . . . . 40 2.1.3 Normalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.1.4 Correlation functions and clustering . . . . . . . . . . . . . . . . . . . 57 2.1.5 Symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.2 Solvable models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 2.2.1 Generalized Laughlin wave functions . . . . . . . . . . . . . . . . . . . 77 2.2.2 Cylinder wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.2.3 Torus wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2.3 Jellium tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 2.3.1 Interpolation between one- and two-dimensional jellium . . . . . . . . 88 2.3.2 Minimal electrically neutral components . . . . . . . . . . . . . . . . . 91 2.4 A Lieb-Schultz-Mattis type argument. . . . . . . . . . . . . . . . . . . . . . . 94 3 Charge transport 103 3.1 Laughlin’s argument(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 3.2 Charge transport on a cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.2.1 Periodic boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 108 3.2.2 Spectral boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 113 Conclusion 121 Bibliography 123 vii Introduction The classical Hall effect, named after its discoverer E. Hall, is a well-known electrodynamic phenomenon: when a current I flows through a thin sheet of conducting material in the H form of a bar, subject to a magnetic field perpendicular to the sheet, a potential difference V between opposite sides of the bar appears. According to classical electrodynamics, the H Hallconductanceσ =I /V isalinearfunctionoftheration/B ofthearealchargecarrier H H H density and magnetic field strength. HundredyearsafterthediscoveryoftheHalleffect,K.vonKlitzingandhiscollaborators [KDP80] observed experimentally that at low temperatures, the Hall conductance is not a linear function of n/B; instead, it has plateaus where the conductance equals an integer multiple of a fundamental unit. This is the integer quantum Hall effect (IQHE). Later, plateaus at fractional multiples were found [TSG82], giving rise to the fractional quantum Hall effect (FQHE). Since their discovery in the early 1980s, the integer and fractional quantum Hall effects have spurred a wealth of research among experimental, theoretical and mathematical physi- cists. A large body of knowledge is now general consensus and can be found in one of the many books and reviews on the quantum Hall effect, see e.g. [PG87, Yos98, DDPR04]. A number of mathematical results are available (a good review can be found in [BvESB94]). Some questions are still controversial while others have well-accepted, but yet unproved an- swers. Meanwhile, the theory of the quantum Hall effect has reverberated on other fields, including quantum computation [Day05], models for Mott insulators [LL04], spin systems [KL87] and rotating Bose condensates [WGS98]. The integer quantum Hall effect is in general explained in terms of independent elec- trons (see however [SG04]). In contrast, electron interactions are of utmost importance for theunderstandingofthefractionaleffect. Consequently,theFQHEledtoanintenseresearch on the nature of the ground state of the electron gas in FQHE samples. Early numerical computations confronted theoreticians with an interesting phenomenon: the degeneracy of the ground state depends on the geometry of the sample. On rectangles with quasiperi- odic boundary conditions - i.e., tori - a degeneracy, associated to a translational symmetry breaking, was observed, whereas explicitly isotropic geometries like the disk and sphere had non-degenerate ground states (see [Hal85] and the references therein). The degeneracy of FQHE ground states on tori was initially dismissed as physically irrelevant [Hal85]. Later, the very fact that degeneracy depends on geometry has been considered as an intrinsic fea- ture of FQHE systems, in close connection with the notion of topological order now popular among physicists [WN90]. From a more mathematical point of view however, it is not very suprising that boundary conditions affect the finite volume degeneracy, and the interesting question is whether infinite volume ground states are degenerate or not. Today, it is widely accepted that electrons at FQHE fractions form an “incompressible quantumfluid”whosebulkpropertiesarewelldescribedbyLaughlin’swavefunction[Lau83]. 1 2 INTRODUCTION The wave function has been initially proposed to describe electrons on a disk, but since then has been adapted to the cylinder [Tho84], torus [HR85b] and sphere [Hal83]. Laughlin in- voked a plasma analogy to conclude that his disk function describes a homogeneous electron gas. While the existence of the thermodynamic limit of the free energy forCoulomb systems has been proved awhile ago [LL72], analytical results pertaining tocorrelation functions are more sparse, see the review by Brydges and Martin [BM99]. The homogeneity of the plasma related to Laughlin’s function follows from numerical results; proofs are to our knowledge still missing. ThepresentworkisdevotedtothestudyofLaughlin’swavefunctiononacylinder. This choice is motivated by the use of the cylinder geometry in another famous contribution by Laughlin [Lau81], which has now come to be known as Laughlin’s argument. Let us briefly sketch the main mathematical problem underlying this thesis. Consider the function Ψ of N N complex variables z =x +iy defined through j j j ΨN(z1,..,zN):= (ezj/R ezk/R)pe−21PNj=1x2j, − 1 j<k N ≤Y≤ where R is a positive number and p an odd integer. The function Ψ has the period 2πR in N each y . Thus we may consider that it describes a gas of N electrons moving on a cylinder j of radius R. The position of each particle is specified by a complex number z =x+iy; x is the coordinate along the cylinder axis, y is an angular variable. Ψ is Laughlin’s cylinder N wave function. The density of the gas at position z is N ρ (z)= Ψ (z,x +iy ,..,x +iy )2dx dy ..dx dy . N ||ΨN||2L2 Z(R×[0,2πR])N−1| N 2 2 N N | 2 2 N N Onecanshowthatthedensityisafunctionofthecoordinatexaloneanddecaysexponentially outside [0,pN/R]. Thus Laughlin’s cylinder function describes a gas of electrons living on a finitecylinder. Thequantityν =1/pisrelatedtotheaveragedensityandiscalledthefilling factor. At filling factor 1/p = 1 (referred to as the filled Landau level), the density can be computedexplicitlyandisasumofequallyweightedGaussians centeredinintegermultiples of 1/R. The following conjecture pertaining to p>1 is at the heart of the present work: In the limit N , well in the middle of the finite cylinder, the electronic → ∞ density approaches a function of the coordinate along the cylinder axis that is periodic with minimal period p/R. We will be interested not only in the one-particle density but also in other correlation func- tions. We will look at the problem both in the FQHE context and from the point of view of classical Coulomb systems. The question of non-trivial periodicity on the cylinder is motivated by the combination of the contributions of Laughlin to the integer [Lau81] and the fractional [Lau83] quantum Hall effect. In [Lau81], Laughlin uses a the cylinder geometry and gauge invariance argu- ments to explain the IQHE. It has been suggested [TW84] that a ground state degeneracy is required on cylinders in order to reconcile Laughlin’s argument with fractionally quantized Hall conductances; the simplest picture is a p-fold degeneracy associated to a p-fold transla- tionalsymmetry breaking, as conjecturedforLaughlin’s cylinderstate. This ratherheuristic connection between ground state degeneracy is rigorously established for systems on tori. In the Chern number approach, fractional quantization of the Hall conductance implies ground

Description:
Laughlin's function at filling factor 1/3 is the ground state of a suitable .. Laughlin's wave function was introduced as an approximate ground state for S.G. Brush, H.L. Sahlin, and E. Teller, Monte Carlo Study of a One- H.M. Farkas and I. Kra, Theta Constants, Riemann Surfaces and the Modu-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.