ebook img

Laser Systems, Part 2 PDF

281 Pages·2008·4.734 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Laser Systems, Part 2

Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W. Martienssen Group VIII: Advanced Materials and Technologies Volume 1 Laser Physics and Applications Subvolume B: Laser Systems Part 2 Editors: W. Schulz, H. Weber, R. Poprawe Authors: R. Beigang, A. Bruns, E. Gornik, H.-J. Hoffmann, R. Iffländer, K.A. Janulewicz, M.J. Kelley, J. Limpert, G.R. Neil, P.V. Nickles, W. Sandner, A. Tünnermann, H. Wenzel ISSN 1619-4802 (Advanced Materials and Technologies) ISBN 978-3-540-44380-3 Springer Berlin Heidelberg New York Library of Congress Cataloging in Publication Data: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series. Editor in Chief: W. Martienssen. Group VIII, Volume 1: Laser Physics and Applications. Subvolume B: Laser Systems. Part 2. Edited by W. Schulz, H. Weber, R. Poprawe. Springer-Verlag, Berlin, Heidelberg, New York 2008. Includes bibliographies. 1. Physics - Tables. 2. Chemistry - Tables. 3. Engineering - Tables. I. Börnstein, Richard (1852-1913). II. Landolt, Hans (1831-1910). QC 61.23 502'.12 62-53136 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law. Springer is a part of Springer Science+Business Media. springeronline.com © Springer-Verlag Berlin Heidelberg 2008 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product Liability: The data and other information in this handbook have been carefully extracted and evaluated by experts from the original literature. Furthermore, they have been checked for correctness by authors and the editorial staff before printing. Nevertheless, the publisher can give no guarantee for the correctness of the data and information provided. In any individual case of application, the respective user must check the correctness by consulting other relevant sources of information. Cover layout: Erich Kirchner, Heidelberg Typesetting: Authors and Redaktion Landolt-Börnstein, Darmstadt Printing and Binding: AZ Druck, Kempten (Allgäu) SPIN: 1078 5979 63/3020 - 5 4 3 2 1 0 – Printed on acid-free paper Editors Schulz, Wolfgang Fraunhofer-Institut fu¨r Lasertechnik (ILT), Aachen, Germany Weber, Horst Technische Universit¨at Berlin, Optisches Institut, Berlin, Germany Poprawe, Reinhart Fraunhofer-Institut fu¨r Lasertechnik (ILT), Aachen, Germany Authors Beigang, Ren´e Technische Universit¨at Kaiserslautern, Fachbereich Physik, Kaiserslautern, Germany Bruns, Adlin Fraunhofer-Institut, Angewandte Optik und Feinmechanik, Jena, Germany Gornik, Erich Technische Universit¨at Wien, Institut fu¨r Festko¨rperelektronik, Wien, Austria Hoffmann, Hans-Ju¨rgen Technische Universit¨at Berlin, Institut fu¨r Werkstoffwissenschaften und -technologien, Fachgebiet “Glaswerkstoffe”, Berlin, Germany Iffl¨ander, Reinhard TRUMPF Laser GmbH, Schramberg, Germany Janulewicz, Karol Adam Max-Born-Institut fu¨r Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Berlin, Germany Kelley, Michael J. Thomas Jefferson National Accelerator Facility, Newport News, VA, USA Limpert, Jens Friedrich-Schiller-Universita¨t Jena, Institut fu¨r Angewandte Physik, Jena, Germany Neil, George R. Thomas Jefferson National Accelerator Facility, Newport News, VA, USA Nickles, Peter V. Max-Born-Institut fu¨r Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Berlin, Germany Sandner, Wolfgang Max-Born-Institut fu¨r Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Berlin, Germany Tu¨nnermann, Andreas Fraunhofer-Institut, Angewandte Optik und Feinmechanik, Jena, Germany Wenzel, Hans Ferdinand-Braun-Institut fu¨r Ho¨chstfrequenztechnik (FBH), Berlin, Germany VI Authors Landolt-B¨ornstein Editorial Office Gagernstraße 8 D-64283 Darmstadt, Germany fax: +49 (6151) 171760 e-mail: [email protected] Internet www.landolt-boernstein.com Preface The three volumes VIII/1A, B, C document the state of the art of “Laser Physics and Applica- tions”. Scientific trends and related technological aspects are considered by compiling results and conclusions from phenomenology, observation and experiments. Reliable data, physical fundamen- tals and detailed references are presented. Intherecentdecadesthelasersourcematuredtoanuniversaltoolcommontoscientificresearch as well as to industrial use. Today the technical goal is the generation of optical power towards shorter wavelengths, shorter pulses, higher efficiency and higher power for applications in science and industry. Tailoring the optical energy in wavelength, space and time is a requirement for the investigation of laser-induced processes, i.e. excitation, non-linear amplification, storage of optical energy, etc. According to the actual trends in laser research and development, Vol. VIII/1 is split into three parts: Vol. VIII/1A with its two subvolumes 1A1 and 1A2 covers laser fundamentals, Vol.VIII/1Bwithitsthreesubvolumes1B1,1B2and1B3dealswithlasersystemsandVol.VIII/1C gives an overview on laser applications. In Vol. VIII/1B2 the following topics are treated in detail: Part 4: Solid-state lasers In four sections, the physical and engineering aspects of different solid-state lasers and laser active materials are presented. Solid-state lasers matured to versatile instruments applied for high-power industrial applications, enabling display technique providing the basic colors, becoming tools in medical surgery and dentistry, as well as entering scientific approaches for diagnosis of chemical reactions on the femto-second time scale. Glasses showing a strong inhomogeneous broadening and therefore facilitating laser excitation and tuning the wavelength are discussed in comparison with crystals. Promising alternatives to early concepts using bulk solid-state laser systems are rare-earth-doped fibers. Decades after the advent of low-loss fused silica fibers by Corning in 1970 an impressive development of beam power and quality happened. In 2004 kilowatt powers at diffraction-limited beam quality were demonstrated and actually multiple kilowatt high-power applications are in the focus of scientific research and industrial development of the corresponding applications. Part 5: Diode lasers Diodelasersrepresenttheextremewithrespecttocompactness,efficiencyandlowlaserthreshold. Enablingphysicalproperties,successfulapplicationsandpromisingperspectivesarepresented.The small spatial size below 500 μm allows their use for entertainment, data storage and printing as well as high-performance fiber-based communication systems. The impact of diode lasers spans fromdemonstratingsingle-frequencylaseremissiontogivingperspectivesforscreeningdiagnostics in life-science. Flash lamps are substituted by high-power diode arrays to pump high performance solid-state lasers and enabling basically new laser design. Tuning the gain spectra with quantum- well structures laser diodes operate at wavelength not attainable with bulk material. Light from diodelasersinthevisiblespectralregionentersourdailylife.Historyandadvancesaboutmultiple VIII Preface hetero-structures having a thickness between 2 and 20 nm, made out of unstrained and strained, single or multiple quantum wells, emitting light in the visible spectral region are presented. Part 6: Free-electron lasers Free Electron Lasers (FEL’s) are moving from an exotic tool of a few specialists to something broadly available. FEL’s provide photon characteristics unobtainable from more conventional sources. Radiation comes directly from an oscillating bunch of electrons with relativistic proper- ties instead of an inverted extra active medium. Physical principles and properties of ready-to-use machines with high average power from the InfraRed (IR) through Extreme Ultra-Violet (EUV) to X-ray are presented. Part 7: X-ray lasers Thehistoryandactualadvancesofconceptsforpopulationinversiondeeplyinsidetheatomiccore are presented. Laser systems in the Extreme Ultra-Violet (EUV) spectral region, also called X-ray lasers, are taking up the challenge to control coherence of light where the emission wavelength matches the spatial dimensions of micro- and nano-scaled objects. With a wavelength between 2 and 60 nm these lasers approach the future needs of nano- and life-sciences, materials research as well as structuring. February 2008 The Editors Contents Part 4 Solid-state lasers 4.1 Solid-state laser systems R. Iffla¨nder .......................................................... 3 4.1.1 Solid-state laser systems.................................................. 3 4.1.1.1 Introduction ............................................................ 3 4.1.1.2 Energy-level diagram and rate equations ................................... 3 4.1.1.2.1 Rate equations for a 4-level system ........................................ 4 4.1.1.3 Amplifiers .............................................................. 5 4.1.1.3.1 Stationary case for low intensities (J (cid:2)Js) ................................. 6 4.1.1.3.2 Stationary case (or T (cid:3)τ) and J ≥Js ..................................... 6 4.1.1.3.3 Pulse operation for short pulses (T (cid:2)τ) ................................... 7 4.1.1.4 Oscillator .............................................................. 8 4.1.1.4.1 Oscillator condition...................................................... 10 4.1.1.4.2 Output power........................................................... 10 4.1.1.4.3 Optimal reflection coefficient.............................................. 11 4.1.1.5 Influence of the temperature .............................................. 12 4.1.1.6 Oscillator in pulsed operation ............................................. 14 4.1.1.6.1 Threshold .............................................................. 14 4.1.1.6.2 High pump power Pp (cid:3)Pth .............................................. 14 4.1.1.6.3 Relaxation oscillation .................................................... 15 4.1.1.6.4 Spiking ................................................................ 16 4.1.1.6.5 Long-pulse regime ....................................................... 16 4.1.1.7 Q-switch operation ...................................................... 16 4.1.1.7.1 Single Q-switch pulse .................................................... 17 4.1.1.7.2 Periodical Q-switch for high pulse repetition rate (rτ (cid:3)1) ................... 19 4.1.1.8 The 3-level system....................................................... 21 4.1.1.8.1 Stationary case with dN/dt=0 and dJ/dt=0.............................. 22 4.1.1.9 Efficiency and optimization ............................................... 24 4.1.1.10 Stable resonators........................................................ 26 4.1.1.10.1 Eigenvalues for TEM-00 mode ............................................ 26 4.1.1.10.2 Introducing a virtual reference plane....................................... 28 4.1.1.10.3 Beam parameter product................................................. 29 4.1.1.11 Thermal effects ......................................................... 29 4.1.1.11.1 Steady-state temperature profile........................................... 30 4.1.1.11.2 Thermal load ........................................................... 31 4.1.1.11.3 Thermal lensing......................................................... 33 4.1.1.11.4 Experimental determination of the refracting power.......................... 34 4.1.1.12 Solid-state laser concepts................................................. 35 4.1.1.12.1 Multicavity resonators ................................................... 35 4.1.1.12.2 Two external mirrors and two rods ........................................ 35 X Contents 4.1.1.12.3 Multiple cavities with flat mirrors ......................................... 36 4.1.1.12.4 Thermally invariant resonators............................................ 37 4.1.1.13 Excitation by diodes..................................................... 38 4.1.1.13.1 Rod ................................................................... 38 4.1.1.13.1.1 Longitudinally pumped rod............................................... 38 4.1.1.13.1.2 Transversally pumped rod ................................................ 39 4.1.1.13.2 Disk ................................................................... 40 4.1.1.13.2.1 Longitudinal disk........................................................ 40 4.1.1.13.2.2 Transversally pumped disk ............................................... 40 4.1.1.13.3 Fiber .................................................................. 40 4.1.1.13.3.1 Longitudinally pumped fiber.............................................. 40 4.1.1.13.3.2 Transversally pumped fiber ............................................... 41 4.1.1.13.4 Slab ................................................................... 41 4.1.1.13.4.1 Transversally pumped slab ............................................... 42 4.1.1.13.4.2 Longitudinal slab........................................................ 42 4.1.1.13.5 Diode-pumped solid-state lasers in research and development ................. 42 4.1.1.14 Solid-state laser products................................................. 43 4.1.2 Laser material parameter................................................. 45 4.1.2.1 Parameter specification .................................................. 45 4.1.2.1.1 Laser data.............................................................. 45 4.1.2.1.2 Optical properties ....................................................... 46 4.1.2.1.3 Thermal parameters ..................................................... 48 4.1.2.1.4 Mechanical properties.................................................... 49 4.1.2.1.5 Crystal properties ....................................................... 49 4.1.2.1.6 Derived data............................................................ 52 4.1.2.1.7 Supplier data ........................................................... 53 4.1.2.1.8 Measured values......................................................... 53 4.1.2.2 Active ions ............................................................. 54 4.1.2.2.1 Overview............................................................... 54 4.1.2.2.2 Most important ions ..................................................... 55 4.1.2.2.2.1 Chromium.............................................................. 55 4.1.2.2.2.2 Erbium Er3+ ........................................................... 57 4.1.2.2.2.3 Holmium Ho3+.......................................................... 59 4.1.2.2.2.4 Neodymium Nd3+ ....................................................... 60 4.1.2.2.2.5 Praseodymium Pr3+ ..................................................... 63 4.1.2.2.2.6 Titanium............................................................... 65 4.1.2.2.2.7 Thulium ............................................................... 65 4.1.2.2.2.8 Ytterbium.............................................................. 67 4.1.3 Laser crystals ........................................................... 69 4.1.3.1 Alexandrite............................................................. 69 4.1.3.2 BEL (lanthanum beryllate) ............................................... 70 4.1.3.3 Emerald................................................................ 70 4.1.3.4 GGG (gallium gadolinium garnet) ......................................... 71 4.1.3.5 GSAG (gadolinium scandium aluminum garnet)............................. 72 4.1.3.6 GSGG (gadolinium scandium gallium garnet) ............................... 73 4.1.3.7 GVO(4) (gadolinium (ortho)vanadate) ..................................... 74 4.1.3.8 KGW (potassium gadolinium tungstate) ................................... 75 4.1.3.9 LICAF (lithium calcium aluminum fluoride) ................................ 75 4.1.3.10 LNA (lanthanum neodymium hexa-aluminate), LMA (lanthanum magnesium hexa-aluminate) .............................. 76 4.1.3.11 LSB (lanthanum scandium borate) ........................................ 77 Contents XI 4.1.3.12 NYAB (neodymium yttrium aluminum borate).............................. 77 4.1.3.13 Quartz................................................................. 78 4.1.3.14 Sapphire ............................................................... 79 4.1.3.15 YAG (yttrium aluminum garnet) .......................................... 80 4.1.3.16 YAP (yttrium aluminum perovskite), YALO (yttrium aluminum oxide).......................................... 82 4.1.3.17 YLF (yttrium lithium fluoride)............................................ 83 4.1.3.18 YOS (yttrium ortho-silicate).............................................. 84 4.1.3.19 YSAG (yttrium scandium aluminum garnet)................................ 84 4.1.3.20 YSGG (yttrium scandium gallium garnet) .................................. 85 4.1.3.21 YVO(4) (yttrium (ortho)vanadate) ........................................ 86 References for 4.1 ....................................................... 87 4.2 Glasses H.-J. Hoffmann ....................................................... 97 4.2.1 General properties of laser glasses ......................................... 97 4.2.1.1 Basic considerations ..................................................... 97 4.2.1.2 Lanthanides as active ions ................................................ 98 4.2.1.3 Glasses doped with Nd3+.................................................100 4.2.1.4 Radiative lifetime and concentration quenching..............................102 4.2.1.5 Glasses doped with other active ions, codoping..............................103 4.2.2 Temperature effects......................................................103 4.2.2.1 Thermal load of cylindrical rods...........................................103 4.2.2.2 Thermal lensing.........................................................104 4.2.2.3 Increasing the maximum laser power.......................................105 4.2.3 Quantities to characterize properties of laser glasses .........................107 4.2.3.1 Density of ions..........................................................107 4.2.3.2 Refractive index.........................................................107 4.2.3.3 The refractive index as a function of the temperature ........................108 4.2.3.4 Photoelastic coefficients ..................................................110 4.2.3.5 Nonlinear effects ........................................................110 4.2.4 Properties of commercial laser glasses doped with Nd3+ (Er3+) ions from different manufacturers...................................................113 4.2.4.1 Meaning of the symbols ..................................................113 4.2.4.2 Manufacturer: Schott Glass Technologies ...................................114 4.2.4.3 Manufacturer: Hoya Optics ...............................................116 4.2.4.4 Manufacturer: Kigre .....................................................118 References for 4.2 .......................................................120 4.3 Diode-pumped fiber lasers A. Tu¨nnermann, J. Limpert, A. Bruns.................................125 4.3.1 Introduction ............................................................125 4.3.2 Historical background of fiber lasers .......................................125 4.3.3 Basic principles of a fiber laser ............................................126 4.3.4 Fundamentals of fiber optics ..............................................127 4.3.5 Double-clad fiber lasers ..................................................128 4.3.6 Ytterbium-doped fiber lasers..............................................130 4.3.7 Fiber lasers versus bulk lasers.............................................131

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.