ebook img

Laser Surface Processing and Model Studies PDF

154 Pages·2013·5.663 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Laser Surface Processing and Model Studies

Materials Forming, Machining and Tribology Bekir Sami Yilbas Shahzada Zaman Shuja Laser Surface Processing and Model Studies Materials Forming, Machining and Tribology Series Editor J. Paulo Davim For furthervolumes: http://www.springer.com/series/11181 Bekir Sami Yilbas Shahzada Zaman Shuja • Laser Surface Processing and Model Studies 123 BekirSami Yilbas Shahzada ZamanShuja Mechanical EngineeringDepartment KingFahdUniversityof Petroleum and Minerals Dhahran SaudiArabia ISSN 2195-0911 ISSN 2195-092X (electronic) ISBN 978-3-642-36628-4 ISBN 978-3-642-36629-1 (eBook) DOI 10.1007/978-3-642-36629-1 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013932463 (cid:2)Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience?BusinessMedia(www.springer.com) Acknowledgment We would like to acknowledge the role of King Fahd University of Petroleum & Minerals in extending strong supportfrom the beginning to the end facilitating every means during the preparation of this book. The authors wish to thank the colleagues who contributed to the work presented in the book through previous cooperation of the authors. In particular, thanks to Dr. Muammer Kalyon, Dr. Nasser Al-Aqeeli, Dr. Saad Bin Mansoor, and all my graduate students. v Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Conduction Heating of Solid Surfaces. . . . . . . . . . . . . . . . . . . . . . 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Analytical Treatment of Laser Pulse Heating . . . . . . . . . . . . . . 6 2.2.1 Exponential Pulse Heating. . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Laser Repetitive Pulse Heating. . . . . . . . . . . . . . . . . . . 11 2.3 Effect of Duty Cycle on Heating: Numerical Treatment. . . . . . . 13 2.4 Discussions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.1 Exponential Pulse Heating Case and Convection Condition Resembling Assisting Gas at the Surface . . . . 16 2.4.2 Repetitive Pulse Heating Case and Convection Condition Resembling Assisting Gas at the Surface . . . . 20 2.4.3 Effect of Duty Cycle on Heating and Convection Condition Resembling Assisting Gas at the Surface . . . . 24 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Laser Melting of Solid Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Analytical Treatment of Laser Melting Process. . . . . . . . . . . . . 30 3.2.1 The Closed Form Solution. . . . . . . . . . . . . . . . . . . . . . 30 3.2.2 Influence of Assisting Gas on the Melt Layer Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3 Numerical Treatment of Surface Melting . . . . . . . . . . . . . . . . . 34 3.3.1 Stationary Heating Source . . . . . . . . . . . . . . . . . . . . . . 34 3.3.2 Influence of Pulse Profile on Temperature Field. . . . . . . 39 3.3.3 Influence of Marangoni Flow on Temperature Field . . . . 41 3.3.4 Moving Heat Source Consideration. . . . . . . . . . . . . . . . 41 vii viii Contents 3.4 Discussions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.1 Analytical Treatment of Laser Melting Process. . . . . . . . 43 3.4.2 Numerical Treatment of Laser Melting . . . . . . . . . . . . . 44 3.4.3 Influence of Pulse Profile and Marangoni Flow on Temperature Field . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.4 Moving Heat Source Consideration. . . . . . . . . . . . . . . . 52 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 Laser Melting of Two Layer Materials. . . . . . . . . . . . . . . . . . . . . 59 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 Numerical Treatment of Melting Process . . . . . . . . . . . . . . . . . 60 4.3 Discussions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.3.1 Laser Melting of Two-Layer Structure Influence of Laser Pulse Repetition on Temperature and Flow Field in the Melt Pool. . . . . . . . . . . . . . . . . . 63 4.3.2 Influence of Coating Material on Temperature and Flow Field in the Melt Pool. . . . . . . . . . . . . . . . . . 69 4.3.3 Influence of Coating Material Thickness on Temperature and Flow Field in the Melt Pool . . . . . . 75 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5 Laser Induced Evaporation at the Surface . . . . . . . . . . . . . . . . . . 81 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2 Analytical Treatment of Evaporation . . . . . . . . . . . . . . . . . . . . 82 5.3 Numerical Treatment of Evaporation. . . . . . . . . . . . . . . . . . . . 91 5.4 Numerical Solution of Governing Equations. . . . . . . . . . . . . . . 99 5.4.1 Phase Change Process. . . . . . . . . . . . . . . . . . . . . . . . . 100 5.4.2 Transiently Developing Vapor Jet. . . . . . . . . . . . . . . . . 100 5.5 Discussions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.5.1 Solution of Analytical Treatment of Evaporation . . . . . . 101 5.5.2 Predictions from Numerical Treatment of Evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6 Practical Applications of Laser Surface Treatment . . . . . . . . . . . . 111 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.2 Laser Shock Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.2.1 Heating, Recoil Pressure, and Wave Analysis. . . . . . . . . 113 6.2.2 Method of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.2.3 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.3 Laser Gas Assisted Nitriding. . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.3.1 Thermal and Residual Stress Analysis. . . . . . . . . . . . . . 119 6.3.2 Experimental and Measurement of Young Modulus and Fracture Toughness. . . . . . . . . . . . . . . . . . . . . . . . 121 Contents ix 6.4 Laser Surface Treatment of Pre-prepared Alloy. . . . . . . . . . . . . 123 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.5.1 Laser Shock Processing of Steel Surface . . . . . . . . . . . . 124 6.5.2 Laser Gas Assisted Nitriding of Steel Surfaces. . . . . . . . 127 6.5.3 Laser Surface Treatment of Pre-prepared Ti Alloy . . . . . 131 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.1 Analytical Treatment for Melting and Evaporation Processes . . . 139 7.2 Numerical Treatment for Melting and Evaporation Processes . . . 140 7.3 Practical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Chapter 1 Introduction Abstract Lasers are widely used in surface engineering because of their advan- tages over the conventional surface treatment methods. Some oftheseadvantages include precision of operation, fast processing, and localized treatment. Laser surface treatment involves with solid heating and phase change at the irradiated surface.Inthischapter,theimportanceoflaserapplicationsinsurfaceengineering is introduced and some aspects of laser surface treatment are presented. Lasersarewidelyusedinsurfaceengineeringbecauseoftheiradvantagesoverthe conventional surface treatment methods. Some of these advantages include pre- cision of operation, fast processing, and localized treatment. Laser surface treat- ment involves with solid heating and phase change at the irradiated surface. The solid heating at the surface of the substrate material can be described through introducing laser conduction limited heating situation; in which case, the absorptionofirradiatedlaserenergyresultsinheatconductiononlyanditdoesnot cause the phase change at the irradiated surface. When the laser beam interacts with a solid surface, electrons in the irradiated region absorb the incident energy and increase their excess energy in this region. This, in turn, results in thermal separation of the electron sub-system from the lattice sub-system. Electrons and lattice phonons thermally communicate to each other and electrons undergo sev- eralcollisionswithlatticephononsthroughwhichsomeofelectronexcessenergy transfers to lattice phonons. Since the number of collisions and electron excess energy in the electron sub-system define the rate of energy transfer from the electron sub-system to the lattice sub-system, the duration of electron excess energy transfer becomes important for the type of energy transport in the solid substrate, such as equilibrium or non-equilibrium transport. Thermal equilibrium between electron and lattice sub-systems can be achieved when the interaction time becomes on the order of the thermalization time of the substrate material; therefore,forshortinteractiondurationsnon-equilibriumenergytransportgoverns theheatingprocess.TheequilibriumbasedFourierheatinglawforheatconduction is not applicable to describe the non-equilibrium energy transfer in a solid sub- strate. In addition, the absorption depth of the incident radiation is small for B.S.YilbasandS.Z.Shuja,LaserSurfaceProcessingandModelStudies, 1 MaterialsForming,MachiningandTribology,DOI:10.1007/978-3-642-36629-1_1, (cid:2)Springer-VerlagBerlinHeidelberg2013 2 1 Introduction metallic substrates and heat wave propagation at a finite speed takes place in the irradiated region. The Fourier heating law fails to predict the correct temperature rise in this region due to the consideration of infinite heat wave speed in the irradiated solid. The phase lagging in energy transfer takes place in the solid becauseoftheshortdurationofheatingandthesmallsizeoftheabsorptiondepth. In such heating situations, model studies associated with thermal wave propaga- tion, such as telegraph equation, or two-temperature model, or electron kinetic theoryapproachesshouldbeincorporatedtodescribethetemperaturefieldduring the thermal loading. In general, most of the laser treatment processes associated with the surface engineering application are involved with the durations longer than the thermalization time of the substrate material and the use of the Fourier diffusion law becomes appropriate to describe the heating process. Laser surface treatment of alloys provides dense layer with fine grains while improving the hardness of the surface through the phase change and rapid solid- ification in the surface region. Depending on the settings of laser output param- eters,suchasthedutycycle,thepowerintensity,thelaserscanningspeed,andthe materialproperties,thedepthofmeltpoolcanbecontrolled.Thisisnecessaryfor the practical laser surface treatment applications. Controlling the heating param- eters becomes crucial to achieve the desired melt zone during the treatment pro- cess. Theexcessivelaser irradiated power orlow laser scanningspeedscan cause evaporation at the surface, which increases the roughness of the treated surface while limiting the practical applications of the treated surface. Therefore, laser heating parameters should be selected properly in order to avoid poor quality of thetreatedsurfaceandtheexcessiveoperationalcosts.Inordertoassessandselect the proper levels of the laser surface treatment parameters, model studies of laser heating process including phase change and molten flow inthe melt pool become necessary. In addition, model studies give physical insight into the process and provide usefulinformationontheinfluenceofmeltingparameters.Thenumerical and analytical predictions reduce the experimental cost and minimize the exper- imental time. In the case of irradiation of high intensity laser beams, the phase change occurs in the irradiated region and the energy transfer in the irradiated regioncanbeformulatedbyintroducinganon-conductionlimitedheatingprocess. In this case, substrate materialunder goes solid heating, melting, and evaporation during the heating process. The duration to reach melting and evaporation is extremely short for the high power pulse heating operation. The rapid rise of temperatureatthesurfacecausesdifficultiesinexperimentingaccuratelythelaser- workpiece interactions. Consequently, model studies are easy to handle and give insight into the laser-workpiece interaction mechanism particularly for high intensity laser beams with short-pulse durations. During the irradiation pulse, the laser irradiated power is absorbed in the skin of the substrate surface resulting in volumetricheatsourceattheirradiatedregion.Althoughthedepthofabsorptionis considerably shallow, it has a significant effect on the heat transport and the internal energy gain of the substrate material in this region. Therefore, when modelingtheheatingprocessinmetallicsubstrates,thevolumetricheatsourcedue totheabsorptionoftheincidentradiationneedstobeaccountedintheanalysis.In

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.