ebook img

Lasso peptides from Actinobacteria PDF

236 Pages·2017·11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lasso peptides from Actinobacteria

Lasso peptides from Actinobacteria - Chemical diversity and ecological role Jimmy Mevaere To cite this version: Jimmy Mevaere. Lasso peptides from Actinobacteria - Chemical diversity and ecological role. Biochemistry [q-bio.BM]. Université Pierre et Marie Curie - Paris VI, 2016. English. ￿NNT: 2016PA066617￿. ￿tel-01924455￿ HAL Id: tel-01924455 https://theses.hal.science/tel-01924455 Submitted on 16 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie ED 227 : Sciences de la Nature et de l’Homme : écologie et évolution Unité Molécules de communication et Adaptation des Micro-organismes (MCAM) / Equipe Molécules de défense et de communication dans les écosystèmes microbiens (MDCEM) Lasso peptides from Actinobacteria Chemical diversity and ecological role Par Jimmy Mevaere Thèse de doctorat de biochimie et biologie moléculaire Présentée et soutenue publiquement le 14 novembre 2016 Devant un jury composé de : Véronique Monnet Directeur de recherche Rapporteur Jean-Luc Pernodet Directeur de recherche Rapporteur Jean-Michel Camadro Directeur de recherche Examinateur Marcelino T. Suzuki Professeur Examinateur Sergey B. Zotchev Professeur Examinateur Séverine Zirah Maître de conférences Directrice de thèse Yanyan Li Chargée de recherche Codirectrice de thèse Acknowledgements At first, I would like to thank Séverine Zirah and Yanyan Li, my PhD supervisor, and Prof. Sylvie Rebuffat for having entrusted me as a candidate for the PhD scholarship with my little knowledge of molecular microbiology and how to best achieve science. I must acknowledge them for their support and guidance. Thank you for giving me the opportunity to work in this unique place which is MNHN and MCAM research lab. I want to thanks the members and colleagues of the laboratory for the very useful helps they provided me during these three years and for the discussion: Didier, Bastien, Sebastien, Stéphane, Soizic, Caroline, Alain P, Carine, Christine, Michel, Isabelle, Arlette, Marie-lise, Alyssa, Jean, Amandine, Linda, Benjamin M, Alain B, Alexandre and Séverine A. Particular thanks go to Jean-baptiste Rioux who welcomed me so nicely and who teaches me the basis of molecular biology at the bench. I must acknowledge the work and the help of Haiyan Ma who preceded me and started the heterologous expression lasso peptides. I want to thanks Christophe Goulard who helped me a lot with the cultivation and the purification of those tricky lasso peptides while I was battling against Streptomyces sviceus morphologies. Many thanks to Adrienne for support, advice and discussion. Many thanks go to the student who came in Yanyan’s team, Hortense, Maylis, Saravanane, Andrea, Paul and Victor. I want to acknowledge the other student and post-doc from the lab, Mehdi, Agathe, Béatrice, Marine, Alison, Benjamin, Wei, Anaïs, Ambre, Margot, Anne, Frédéric, Mélanie, Johann, Sophie, Natacha and Clara. I must acknowledge Manon and Laura for their help in microbiology, Soraya for qPCR experiments, and Lionel and Arul for mass spectrometry experiments. Many thanks to Nora, Djena and Brice for their helps in administration matters. Finaly my thanks go to my friends and my family, in particular Ten, la Mére, le Frére, la Soeur, Clémence, Yves, Emmanuel, Bastien, Rémi, Erwan, Marion, Morgane, Matthieu, Ly, Christophe, Raphaël, Dara, Jérôme, Mickael, for their support (Wanna have a beer?), guidance (Don’t do PhD fool) and encouragement during the past three years, in particular through the most difficult phases of the project. I II Abbreviations ABC transporter ATP-binding cassette transporter ACN Acetonitrile ACP Acyl carrier protein ACT Actinorhodin AT Acyltransferase ATP Adenosine triphosphate BGC Biosynthetic gene cluster bp Base pair C Cytosine CDA Calcium-dependent antibiotics cDNA Complementary cDNA CoA Coenzyme A Dha 2,3-didehydroalanine DHB 2, 5-dihydroxybenzoic acid Dhb (Z)-2,3-didehydrobutyrine DMSO Dimethyl sulfoxide DNA Deoxyribonucleic acid Dnase Deoxyribonuclease dsDNA Double-stranded DNA DTT Dithiothreitol EDTA Ethylenediaminetetraacetic acid ESI Electrospray ionization FA Formic acid G Guanine GBAP Gelatinase biosynthesis-activating pheromone GlcNAc N-acetylglucosamine HCCA α-cyano-4-hydroxycinnamic acid HK Histidine kinase HPLC High-performance liquid chromatography HTH helix-turn-helix KS β-ketoacyl synthase Lan meso-lanthionine III LC-MS Liquid chromatography-mass spectrometry LP Lasso peptide MeLan 3-methyllanthionine MIC Minimal inhibitory concentration M Molecular weight w NGS Next-generation sequencing NMR Nuclear magnetic resonance NRP Non-ribosomal peptide NRPS Non-ribosomal peptide synthase OCS One-component system OD Optical density PCR Polymerase chain reaction PKS Polyketide synthase PTM Post-translational modification qPCR Real-time quantitative polymerase chain reaction QS Quorum sensing Q-tof Quadrupole-time of flight RED Undecylprodigiosin RiPP Ribosomally synthesized and post-translationally modified peptide RNA Ribonucleic acid Rnase Ribonuclease rpm Revolutions per minute RR Response regulator rRNA Ribosomal ribonucleic acid RT-PCR Reverse transcription polymerase chain reaction SAM S-adenosylmethionine-dependent methyltransferase SARP Streptomyces antibiotic regulatory protein SDS Sodium dodecyl sulfate SEM Scanning electron microscopy SET SDS, EDTA, Tris buffer ssDNA Single-stranded DNA TCS Two-component system TE trishydroxyméthylaminométhane-EDTA Tm Melting temperature IV Table of contents Acknowledgements _________________________________________________________ I Abbreviations ____________________________________________________________ III Table of contents __________________________________________________________ V Figures __________________________________________________________________ IX Tables ___________________________________________________________________ XI List of Annexes _________________________________________________________ XIII Introduction ______________________________________________________________ 15 Literature review __________________________________________________________ 17 I. Microbial natural product discovery in the genomics era _____________________ 17 I.1. Diversity of microbial specialized metabolites _________________________ 17 I.2. From genes to molecules __________________________________________ 23 I.3. Streptomyces, a prolific metabolite producer ___________________________ 24 I.3.a. The life cycle of Streptomyces __________________________________ 26 I.3.b. Regulation of specialized metabolite biosynthesis in Streptomyces ______ 27 I.3.b.i Pathway-specific regulators __________________________________ 29 I.3.b.ii Pleiotropic regulators _______________________________________ 31 II. Ribosomally synthesized and post-translationally modified peptides ___________ 32 II.1. Diversity _______________________________________________________ 32 II.2. Lanthipeptides __________________________________________________ 34 II.2.a. Structure ___________________________________________________ 34 II.2.b. Biosynthesis ________________________________________________ 34 II.2.c. Classification ________________________________________________ 36 II.2.d. Biological activities __________________________________________ 36 II.3. Thiopeptides ____________________________________________________ 37 II.3.a. Structure ___________________________________________________ 37 II.3.b. Biosynthesis ________________________________________________ 37 II.3.c. Classification ________________________________________________ 38 II.3.d. Biological activities __________________________________________ 38 II.4. Lasso peptides __________________________________________________ 40 II.4.a. Diversity ___________________________________________________ 40 II.4.b. Discovery __________________________________________________ 45 II.4.c. Biosynthesis ________________________________________________ 47 II.4.c.i Gene cluster organization ____________________________________ 47 II.4.c.ii Maturation process _________________________________________ 49 II.4.c.iii Additional modifications ____________________________________ 50 II.4.d. Biological activities __________________________________________ 54 II.4.e. Bioengineering using lasso peptides ______________________________ 55 III. Ecological role of RiPPs ______________________________________________ 56 IV. Objectives of the thesis _______________________________________________ 60 Materials and methods _____________________________________________________ 63 I. Chemicals and biological materials _____________________________________ 63 V II. General DNA and microbiology methods_________________________________ 63 II.1. Purification of plasmids and cosmids ________________________________ 63 II.2. Isolation of genomic DNA _________________________________________ 64 II.3. General Polymerase Chain Reaction methods (PCR) ____________________ 64 II.4. Agarose gel electrophoresis ________________________________________ 65 II.5. General cloning procedure _________________________________________ 65 II.6. Preparation and transformation of competent E. coli cells ________________ 66 II.6.a. Electrocompetent cells ________________________________________ 66 II.6.b. Chemical competent cells ______________________________________ 66 II.7. Site-directed mutagenesis _________________________________________ 67 II.8. Modification of cosmids using PCR targeting __________________________ 67 II.9. Conjugation methods for Streptomyces strains _________________________ 68 III. RNA methods ______________________________________________________ 69 III.1. RNA extraction _________________________________________________ 69 III.2. Reverse transcription PCR (RT-PCR) ________________________________ 70 III.3. Real-time quantitative PCR (qPCR) _________________________________ 70 IV. Heterologous expression of lasso peptide gene clusters ______________________ 70 IV.1. Generation of lasso peptide expression system _________________________ 70 IV.1.a. Cosmid libraries _____________________________________________ 70 IV.1.b. Plasmid vectors ______________________________________________ 71 IV.2. Lasso peptide production in heterologous host _________________________ 72 IV.3. Lasso peptide production and extraction ______________________________ 72 V. Liquid chromatography mass spectrometry (LC-MS) _______________________ 73 VI. Generation of deletion mutants in S. sviceus- ______________________________ 73 VI.1. Inactivation using pKGLP2-based suicide plasmids _____________________ 73 VI.2. Inactivation using modified cosmids _________________________________ 74 VI.2.a. Generation of P4H8, a P4H7 based suicide cosmid __________________ 74 VI.2.b. Modification of P4H8 by PCR Targeting __________________________ 74 VI.2.c. Inactivation using P4H8-based cosmids ___________________________ 74 VI.2.d. Gene complementation in the deletion mutants of S. sviceus ___________ 74 VII. Gene reporter assays _________________________________________________ 75 VIII. Oxidative sensibility assay ____________________________________________ 75 IX. Morphology characterization __________________________________________ 76 IX.1. Optic microscopy ________________________________________________ 76 IX.2. Scanning Electronic microscopy (SEM) ______________________________ 76 X. Autoinduction of sviceucin ____________________________________________ 77 X.1. Gene reporter assay ______________________________________________ 77 X.2. qPCR _________________________________________________________ 77 Chapter I: Heterologous expression of lasso peptides from Actinobacteria ___________ 79 I. Introduction ________________________________________________________ 79 I.1. Common strategies to trigger and improve the expression of cryptic or silent BGCs 79 I.1.a. Optimization of cultivation conditions ____________________________ 79 I.1.b. Heterologous expression _______________________________________ 80 I.1.c. Metabolic engineering ________________________________________ 80 I.1.d. Synthetic biology ____________________________________________ 81 VI I.2. Heterologous expression of lasso peptides ____________________________ 82 II. Results and discussion _______________________________________________ 83 II.1. Genome mining _________________________________________________ 83 II.1.a. Stackebrandtia nassauensis cluster _______________________________ 88 II.1.b. Nocardiopsis alba cluster ______________________________________ 88 II.1.c. Actinoalloteichus sp. cluster ____________________________________ 89 II.1.d. Streptomyces noursei cluster ____________________________________ 89 II.1.e. Streptomyces venezuelae cluster _________________________________ 89 II.2. Heterologous production based on native gene clusters __________________ 90 II.2.a. Cosmid-based method _________________________________________ 90 II.2.b. Co-expression with the pathway-specific regulator __________________ 91 II.3. Heterologous expression using genetically-engineered clusters ____________ 92 II.3.a. Promoter exchange strategy ____________________________________ 92 II.3.b. Orthogonal two-plasmid expression system ________________________ 93 III. Conclusion and perspectives ___________________________________________ 98 Chapter II: Regulation mechanism and ecological role of sviceucin in Streptomyces sviceus ___________________________________________________________________ 99 I. Introduction ________________________________________________________ 99 I.1. Sviceucin as a good model to study LP regulation and ecological roles ______ 99 I.2. Overview of growth and development in Streptomyces _________________ 101 II. Results and discussion ______________________________________________ 102 II.1. Determining the operon structure in the sviceucin gene cluster ___________ 102 II.2. Growth dependence of sviceucin production __________________________ 103 II.3. Probing the regulation mechanism of sviceucin biosynthesis _____________ 106 II.3.a. Is sviceucin biosynthesis controlled by SviR1 and SviR2 ? ___________ 106 II.3.b. Attempts to determine the SviR1 and SviR2 regulon in the svi cluster __ 108 II.3.c. Effects of deleting other genes on sviceucin production _____________ 109 II.3.d. Is sviceucin an autoinducing peptide? ___________________________ 110 II.4. Morphological characterization of S. sviceus mutants ___________________ 118 II.5. Sensitivity to oxidative stress of S. sviceus mutants ____________________ 133 III. Conclusions and perspectives _____________________________________ 135 Conclusion and perspectives _______________________________________________ 137 I. Heterologous expression of lasso peptides from Actinobacteria ______________ 137 II. Regulation mechanism and physiological role of sviceucin __________________ 138 Bibliography ____________________________________________________________ 145 Annexes ________________________________________________________________ 168 Publication ______________________________________________________________ 209 VII

Description:
Lasso peptides from Actinobacteria - Chemical diversity and ecological role. Biomolecules [q-bio.BM]. Université Pierre et Marie Curie - Paris VI, 2016.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.