ebook img

Lattice-type self-similar sets with pluriphase generators fail to be Minkowski measurable PDF

1.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lattice-type self-similar sets with pluriphase generators fail to be Minkowski measurable

LATTICE-TYPE SELF-SIMILAR SETS WITH PLURIPHASE GENERATORS FAIL TO BE MINKOWSKI MEASURABLE SABRINAKOMBRINK,ERINP.J.PEARSE,ANDSTEFFENWINTER 5 1 0 Abstract. A long-standing conjecture of Lapidus claims that under certain conditions, 2 self-similar fractal sets fail to be Minkowski measurable if and only if they are of lat- ticetype. ThetheoremwasestablishedforfractalsubsetsofRbyFalconer,Lapidusand n v.Frankenhuijsen,andtheforwarddirectionwasshownforfractalsubsetsofRd,d ≥2, a byGatzouras.Sincethen,muchefforthasbeenmadetoprovetheconverse.Inthispaper, J weproveapartialconversebymeansofrenewaltheory. Ourproofallowsustorecover 5 severalpreviousresultsinthisregard,butismuchshorterandextendstoamoregeneral 1 setting;severaltechnicalconditionsappearinginpreviousversionsofthisresulthavenow beenremoved. ] R P . h 1. Introduction t a We address the Minkowski measurability (see Def. 2.1) for self-similar sets in Rd. In m particular,weattempttocharacterizethispropertyintermsofthelatticepropertiesofthe [ underlying iterated function system (IFS). Let S = {S ,...,S } denote an IFS in which 1 N 1 eachSi isacontractivesimilarityactingonRd,calledaself-similarsysteminthesequel. v Further,letF ⊆Rd denotetheself-similarsetwhichistheuniquenon-emptycompactset 4 satisfying F = (cid:83)N S F; see[Hut81]. IfthescalingratioofS isdenotedbyr,thenthe 76 IFSissaidtobelai=t1ticei ifthereisanr > 0suchthateachri canibewrittenasrkiiforsome integerk ∈N(seeDef.2.13),otherwise,theIFSissaidtobenonlattice. 3 i 0 For d = 1, it was proven (see [Fal95, LvF12, KK12]) under very general conditions . that F is Minkowski measurable if and only if the IFS is nonlattice. These conditions 1 include that the Minkowski dimension D of F lies strictly between 0 and 1, and that the 0 5 IFS satisfies the open set condition (OSC), see Def. 2.2. It was conjectured in [Lap93, 1 Conj. 3] that this equivalence statement should remain true for d ≥ 2, when d − 1 < v: D < d. In [Gat00], Gatzouras was able to prove and strengthen (under the OSC) one i direction of this conjecture, namely, that for arbitrary d ∈ N and D ∈ (0,d), the self- X similar attractor F ⊂ Rd is Minkowski measurable when the IFS is nonlattice. It is an r openproblemtoprovetheconverse,andthishasbeenaveryactivearea;see,forexample, a [LP10, LPW11, LPW13, RW13, Kom11, DKO¨+13]. Our results in this paper give some further progress towards establishing the converse, i.e., showing that the attractor of a latticeself-similarsystemisnotMinkowskimeasurable. Atthesametimewedemonstrate thatitisessentialtoexcludesetsofintegerMinkowskidimension Dfromtheconjecture butthatitisplausibletoextendLapidus’conjecturetothesettingofnon-integerD∈(0,d); seeRem.1.2. 2010MathematicsSubjectClassification. Primary: 11M41,28A12,28A75,28A80,52A39,52C07,Sec- ondary:11M36,28A78,28D20,42A16,42A75,52A20,52A38. Keywordsandphrases. Self-similarset,latticeandnonlatticecase,Minkowskidimension,Minkowskimea- surability,Minkowskicontent. VersionofJanuary16,2015. 1 2 SABRINAKOMBRINK,ERINP.J.PEARSE,ANDSTEFFENWINTER Weworkinasettingwhichincludes–tothebestofourknowledge–alltheprevious casesinwhichtheMinkowskimeasurabilityoflatticeself-similarsetshasbeenaddressed (see the detailed discussion at the very end of the introduction) and which extends the class of sets covered in several directions. For instance, we do not require the set F to possess a compatible feasible open set O satisfying the OSC, that is, one which satisfies bdO ⊂ F. Thisallowsinparticulartotreatself-similarsetsofanyMinkowskidimension DandremovestheassumptionD>d−1,whichispresentinallpreviousworkknownto theauthors. Insteadofcompatibility,wewillassumethroughoutthatthefeasibleopenset Oweworkwithsatisfiesthefollowingadditionalconditions: • (StrongOSC)O∩F (cid:44)∅; • (Projectioncondition)S O⊆π−1(S F)fori=1,...,N. i F i Here π denotes the metric projection onto F (see Def. 2.7) and A denotes the closure F of A ⊂ Rd. It follows from results in [BHR06] that one can always find a feasible open set satisfying both the strong OSC (SOSC) and the projection condition whenever OSC is satisfied (the “central open set”; see Rem. 2.8). Therefore, these two conditions alone do not restrict at all the class of self-similar sets considered; they should be seen as a convenientchoiceoffeasibleopensetwemakeinordertosimplifytheproblem. Theonly further (rather restrictive) assumption we require is the following. We suppose that the ε-parallelsetF ofF (see(2.1))iswell-behavedintheset ε (cid:91)N Γ=Γ(O):=O\ S O. (1.1) i i=1 Moreprecisely,itisrequiredthattheparallelvolumeλ (F ∩Γ)ofFrestrictedtothesetΓ d ε (whereλ isLebesguemeasure)ispiecewisepolynomialinthevariableε. Inthiscasewe d calltheset F pluriphasewithrespecttoΓ(andwecall F monophasewithrespecttoΓif thisparallelvolumeisapolynomial),seeDef.2.9andthediscussionafterwardsfordetails. Thepluriphaseconditionisasimplifyingassumptiononthegeometryof F whichwould ideallyberemovedinfuturework. Note: thedefinitionsofpluriphaseandmonophaseare extended here to the present more general setting. In case of a compatible feasible set it reduces to the pluriphase/monophase assumption made in earlier work on this topic, e.g. in[DKO¨+13,Kom11,LPW13].). SeealsoRem.2.11. Themainresultsofthispaperaresummarizedinthefollowingstatement. Theorem 1.1. Let F ⊂ Rd be a self-similar set which is the attractor of a lattice self- similarsystemS = {S ,...,S }, N ≥ 2satisfyingtheOSC.Let D := dim F denoteits 1 N M Minkowskidimension. (i) IfD=dimaffF (wherethelatteristhedimensionoftheaffinehullofF),thenF isMinkowskimeasurable. Inparticular,thisistrueforD=d. (ii) SupposeD<disnotanintegerandthereexistsastrongfeasiblesetOsatisfying the projection condition such that F is pluriphase with respect to the set Γ(O). ThenF isnotMinkowskimeasurable. (iii) SupposeD<disanintegerandthereexistsastrongfeasiblesetOsatisfyingthe projectionconditionsuchthatF ispluriphasewithrespecttothesetΓ(O). Then FisMinkowskimeasurableifandonlyifcertainalgebraicrelationsinvolvingthe dataofthepluriphaserepresentationaresatisfied. Inparticular,theserelations areneversatisfiedinthecasewhenF ismonophasewithrespecttoΓ(O). Part(ii)isreformulatedandprovedinThm3.4;amorepreciseformulationofpart(iii), thecasewhen Disaninteger,isgiveninThm3.6. Westressthatinthesituationofpart LATTICENONMEASURABILITYINTHEPLURIPHASECASE 3 (iii)bothcasesarepossible: latticesetsinRd ofintegerMinkowskidimensionD < dcan beMinkowskimeasurableornot;seeRem.1.2. Asforpart(i),wecangiveashortproofimmediately. ProofofThm.1.1(i). As a function of ε, the tubular volume λ (F ) is continuous and d ε strictlyincreasingon(0,∞)foranycompactsetF ⊆Rd,andthusM (F):=lim λ (F )= d ε(cid:38)0 d ε λ (F); seeDef.2.1forthefulldefinitionofMinkowskicontentM . Inotherwords, the d d limit must exist and it is not difficult to see that it coincides with λ (F). Now, if F is a d self-similar set with dim F = d satisfying OSC, then it is well known that F has in- M terior points (see e.g. [Sch94, PW12]) and therefore M (F) = λ (F) > 0 . Thus F d d is Minkowski measurable as claimed. Now, if F ⊆ Rd is a self-similar set such that dim F = dimaffF, then Minkowski measurability follows from working in the affine M hull and observing that Minkowski measurability is independent of the dimension of the ambientspace;cf.[Res13,Kne55]andthereferencestherein. (cid:3) Remark1.2. Theaboveproofindicatesthatifdim F = dimaffF,then F isMinkowski M measurableregardlessofwhetheritislatticeornonlattice. Thesignificanceofthispoint isasfollows: onemaybenaturallyledtosupposethattheoriginalconjectureofLapidus maybeextendedtoincludesetswithMinkowskidimensionD∈(0,d)(insteadofrequiring D ∈ (d−1,d), but Thm. 1.1(i) shows there are (somewhat trivial) counterexamples with dim F =dimaffF. ForthecasewhenD<disaninteger(asinThm.1.1(iii)),aclassof M examplesofMinkowskimeasurablelatticesetsisdiscussedinSec.4,Ex.1. Atthispoint, allknownexamplesofthistypecanberepresentedastheembeddinginRdofaself-similar setinRD. Itmaywellbethatthisistheonlywaysuchathingispossible. The proofs of the other parts of Thm. 1.1 are obtained using the elementary tools of probabilistic renewal theory. These are combined with recent results in [Win14], where the projection condition was observed to be essential for deriving renewal equations in termsofthegeneratorofanassociatedtiling. Basedontherenewaltheorem,weobtainin Thm.3.1andCor.3.2acharacterizationofMinkowskimeasurabilityintermsofaperiodic function p(see(3.2))whichcanbeexpressedcompletelyintermsoftheparallelvolume λ (F ∩Γ)ofFrestrictedtoΓ.Thisresultmaybeofindependentinterestforfutureworkas d ε itdoesnotrequirethepluriphaseconditionandthusappliestoall(nontrivial)self-similar sets. Weusethisresulttoproveourmainresults,thenon-Minkowskimeasurabilityinthe casewhenF ispluriphasew.r.t.thesetΓ,byexploitingandrefininganideain[Kom11]. Beforemovingontotheresults,weexplaininmoredetailtheimprovementsobtained here compared to previous results from [DKO¨+13, Kom11, LPW13]. The assumptions of [Kom11] and [LPW13] only differ slightly, and combining [Kom11, Thm. 2.38] with [LPW13, Thm. 5.4] the resulting nonmeasurability result applies to the case when the followingrequirementsaremet: (a) Theopensetcondition(seeDef.2.2)holdsforafeasibleopensetOwithbdO⊆ F,whichinparticularimpliesd−1< D<d. (b) TheD-dimensionalouterMinkowskicontentofOisfinite(see[LPW13,Def.5.2]). (c) ThegeneratorG =O\(cid:83)N S O(seeDef.2.5)hasonlyfinitelymanyconnected i=1 i components. (d) EachconnectedcomponentofthegeneratorGismonophase(seeDef.2.9). In our main result, Thm. 1.1, we remove (a)–(c), and replace (d) with the more general conditionthat F ispluriphasew.r.t.Γ. Thesignificanceofremoving(a)isthattheresults of the present paper (in particular, Thm. 1.1) cover sets of any Minkowski dimensions D ≤ d. Other notable improvements of the present article are the comparatively shorter 4 SABRINAKOMBRINK,ERINP.J.PEARSE,ANDSTEFFENWINTER andsimplerproofsbasedonprobabilisticrenewaltheory. In[LPW13],themorepowerful (butalsomorecomplicated)apparatusoffractalspraysandcomplexdimensionswasused; theapproachtakenin[Kom11]usesrenewaltheoryinsymbolicdynamics(motivatedby [Lal89]) yielding results for the more general class of self-conformal sets. When the re- newaltheoremforsymbolicdynamicsisrestrictedtotheself-similarsetting,itboilsdown to the probabilistic renewal theorem (as used in [Lal88]) which we apply directly here. This direct application makes the proofs significantly shorter and simpler. It should be notedthatundertheadditionalassumptionthatOcoincideswiththeinterioroftheconvex hullofF,aresultsimilarto[LPW13,Thm.5.4]/[Kom11,Thm.2.38]wasindependently provenin[DKO¨+13]usingMellintransforms. See[DKO¨U¨13a,DKO¨U¨13b,DKO¨U¨14]for furtherinterestingandrelatedresults. The structure of the article is as follows. In Sec. 2 we lay the foundations for stating and proving our main results in Sec. 3. The final section, Sec. 4, is devoted to examples demonstratingourfindings. 2. Preliminaries Wepresenttheterminologyrequiredtostateandproveourmaintheorems. 2.1. Minkowski measurability. Let A be a compact subset in Euclidean space Rd and ε≥0. Theε-parallelsetofA(orε-tubularneighborhoodofA)is A (cid:66){x∈Rd :d(x,A)≤ε}, (2.1) ε whered(x,A)(cid:66)inf{(cid:107)x−a(cid:107):a∈ A}istheEuclideandistanceofxtothesetA. AtubeformulaforAisanexplicitformulaforλ (A ),asafunctionofε,whereλ de- d ε d notesthed-dimensionalLebesguemeasure;see[LP10,LPW11,LPW13]foradiscussion of fractal tube formulas. The volume λ (A ) is referred to as the ε-parallel volume of A d ε andwecallλ (A ∩B)theε-parallelvolumeofAinsideBforanyBorelsetB⊆Rd. d ε Definition 2.1. Let A be a compact subset of Euclidean space Rd. For 0 ≤ α ≤ d, we denoteby M (A)(cid:66) lim εα−dλ (A ) (2.2) α d ε ε→0+ theα-dimensionalMinkowskicontentofAwheneverthislimitexists(asavaluein[0,∞]). IfM (A)existsandsatisfies0 < M (A) < ∞,thenAiscalledMinkowskimeasurable α α (of dimension α), and dim A (cid:66) α is the Minkowski dimension of A. If the limit in M (2.2) does not exist, one may consider the logarithmic Cesa`ro average known as the (α- dimensional) average Minkowski content (which always exists in the case of self-similar setsA,see[Gat00]). Itisdefinedby 1 (cid:90) 1 dε M (A)(cid:66) lim εα−dλ (A ) . α δ→0+ |lnδ| δ d ε ε wheneverthislimitexists. 2.2. Self-similartilingsandtheirgenerators. LetS = {S ,...,S }, N ≥ 2beaniter- 1 N atedfunctionsystem(IFS),whereeachS isasimilaritymappingofRd withscalingratio i r,where0<r <1. ThenwecallS aself-similarsystem. ForA⊆Rd,wewrite i i (cid:91)N SA(cid:66) S (A). (2.3) i i=1 LATTICENONMEASURABILITYINTHEPLURIPHASECASE 5 Theself-similarsetFgeneratedbytheIFSS istheuniquecompactandnonemptysolution ofthefixed-pointequationF =SF;cf.[Hut81],alsocalledtheattractorofS. We study the parallel volume of the attractor by studying the parallel volume inside a certaintilingofitscomplement,whichisconstructedviatheIFSasdescribedbelow. The tilingconstructionwasintroducedin[Pea07]anddevelopedin[PW12], wheretilingsby opensetswerestudied;seealso[Pea06,LP10,LPW11,LPW13].Inthispaperweconsider self-similar tilings in a generalized sense, with the tiles not necessarily being open (see Def.2.5). Theconstructionofaself-similartilingrequirestheIFStosatisfytheopenset conditionandanontrivialitycondition,asdescribedinthefollowingtwodefinitions. Definition 2.2. A self-similar system S = {S ,...,S } satisfies the open set condition 1 N (OSC)ifandonlyifthereisanonemptyopensetO⊆Rd suchthat S (O)⊆O, i=1,...,N and i (2.4) S (O)∩S (O)=∅, i(cid:44) j. i j Inthiscase,Oiscalledafeasibleopenset for{S ,...,S }; see[Hut81,Fal03,BHR06]. 1 N IfadditionallyO∩F (cid:44)∅,thenOiscalledastrongfeasibleopenset. Itwasshownin[Sch94]thatifaself-similarsystemsatisfiesOSC,thenitpossessesa strongfeasibleopenset. Definition 2.3. A self-similar set F, which is the attractor of a self-similar system S = {S ,...,S } satisfying OSC, is said to be nontrivial if there exists a feasible open set O 1 N suchthat O(cid:42)SO, (2.5) whereSOdenotestheclosureofSO;otherwise,F iscalledtrivial. This condition is needed to ensure that the set Γ = O\SO in Def. 2.5 has nonempty interior. ItturnsoutthatnontrivialityisindependentoftheparticularchoiceofthesetO. It isshownin[PW12]thatF istrivialifandonlyifithasnonemptyinterior,whichamounts tothefollowingcharacterizationofnontriviality: Proposition2.4([PW12,Cor.5.4]). LetF ⊆Rdbeaself-similarsetwhichistheattractor ofaself-similarsystemsatisfyingOSC.ThenFisnontrivialifandonlyifFhasMinkowski dimensionstrictlylessthand. Unless explicitely stated otherwise, all self-similar sets considered here are assumed to be nontrivial, and the discussion of a self-similar tiling T implicitly assumes that the correspondingattractorF isnontrivialandthatthecorrespondingsystemsatisfiesOSC. Denotethesetofallfinitewordsformedbythealphabet{1,...,N}by (cid:91)∞ W (cid:66) {1,...,N}k. (2.6) k=0 Foranywordw = w w ...w ∈ W,letr (cid:66) r ·...·r andS (cid:66) S ◦···◦S . In 1 2 n w w1 wn w w1 wn particular,ifw∈Wistheemptyword,thenr =1andS =Id. w w Definition2.5. LetObeafeasibleopensetfor{S ,...,S }. Theself-similartilingT(O) 1 N associatedwiththeIFS{S ,...,S }isthecollectionofopensets 1 N T(O)(cid:66){Sw(G)...w∈W}, (2.7) where the open set G (cid:66) O\SO is called the generator of the tiling. We call the tiling T(cid:101)(O)(cid:66){Sw(Γ)...w∈W}generatedby Γ=Γ(O)(cid:66)O\SO, (2.8) 6 SABRINAKOMBRINK,ERINP.J.PEARSE,ANDSTEFFENWINTER O G S(G) S2(G) S3(G) (O) O G S(G) S2(G) S3(G) S4(G) (O) O G S(G) S2(G) S3(G) (O) Figure 1. Fromtoptobottom: aKochcurvetiling, aSierpinskigaskettiling, anda Sierpinskicarpettiling. Ineachoftheseexamples,thesetOistheinterioroftheconvex hullofF,andthesetFismonophasew.r.t. Γ(seeDef.2.9). TheKochcurvetilingdoes notsatisfythecompatibilitycriterionbdO⊆Fbuttheothertwoexamplesdo. aself-similartilinginageneralizedsense,withthetilesnotnecessarilybeingopen. Remark2.6. Self-similartilingsgeneratedbyGwereintroducedin[Pea06,Pea07,PW12] and further studied in [LP08, LP10, LPW11, LPW13, DDKU¨10, DKO¨U¨14, DKO¨+13, KR12]. Thenomenclaturestemsfromthefact(provedin[PW12,Thm.5.7])thatT(O)is anopentilingofOinthesensethat (cid:91) O= S (G), (2.9) w w∈W wherethetilesS (G)arepairwisedisjointopensets. w We will find it more useful to work in terms of the set Γ instead ofG for most of the sequel. ObservethatG ⊆ ΓandthatΓ\G ⊂ (cid:83) bdS O. IfF isassumedtobenontrivial, i i thenthesetΓhasnonemptyinteriorandwelet g(cid:66)sup{d(x,F)... x∈Γ}=sup{d(x,F)... x∈G} (2.10) denote the maximal distance of a point in Γ to F. The reason for the use of Γ is that Lebesguemeasureisnotstablewithrespecttotheclosureoperation:onemayhaveλ (U)< d λ (U)foranopensetU ⊆Rd. Weremarkthat d (cid:91)n O=Γ∪SO=Γ∪SΓ∪S2O=···= SkΓ∪Sn+1O, (2.11) k=0 wherealltheunionsaredisjoint,andhence(2.9)implies (cid:91) O= S Γ. (2.12) w w∈W Therefore,T(cid:101)(O)fromDef.2.5givesatilingofO,wherethetilesS Γarepairewisedisjoint w butnotnecessarilyopen,justifyingthetermself-similartilinginageneralizedsense.Also, (2.11)allowsforthefollowingnicedecompositionoftheε-parallelvolumeoftheattractor whichisusedintheproofofThm.3.1: (cid:88)N λ (F )= λ (F ∩S O)+λ (F ∩Γ)+λ (F \O). (2.13) d ε d ε i d ε d ε i=1 LATTICENONMEASURABILITYINTHEPLURIPHASECASE 7 ThisrepresentationisparticularlyusefulforsetsOsatisfyingtheprojectioncondition. Definition 2.7. For a compact set A ⊆ Rd, we let π denote the metric projection onto A A. It is defined on the set of points x ∈ Rd which have a unique nearest neighbour y in Abyπ (x) = y. LetObeafeasibleopensetoftheself-similarsystem{S ,...,S }with A 1 N attractorF. ThenOissaidtosatisfytheprojectionconditionif S O⊆π−1(S F) fori=1,...,N. (2.14) i F i Iftheprojectionconditionissatisfiedthen F ∩S O=(S F) ∩S O (2.15) ε i i ε i foreachε>0andi=1,...,N (see[Win14,Lem.3.19]). Remark2.8. Thecentralopensetisaparticularchoiceoffeasibleopensetthatexistsfor anyIFSsatisfyingtheOSC;itisdefinedandstudiedin[BHR06]. Becauseofitsdefinition intermsofmetricprojections(see[BHR06]),itiseasytoseethatthecentralopensetwill always satisfy the projection condition. It is also clear that F is contained in the central open set, so the strong condition is also automatically satisfied. Therefore, it is always possibletofindastrongfeasibleopensetwhichsatisfiestheprojectioncondition,aslong astheOSCholds. Aproofofthesefactsisgivenin[Win14,Prop.3.17]. Definition 2.9. For a given IFS and a fixed feasible open set O, we call the attractor F pluriphasewithrespecttothesetΓ = Γ(O)(asdefinedin(2.8))ifandonlyifthereexists afinitepartitionoftheinterval(0,∞)withpartitionpoints0 =: a < a < ··· < a < 0 1 M−1 a :=gsuchthat,forε>0, M (cid:88)M (cid:88)d λ (F ∩Γ)= 1 (ε) κ εd−k+1 (ε)λ (Γ), (2.16) d ε (am−1,am] m,k (g,∞) d m=1 k=0 forsomeconstantsκ ∈R,where1denotesacharacteristicfunctionandgisasin(2.10). m,k We assume that the representation in (2.16) is given with M minimal, so that for each m = 1,...,M,thereexistsak ∈ {0,...,d}withκ (cid:44) κ . Imposingminimalityof M, m,k m−1,k wecallF monophasewithrespecttoΓifandonlyifM =1intheaboverepresentation. Remark2.10. Atthetimeofwriting,thereisnoknowncharacterizationofthepluriphase ormonophaseconditionsintermsoftheself-similarsystem{S }N . However,itisknown i i=1 from [KR12] that a convex polytope in Rd is monophase (with Steiner-like function of class Cd−1) iff it admits an inscribed d-dimensional Euclidean ball (i.e., a d-ball tangent toeachfacet). ThisincludesregularpolygonsinR2 andregularpolyhedrainRd,aswell as all triangles and higher-dimensional simplices. Furthermore, it was recently shown in [KR12]that(undermildconditions),anyconvexpolyhedroninRd (d ≥ 1)ispluriphase, therebyresolvingintheaffirmativeaconjecturemadein[LP08,LP10,LPW11]. Werefer to[KR12]forfurtherrelevantinterestingresults. Remark2.11. In[LP08,LP10]thenotionsmonophase,pluriphaseandthesymbol“g”were introduced for the generator of a self-similar tiling satisfying the compatibility condition bdO ⊆ F. The reader should be aware that these terms in the present paper only match previous usage in the literature for the case when bdO ⊆ F. In this context, the upper endpointgoftherelevantintervalinDef.2.9wasdefinedastheinradius(cid:101)gofG,i.e.,the maximal radius of an open metric ball contained in the set G. Moreover, the generator G (as a set) was called monophase if λd(G−ε) is polynomial in ε for ε ∈ (0,(cid:101)g), where G−ε := {x ∈ G ... d(x,Gc) ≤ ε} and pluriphase if λd(G−ε) is piecewise polynomial in ε 8 SABRINAKOMBRINK,ERINP.J.PEARSE,ANDSTEFFENWINTER SO O 3 SO SO 1 2 F G G F Ç G -e e Figure2. ASierpinskigaskettilingalternativetotheonefromFig.1.Here,Oisnotthe interioroftheconvexhullofF,butratherthecentralopensetdiscussedin[BHR06].The setFispluriphase(butnotmonophase)w.r.t. Γ,whilethesetΓ(asaset)ismonophase. Atright,thesets√Γ−ε(cid:66)(bdΓ)ε∩ΓandFε∩Γareshownforseveralvaluesofε.Forthis example,g=(2 3)−1and(cid:101)g=1/8;seeRem.2.11. Thisexamplewillbefurtherstudied inSec.4,Ex.2. forε ∈ (0,(cid:101)g). However, Fig.2showsanexamplewhereg (cid:44)(cid:101)gandwhereG (asaset)is monophasebutF isnotmonophasew.r.t.Γ. WereturntothisexampleinSec.4,Ex.2. It isclearthattheinradiusandthenotionsmono-andpluriphaseforsetsarenottheproper conceptforthesituationwherebdO (cid:42) F. Itisalsoclearfromthisobservationthat(2.10) andDef.2.9arethenaturalextensionstothepresent(moregeneral)setting. Remark2.12. Someexamplesofself-similartilingsassociatedtofamiliarfractalsetsare shown in Fig. 1. In each case, there is a connected monophase generator. In Fig. 2 an alternativetilingassociatedwiththeSierpinskigasketisprovided. Here, thegeneratoris notconnected. 2.3. Lattice,nonlatticeandtherenewaltheorem. Definition 2.13. Consider a family of similarity mappings S = {S ,...,S }, and let r 1 N i denotethescalingratioofS . Thefamilyissaidtobeoflatticetypeiffthereisanr > 0 i such that each scaling ratio ri can be written as ri = rki for some integer ki, and to be of nonlatticetypeotherwise. Thereisasmallestnumberr >0forwhichtheaforementioned representation can be found. We always use this minimal r, and we say that S is lattice withbaser. Anextendeddiscussionoftheimplicationsofthelattice/nonlatticedichotomymaybe foundin[LvF12,Thm.3.6]. Thelattice/nonlatticedichotomyalsoappearsinprobabilistic renewal theory, where the usual nomenclature is “arithmetic/nonarithmetic”. For more details,see[Fel68,§XIII],[Fal97,§7]or[Win08,§4]. For use in the sequel, we include here a version of the renewal theorem formulated foradiscreteprobabilitydistribution(cid:80)N pδ ,whereδ isapointmass(Diracmeasure) i=1 i yi y concentratedaty∈R. Thistheoremwillbeappliedtothedistribution (cid:88)N rDδ , (2.17) i yi i=1 whereDisthesimilaritydimensionofF. Thesimilaritydimensionistheuniquepositive realnumberαthatsatisfiestheMoranequationrα+rα+···+rα =1,i.e.,theuniqueD>0 1 2 N thatmakes(2.17)intoadiscreteprobabilitydistribution. Theorem2.14(RenewalTheorem(see[Fal97,Cor.7.3]or[Win08,§4]). Letp ,...,p ∈ 1 N (0,1) satisfy (cid:80)N p = 1, and let y ,...,y > 0. Let z : R → R be a function with a i=1 i 1 N discretesetofdiscontinuitieswhichsatisfies |z(t)|≤c e−c2|t|, forallt∈R, (2.18) 1 LATTICENONMEASURABILITYINTHEPLURIPHASECASE 9 for some constants 0 < c ,c < ∞. Also, let Z : R → R be the unique solution of the 1 2 renewalequation (cid:88)N Z(t)=z(t)+ pZ(t−y) (2.19) i i i=1 whichsatisfieslim Z(t)=0. Thenthefollowingholds: t→−∞ (i) If{y ,...,y }⊆h·Zandh>0ismaximalassuch,then 1 N h(cid:88) Z(t)∼ z(t−(cid:96)h), ast→∞. (2.20) η (cid:96)∈Z (ii) Iftheredoesnotexisth>0suchthat{y ,...,y }⊆h·Z,then 1 N 1(cid:90) ∞ limZ(t)= z(τ) dτ. (2.21) t→∞ η −∞ Here,η(cid:66)(cid:80)N y p. Moreover,inbothcases,wehave i=1 i i 1 (cid:90) T 1(cid:90) ∞ lim Z(t) dt= z(t) dt. (2.22) T→∞T 0 η −∞ In(2.20),thenotationg∼ f,ast→∞,meansthatgisasymptoticto f ast→∞inthe sensethatforanyδ>0,thereisanumbers= s(δ)forwhich (1−δ)f(t)≤g(t)≤(1+δ)f(t), forallt≥ s. (2.23) Remark 2.15. Iftheself-similarsystem{S ,...,S }islattice,thenthereexistr > 0and 1 N ki ∈ Nsuchthatri = rki,whereri denotesthescalingratioofSi fori = 1,...,N. Inthis case{−lnr ,...,−lnr } = {−k lnr,...,−k lnr} ⊆ −lnr·Zandthus,weareincase(i) 1 N 1 N of the renewal theorem. On the other hand, if {S ,...,S } is nonlattice, then we are in 1 N case(ii)oftherenewaltheorem. Remark2.16(Abriefdictionary). Therenewaltheoremaboveisgivenintermsoftheaddi- tivevariablet∈Rbutwillbeappliedinthecontextofthemultiplicativevariableε∈(0,g]. Forthereader’sconvenience,weofferthefollowingtranslationofsymbolscorresponding tothechangeofvariablesε=e−t: e−t t→∞ −lng≤t<∞ e−h t−(cid:96)h 1(t−lng) p h i ε ε→0 0<ε≤g r −ln(r−(cid:96)ε) −log (g−1ε) rD r i 3. Statementandproofofthemainresults InordertoproveThm.1.1,wefirstproveatheoremwhichprovidesinformationonthe asymptotic behavior of the parallel volume of the self-similar set F ⊆ Rd under weaker conditions. This intermediate result is of independent interest as it does not require the pluriphaseconditiontobesatisfied,andthusmayprovideanavenueforeventuallyremov- ingthishypothesis. Inanalogyto(2.23)wesaythat f ∼ gasε → 0iff f ◦h ∼ g◦has t →∞,whereh(t):=exp(−t). If f,g:(0,∞)→(0,∞)thisisequivalenttoassumingthat lim f(ε)/g(ε)=1. ε→0 Theorem 3.1. Let F ⊂ Rd be the attractor of a self-similar system S = {S ,...,S } 1 N satisfyingtheOSCandletr denotethecontractionratioofS fori=1,...,N. AssumeF i i 10 SABRINAKOMBRINK,ERINP.J.PEARSE,ANDSTEFFENWINTER isnontrivial(i.e.D := dim (F) < d). LetObeanarbitrarystrongfeasiblesetsatisfying M theprojectioncondition,Γ:=O\SOandgasin(2.10). IfS islatticewithbaserthen lnr εD−dλ (F )∼ p(ε), asε→0, (3.1) d ε (cid:80)N rDlnr i=1 i i where p:(0,g]→Risdefinedby (cid:88) p(ε)(cid:66)εD−d r(cid:96)(D−d)λ (F ∩Γ), forε>0. (3.2) d r(cid:96)ε (cid:96)∈Z Moreover,forε∈(rg,g], phasthealternativerepresentation   p(ε)=εD−drDλ−dd(Γ−)1 +(cid:88)∞ r(cid:96)(D−d)λd(Fr(cid:96)ε∩Γ). (3.3) (cid:96)=0 If one can show that the periodic function p is non-constant, then Thm. 3.1 implies that limsup εD−dλ (F ) > liminf εD−dλ (F ) and hence that F is not Minkowski ε→0 d ε ε→0 d ε measurable.Ontheotherhand,ifthefunctionpisconstant,then(3.1)impliesimmediately that F isMinkowskimeasurable. Notethatinbothcases pisastrictlypositivefunction. Thisisforinstanceobviousfrom(3.3)sincethefirsttermisstrictlypositiveandallterms inthesecondsummationarenon-negative. Wesavetheseimportantobservationsforlater use: Corollary3.2. UnderthehypothesisofThm.3.1,theself-similarsetFisMinkowskimea- surableifandonlyifthefunctionp(givenby(3.2)or(3.3))isconstant,thatis,p(ε)=Cfor someconstantC > 0andallε > 0. Moreover,inthiscasethe D-dimensionalMinkowski contentofF isgivenby lnr M (F)= ·C. D (cid:80)N rDlnr i=1 i i NotethatThm.3.1andCor.3.2applytoallnontrivialself-similarsetssatisfyingOSC. There is no monophase or pluriphase condition present and the projection condition on its own does not impose any restrictions. There exists always a strong feasible set O for whichitissatisfied,seeRem.2.8. Onlytrivialself-similarsetsareexcluded. Inthiscase, the statement of Thm. 3.1 does not make sense, since Γ = ∅ and thus p ≡ 0. But such setsarealwaysMinkowskimeasurableandthereisnoneedforastatementlikethis. (Note thatforatrivialself-similarsetF ⊂Rd,thed-dimensinoalMinkowskicontentisgivenby M (F)=λ (F).) d d ProofofThm.3.1. WedecomposetheparallelvolumeofF through λ (F )=λ (F \O)+λ (F ∩O). (3.4) d ε d ε d ε Forthefirstsummandontherighthandsideof (3.4), wenotethatSO ⊆ OsothatOc ⊆ SOc ⊆(SOc) . By[Win08,Cor.5.6.3]weknowthatthereexistc,γ>0suchthat ε λ (F ∩(SOc) )≤cεd−D+γ, forε∈(0,1). (3.5) d ε ε Note that it is this estimate which requires the hypothesis that O is a strong feasible set. Equation(3.5)impliesλ (F \O)≤cεd−D+γ,whence d ε limεD−dλ (F \O)=0. (3.6) d ε ε→0

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.