ebook img

Laser-induced topological transitions in phosphorene with inversion symmetry PDF

1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Laser-induced topological transitions in phosphorene with inversion symmetry

Laser-inducedtopologicaltransitionsinphosphorenewithinversionsymmetry C. Dutreix, E. A. Stepanov, M. I. Katsnelson Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands Recentabinitiocalculationsandexperimentsreportedinsulating-semimetallicphasetransitionsinmultilayer phosphoreneunderaperpendiculardcfield,pressureordoping,asapossibleroutetorealizetopologicalphases. Inthiswork,weshowthatevenamonolayerphosphorenemayundergoLifshitztransitionstowardsemimetallic andtopologicalinsulatingphases,provideditisrapidlydrivenbyin-planetime-periodiclaserfields.Basedona four-orbitaltight-bindingdescription,wegiveaninversion-symmetry-basedprescriptioninordertoapprehend 6 the topology of the photon-renormalized band structure, up to the second order in the high-frequency limit. 1 Apartfromtheinitialbandinsulatingbehavior,twoadditionalphasesarethusidentified.Asemimetallicphase 0 withmasslessDiracelectronsmaybeinducedbylinearpolarizedfields, whereasellipticpolarizedfieldsare 2 likelytodrivethematerialintoananomalousquantumHallphase. n u J Morethanacenturyago,Bridgmanreportedhisattemptto particle-hole-symmetry-protected topological transition to- changephosphorusfromwhitetored,whichactuallyresulted wardananomalousquantumHallphase,inwhichanon-zero 6 1 inthe discoveryofthemost thermodynamicallystablephos- Chernnumbercharacterizestheexistenceofchiralboundary phorus allotrope at room temperature, namely, black phos- modes. Therefore, these three distinct phases are predicted ] phorus (BP) [1]. This is, like graphite and transition metal in monolayer BP by simply varying the polarization and l l dichalcogenides,alayeredmaterialinwhichone-atomic-thick intensityofasingleexternalfield,whichismorecontrollable a h films are bound to each other via weak van der Waals inter- than pressure or doping, and is also suitable for realizations - actions, enabling the isolation of a few layers by mechani- inultracoldatomicgasesandphotoniccrystals[22–26]. s e calexfoliation[2–4]. Low-energyelectronsrevealastrongly m anisotropicsemiconductorwithadirectenergygapandhigh Tight-binding description — Phosphorene consists of a . chargecarriermobility,featuresthatmakethephosphorusal- rectangularBravaislatticeandanout-of-planeunitcellmade t a lotrope particularly suitable for electronic applications, such of four phosphorus atoms, each of which have three nearest m as field-effect transistors [5, 6]. From a fundamental per- neighbors, as illustrated in Fig. 1. Electronic properties are - spective,investigationsofpressure-inducedelectronicandop- reasonably described within a tight-binding description that d tical properties in bulk BP addressed, a few decades ago, involvesuptotenhoppingprocesses[13]. Thecorresponding n o the possibilities to realize structural phase transitions and to Blochbandstructureforspinlesselectronsisthengivenbya c tunethesemiconductinggap[7–9]. Recentabinitiocalcula- 4×4matrixwhich,inthesublatticebasis{A1,B2,A2,B1},can [ tionsandexperimentspointedoutthatgaptuningunderpres- genericallybewrittenas sure, dc field, or doping, could even result in an insulating- 2   6559v saiceramColuiopmtnheetarttsoaaewrlsyliaictrnodLthtithfhisseehnriateobzanolt-virczaeoantwmsiiootpnirookounsfn,idnswymmemuafmtoletecirltuiarasyyl-eh[pr1erBr0oe–tPe1o,c6tnth]eum.dsotoonppoeolnaloiyngeg-r H(k)= FFFF4123∗∗∗((((kkkk)))) FFFF4321∗∗((((kkkk))))e−iϕ(k) FFFF1243∗((((kkkk))))eiϕ(k) FFFF3214((((kkkk)))) . (1) 0 BP, namely phosphorene, when it is rapidly driven by . in-plane homogeneous time-periodic laser fields. Within a 1 0 four-orbital tight-binding approximation introduced recently 6 [13], we provide an inversion-symmetry-based prescription 1 that enables us to apprehend the band structure topology up : v tothesecondorderinthehigh-frequencylimit. Threedistinct i phasesarethenidentified,dependingonthefieldpolarization X andmagnitude. Inparticular,linearpolarizedfieldsarelikely r a to drive phosphorene from a band insulating phase toward a semimetallic one with two nonequivalent Dirac cones, thus mimicking electronic properties of graphene massless Diracquasiparticles[17,18]. Rightatthetransition,theuni- versal semi-Dirac band structure, which describes massless FIG.1. (Coloronline)Topviewofphosphorene. Theblackdashed electrons only along one direction, is recovered [19–21]. lineoutlinestheunitcellmadeofatoms —A , —A , —B , 1 2 2 Being the underlying mechanism of topological transitions — B1. Nearest-neighbor vectors are(cid:32)d1 = a0((cid:32)cosθ,sin(cid:32)θ), d2 = [13–16],thisLifshitztransitionshowsthatnon-trivialphases (cid:32)a0(cosθ,−sinθ),andd3 = b0(1,0),withθ(cid:39)48.395◦,a0 (cid:39)2.216Å may be induced in phosphorene too. Besides, we show andb0(cid:39)0.716Å[6].Numbersfrom1to10refertothetendifferent hoppingsallowedfromthecentralbiggerA site. that, under elliptic polarizations, it may also undergo a 1 2 Matrix components Fi=1...4 are functions of hopping ampli- � tudes and wavevector k such that H(k+G) = H(k), with G � C areciprocallatticevector[27]. Besidesϕ(k) = k −k fork + x y x andk giveninunitsofa−1anda−1,respectively. �� �� y 1 2 + Time-periodic laser fields — Suppose that an in-plane ho- �� �� �� mogeneous time-periodic electric field of frequency Ω is turned on, driving the system into a nonequilibrium steady state.Howelectronsrelaxintosuchastabilizedregimeiscur- rentlyunderinvestigations[28–30]. Thefieldyieldsavector potential of the form A(t) = (A cosΩt,A sin[Ωt − φ],0), FIG. 2. (Color online) Parity products at the time-reversal invari- x y whereasthescalarpotentialiswipedout,forweconsiderthe antmomentaoftheBrillouinzone(left)andlowestenergybandsof temporalgauge. Hereinafter,itisassumedthatc = (cid:126) = 1,so phosphorene(right).EnergyisgivenineV. that A = eE Ω−1 with E the x(y)-componentofthe x(y) x(y) x(y) fieldmagnitude.Thefieldpolarizationisellipticforφ=0and dynamics,whereasthesystemevolutionbetweentwostrobo- linear for φ = π/2. The vector potential subsequently enters scopictimesisencodedin∆ (τ). Thisfinallyresultsin n matrix(1)viaPeierlsphases[27]. Thetimeevolutionofaquantumstateisruledbythetime- H˜ = H and H˜ =−(cid:88)[Hm,H−m] , (5) dependent Schro¨dinger equation i∂τΨ(λ,τ) = λH(τ)Ψ(λ,τ), 1 0 2 m where τ = Ωt and frequency is encoded in the dimension- m>0 less parameter λ = δE/Ω. Energy scale δE corresponds to whereH = (cid:82)+π dτ eimτH(τ)definestheFloquetmatrixform m −π 2π phosphorenebandwidth(14eV [13])whichinvolvesthefour of the Hamiltonian. The first order in λ refers to the time- photon-renormalizedenergybands. Besides, H(τ)isgivenin averagedHamiltonian,sinceelectronscannotfollowthefield unitsofδEandisdimensionlesstoo.Hereweareinterestedin dynamics.ItimpliesthatH˜ (k)onlydiffersfrommatrix(1)in 1 thehigh-frequencylimitλ(cid:28)1anduseanextensionofMag- thefield-renormalizedhoppingamplitudes. Thesecondorder nusexpansion[31],inthespiritofRef.[32].Itreliesonauni- inλdescribesthesumofallvirtualemissionsandabsorptions tarytransformationdefinedbyΨ(λ,τ) = exp{−i∆(τ)}ψ(λ,τ), of m photons. A nearest-neighbor approximation yields where ∆(τ) = (cid:80)+n=∞1λn∆n(τ), and where operators ∆n(τ) re- H˜2(k) = 0andH˜2(k) = M(k)⊗σ3 forlinearandellipticpo- move the τ-dependent terms of H(τ). It is also assumed that larizations,respectively[27]. Therefore,ellipticallypolarized ∆n(τ) has the same time periodicity as H(τ) and averages at fields yield a non-vanishing second-order contribution that zero[33]. Thistransformationleadstoi∂τψ(λ,τ)= H˜ψ(λ,τ), breakstime-reversalsymmetry,asM∗(−k)=−M(k). witheffectiveHamiltonian Topologicaltransitionsfrombandparities—Thepurpose H˜ =λei∆(t)H(t)e−i∆(t)−iei∆(t)∂e−i∆(t). (2) t of the upcoming lines is to apprehend the topology of the photon-renormalizedbandstructureofphosphorenegivenby Snider’sidentity[34]implies H˜(k) (cid:39) λH˜ (k)+λ2H˜ (k). To do so, we give a prescription 1 2 (cid:88)∞ (cid:8)(cid:0)−i∆(τ)(cid:1)n,−i∂ ∆(τ)(cid:9) in the spirit of Ref. [36] which relates the inversion eigen- ∂τe−i∆(τ) = (n+1)! τ e−i∆(τ), (3) valuesatthetime-reversalinvariantpointstotheBerryphase n=0 oftheoccupiedBlochwavefunctionsalonghalftheBrillouin zone. Note that, if the occupation distribution is a priori in- where the repeated commutator is defined for two operators X andY by{1,Y} = Y and{Xn,Y} = [X,{Xn−1,Y}][35]; the volvedintheobservationofnonequilibriumtopologicalprop- erties, transport is well described by the effective static band squarebracketsdenotetheusualcommutator.Usingtheseries representationH˜ =(cid:80)∞ λnH˜ ,togetherwithEqs.(2)and(3), structureinthehigh-frequencylimit,becauseelectronscannot onecanthendeterminne=1operantorsH˜ and∆ iteratively. Here, absorbphotonsoftheoff-resonantlight[37]. n n First,phosphoreneisinvariantunderspatialinversion. This werestrictthehigh-frequencyanalysistothesecondorderin transformation consists of reversing all real-space coordi- λ,whichleadsto nates,andinterchangingelectronicorbitalsA withB andA 1 1 2 H˜1 = H(τ)−∂τ∆1(τ), (4) withB2.Inmomentumspace,thisimpliesI†H˜(k)I= H˜(−k), wheretheinversionoperatoriswrittenintermsofPaulima- i H˜ =i[∆ (τ),H(τ)]− [∆ (τ),∂∆ (τ)]−∂ ∆ (τ). tricesasI=σ ⊗σ . Atthetime-reversalinvariantmomenta 2 1 2 1 t 1 τ 2 1 1 Γ=G/2,thisyieldsthecommutationrelation[H˜(Γ), I]=0. Imposingthesetwooperatorstobestaticrequiresustoretain Consequently, there exists a basis of Bloch eigenstates that only τ-independent terms in H˜ and H˜ , which is achieved arealsoeigenvectorsofIwitheigenvaluesπ(Γ) = ±1. This 1 2 by time averaging over a period because H(τ) and ∆ (τ) are eigenvalue, named parity, labels the energy bands at time- n time periodic. So this averaging method leads to effective reversal invariant momenta Γi=0,...3 of the Brillouin zone de- time-independentHamiltoniansthatdescribethestroboscopic fined in Fig. 2. Since we are interested in crossing between 3 (cid:18)(cid:113) (cid:19) φ=0 φ=π/2 hopping amplitudes u = t J α2+α2±2α α sinφ 10 10 1± 1 0 x y x y TI SM and u = t J (β ), where α = |d |A , α = |d |A , and BI BI 2 2 0 x x 1x x y 1y y β = |d |A . Besides,thenatureofthedispersionrelationis x 3x x encodedinthedeterminantoftheHessianmatrix,namely A A y y DetHess±(Γ0)=±u1+u1−u2sgn[∆±(Γ0)] . (9) Intheabsenceoftime-periodicfield,hoppingamplitudesful- fill u1+u1−u2 > 0 and ∆±(Γ0) > 0. Thus, DetHess±(Γ0) > 0 0 0 0 A 10 0 A 10 and the system lies in a band insulating phase, with elliptic x x parabolic dispersion relations. When tuning the field magni- FIG.3.(Coloronline)Phasediagramsforelectricfieldswithelliptic tude, ∆+(Γ0) changes signs, and so does DetHess+(Γ0). It (left)andlinear(right)polarizations.Lightpurpleareasrefertoband describes a hyperbolic parabolic dispersion relation, so that insulating(BI)phasescharacterizedbyeiγC = +1. Darkpurplear- there are now two Dirac cones in the vicinity of Γ0. There- eascorrespondtosemimetallic(SM)andtopologicalinsulating(TI) fore, thesystemhasundergoneaLifshitztransitiontowarda phasesinwhicheiγC =−1.ComponentsAxandAyaregiveninÅ−1. semimetallic phase. From Eqs. (6) and (7), this is equiva- lently characterized by eiγC = −1, where the non-vanishing Berry phase provides a topological stability of every Dirac voafloacnccuepaineddceonnedrguyctbioanndbsaninddse,xweedinbtyrond:uδce=th(cid:81)epaπrit(yΓp)r.oTduhcist cone inside C. Right at the transition, when ∆+ = 0, the de- i n n i terminant of the Hessian matrix is null, whereas its trace is qcounandtuictytioonnlybacnhdasngoefsowpphoensittehepcarroitsiseisn,gwinhvicohlvdeesfivnaelesnacebaanndd not: TrHess+(Γ0) = u21+ +u21− > 0. Consequently, the dis- persion relation is linear in one direction albeit parabolic in inversion. Besides,nobandinversioncanoccuratΓi=1,3 and others. ThisspectrumprovidesauniversalsignatureofDirac δi=1,3 =−1isfixed[27]. AtmomentaΓi=0,2,thisproductis conemergingintwodimensionsandissaidtobesemi-Dirac δi =sgn[∆−(Γi)]sgn[∆+(Γi)] , (6) [19]. It happens for example for A ∼ 2.1Å−1 (see Fig. 4), whichcanbeobtainedformagnitudesofthefieldlargerthan where∆ (Γ) = F (Γ)±F (Γ)refertotheenergygapsof 30V/Å. Here, one canshow that, right atthe transition, the ± i 2 i 1 i thetwooccupiedbandsatΓ. semi-Diracoccupiedbandsatisfies i Ontheotherhand,ellipticpolarizedfieldsbreakbothtime- (cid:113) E (Γ +Q)(cid:39)− Q2c2+Q4/4m2, (10) reversalandchiralsymmetriesindividually, meaningrespec- − 0 x x y tively that H˜2(k) (cid:44) H˜2∗(−k) and SH˜2(k)S (cid:44) −H˜2(k) with (cid:113) S = σ0 ⊗σ3. Nonetheless, theirproductalwaysleadstothe whichreferstoDiracelectronswithceleritycx = u21++u2−1 particle-hole symmetry S†H˜(k)S = −H˜∗(−k), regardless of along Q = u1√+Kx+u1−Ky, and Shro¨dinger electrons with effec- x the field polarization. Thus, eigenstates come in pairs with u21++u21− opposite energies, and opposite parities because {I,S} = 0. tivemassm= u21++u2−1 alongQ = u1√+Ky−u1−Kx. Thespectrumisthenparticle-holesymmetricandbandinver- (u1++u−1)u+1u−1 y u21++u21− sions can only occur at zero energy. Based on inversion and particle-hole symmetries, we can finally connect the Berry phase γ picked up by the occupied Bloch wavefunctions C alongapathCwhichencloseshalftheBrillouinzone,tothe parityproductsatΓi=0,2[27]. Thisresultsin eiγC =δ δ . (7) 0 2 This quantity, which is illustrated in Fig. 3, changes signs onlywhenphoton-inducedbandinversionsoccuratΓi=0,2. ky ky 0 0 Linear polarized fields — For linear polarizations, phos- phoreneband-structureissimplydescribedbythetimeaver- ageH˜ (k)uptothesecondorderinthehigh-frequencylimit. 1 AroundΓ ,occupiedenergybands“±”canbeexpandedas 0 2 3A 4 5 0 kx 1 E±(Γ0+K)(cid:39)−|∆±(Γ0)|− KT·Hess±(Γ0)·K. (8) FIG. 4. (Color online) Lowest-energy bands in the semimetallic 2 phase induced by linearly polarized fields (φ = π/2). Figures on HereK = (k + k )/2,K = (k − k )/2,andHessianmatrix top describe semi-Dirac (left) and massless Dirac electrons (right). x x y y x y Hess describesthelocalcurvatureofenergybands. Energy EnergyisgivenineV.FiguresatthebottomshowtheDiraccones gap ∆±±(Γ0) = u1+ + u1− ± u2 relies on field-renormalized trajectories(blacklines)fortheconfigurationAx =Ay=A. 4 φ=0 φ=0 rene is an anisotropic semiconductor in which engineering 1 1 topologically stable chiral Dirac charge carriers, either two- or one-dimensional in the bulk, or one-dimensional along 0 0 a boundary, may be achieved by tuning the polarization and intensity of a single external field. All these features occurringinthesamenon-compoundthinfilmmakeitrather 1 1 appealingforelectronicnanodevicerealizations. −−π ky π −−π ky π FIG.5. (Coloronline)Spectraofaribbonwithbeardedtermination TheauthorswouldliketothankA.N.Rudenko,A.Itin,J. along direction y, under circularly polarized fields A = 2.80Å−1 MentinkandS. Brenerforusefulcomments. Thisworkwas x (left)and Ax = 2.95Å−1 (right). Thelatteryieldschiraledgestates supportedbyNWOviaSpinozaPrizeandbyERCAdvanced withinthebulkenergygap,inagreementwiththetopologicalphase Grant338957FEMTO/NANO. predictedinFig.3. A similar Lifshitz transition can also take place at Γ , 2 wheretheresultsaboveholdviathesubstitutionu1+ →−u1+. [1] P. Bridgman, Journal of the American Chemical Society 36, Thus, the Dirac cones in semimetallic phase move along a 1344(1914). line which connects momenta Γ and Γ , where they can be [2] L.Li, Y.Yu, G.J.Ye, Q.Ge, X.Ou, H.Wu, D.Feng, X.H. 0 2 Chen, andY.Zhang,Naturenanotechnology9,372(2014). createdandannihilatedinpairs. ThisisillustratedinFig. 4. [3] H.Liu,A.T.Neal,Z.Zhu,Z.Luo,X.Xu,D.Toma´nek, and If some hopping amplitudes vanish, it is straightforward to P.D.Ye,ACSnano8,4033(2014). seefromFig. 1thatelectronshaveazero-orone-dimensional [4] F.Xia,H.Wang, andY.Jia,Nat.Commun.5,4458(2014). behavior which is unstable because it can be removed by [5] J.Qiao,X.Kong,Z.-X.Hu,F.Yang, andW.Ji,Nat.Commun. perturbationssuchasdistanthoppingprocesses. 5,4475(2014). [6] A.N.RudenkoandM.I.Katsnelson,Phys.Rev.B89,201408 (2014). Elliptic polarized fields — For elliptic polarizations, the [7] R.W.Keyes,Phys.Rev.92,580(1953). second order term described by λ2M(k)⊗σ is responsible 3 [8] J.Jamieson,Science(NewYork,N.Y.)139,1291(1963). foranenergygapwhichcanonlycloseatΓ0 [27]. Moreover, [9] D.Warschauer,JournalofAppliedPhysics34,1853(1963). the Bloch band structure still has particle-hole symmetry, [10] A.S.Rodin,A.Carvalho, andA.H.CastroNeto,Phys.Rev. with respect to operator S. It satisfies S2 = +1, so that Lett.112,176801(2014). the system belongs to the Bogoliubov-de Gennes class D [11] J.Guan,Z.Zhu, andD.Toma´nek,Phys.Rev.Lett.113,046804 (2014). and its band-structure topology is characterized by a first [12] R.Fei,V.Tran, andL.Yang,Phys.Rev.B91,195319(2015). Chernnumberνin2D[38]. Whenneitheroftheenergygaps [13] A.N.Rudenko,S.Yuan, andM.I.Katsnelson,Phys.Rev.B ∆ (Γ )vanish, weprovideaconnectionin[27]betweenthis ± 0 92,085419(2015). topological invariant and the Berry phase in Eq. (7). This [14] Q.Liu,X.Zhang,L.Abdalla,A.Fazzio, andA.Zunger,Nano leads to (−1)ν = δ0. When δ0 = −1, the Chern number is letters15,1222(2015). oddandthesystemnecessarilyliesinatopologicalinsulating [15] J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, phase. Itguarantiestheexistenceofparticle-hole-symmetry- J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, Science 349, 723(2015). protectedchiralboundarymodeswithinthebulkenergygap, [16] S.S.Baik,K.S.Kim,Y.Yi, andH.J.Choi,Nanoletters15, asillustratedinthecaseofaphosphoreneribbonwithbearded 7788(2015). termination in Fig. 5. Moreover, it can easily be checked [17] A.H.CastroNeto,F.Guinea,N.M.R.Peres,K.S.Novoselov, from[27]thatthesecondordertermλ2M(k)⊗σ3effectively andA.K.Geim,Rev.Mod.Phys.81,109(2009). describes anisotropic next nearest-neighbor processes. Thus, [18] M.I.Katsnelson,Graphene:CarboninTwoDimensions(Cam- H˜(k) (cid:39) λH˜ (k) + λ2H˜ (k) is a dynamical realization of bridgeUniversityPress,2012). 1 2 an anisotropic four-band Haldane’s model with vanishing [19] G.Montambaux,F.Pie´chon,J.-N.Fuchs, andM.Goerbig,The EuropeanPhysicalJournalB72,509(2009). onsite potential and π/2 flux [39], similarly to what was [20] P.Dietl,F.Pie´chon, andG.Montambaux,Phys.Rev.Lett.100, pointed out for graphene under circular polarized light [37]. 236405(2008). Consequently, thesystemhasbeendrivenintoananomalous [21] C. Dutreix, L. Bilteanu, A. Jagannathan, and C. Bena, Phys. quantumHallphase. Rev.B87,245413(2013). [22] L.Tarruell,D.Greif,T.Uehlinger,G.Jotzu, andT.Esslinger, Insummary,wehavedescribedthestroboscopicdynamics Nature483,302(2012). [23] M.C.Rechtsman,J.M.Zeuner,Y.Plotnik,Y.Lumer,D.Podol- of rapidly driven phosphorene up to the second order in the sky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Nature high-frequency limit. We gave a general prescription to ap- 496,196(2013). prehendtheparticle-hole-symmetry-protectedtopologyofthe [24] M.D.ReichlandE.J.Mueller,Phys.Rev.A89,063628(2014). photon-renormalizedband-structurefromparitiesofoccupied [25] W.ZhengandH.Zhai,Phys.Rev.A89,061603(2014). Bloch wavefunctions. It enabled us to show that phospho- [26] G.Jotzu,M.Messer,R.Desbuquois,M.Lebrat,T.Uehlinger, 5 D.Greif, andT.Esslinger,Nature515,237(2014). [27] C.Dutreix,E.A.Stepanov, andM.I.Katsnelson,Supplemen- talmaterialdetailsthederivationoftheeffectiveHamiltonian anditssymmetry-protectedtopologicalcharacterisation.. [28] K. I. Seetharam, C.-E. Bardyn, N. H. Lindner, M. S. Rudner, andG.Refael,Phys.Rev.X5,041050(2015). [29] E. Canovi, M. Kollar, and M. Eckstein, Phys. Rev. E 93, 012130(2016). [30] T. Mori, T. Kuwahara, and K. Saito, Phys. Rev. Lett. 116, 120401(2016). [31] W.Magnus,CommunicationsonPureandAppliedMathemat- ics7,649(1954). [32] A.ItinandA.Neishtadt,Phys.Lett.A378,822 (2014). [33] A. P. Itin and M. I. Katsnelson, Phys. Rev. Lett. 115, 075301 (2015). [34] R.Snider,JournalofMathematicalPhysics5,1580(1964). [35] R.Wilcox,JournalofMathematicalPhysics8,962(1967). [36] L.FuandC.L.Kane,Phys.Rev.B76,045302(2007). [37] T.Kitagawa,T.Oka,A.Brataas,L.Fu, andE.Demler,Phys. Rev.B84,235108(2011). [38] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys.Rev.B78,195125(2008). [39] F.D.M.Haldane,Phys.Rev.Lett.61,2015(1988). 6 SUPPLEMENTALMATERIAL:LASER–INDUCEDTOPOLOGICALTRANSITIONSINPHOSPHORENEWITHINVERSION SYMMETRY Firstorderinthehigh-frequencylimit Effectivetight-bindingdescription The first order in the high-frequency limit shows that the system can be described by the time-independent Hamiltonian H˜ = H , where H = (cid:82)+π dtH(t) is the time-average of the Hamiltonian over a period. In momentum space, its derivation 1 0 0 −π 2π involvesthecalculationoftermslike (cid:90) +π dt (cid:18)(cid:113) (cid:19) 2πeidxAxcosteidyAysin(t−φ) = J0 (dxAx)2+(dyAy)2+2dxdyAxAysinφ , −π whichessentiallyresultsintherenormalizationofhoppingamplitudes. Itisthenstraightforwardtoshowthat   F (k) F (k) F (k) F (k) H˜1(k)= FF341∗∗((kk)) FF432∗((kk))e−iϕ(k) FF123((kk))eiϕ(k) FF214((kk)) , F∗(k) F∗(k) F∗(k) F (k) 2 1 4 3 whereF1(k)= f1+ f5+ f8,F2(k)= f2+ f6+ f9,F3(k)= f3+ f7+ f10andF4(k)= f4,andwherefunctions fi=1...10aregivenby (cid:18)(cid:113) (cid:19) (cid:18)(cid:113) (cid:19) f1 =t1J0 α2x+α2y −2αxαysinφ +t1J0 α2x+α2y +2αxαysinφ eiky , f =t J (β )e−iϕ(k), 2 2 0 x f =2t J (2α )cosk , 3 3 0 y y (cid:18)(cid:113) (cid:19) (cid:18)(cid:113) (cid:19) f4 =2t4J0 (αx+βx)2+α2y +2(αx+βx)αysinφ e−iϕ(2k) cosKx+2t4J0 (αx+βx)2+α2y −2(αx+βx)αysinφ e−iϕ(2k) cosKy, (cid:18)(cid:113) (cid:19) (cid:18)(cid:113) (cid:19) f5 =t5J0 (αx+2βx)2+α2y +2(αx+2βx)αysinφ e−ikx +t5J0 (αx+2βx)2+α2y −2(αx+2βx)αysinφ e−iϕ(k), f6 =t6J0(2αx+βx)eiky , f =2t J (2α +2β )cosk , 7 7 0 x x x (cid:18)(cid:113) (cid:19) (cid:18)(cid:113) (cid:19) f8 =t8J0 α2x+9α2y +6αxαysinφ e2iky +t8J0 α2x+9α2y −6αxαysinφ e−iky , (cid:18)(cid:113) (cid:19) (cid:18)(cid:113) (cid:19) f9 =t9J0 (2αx+βx)2+4α2y +4(2αx+βx)αysinφ e2iky +t9J0 (2αx+βx)2+4α2y −4(2αx+βx)αysinφ , (cid:18)(cid:113) (cid:19) (cid:18)(cid:113) (cid:19) f =2t J 4(α +β )2+4α2+8(α +β )α sinφ cos2K +2t J 4(α +β )2+4α2−8(α +β )α sinφ cos2K , 10 10 0 x x y x x y x 10 0 x x y x x y y with α = |d |A , α = |d |A , β = |d |A and K = (k + k )/2, K = (k −k )/2. The expressions above rely on the x 1x x y 1y y x 3x x x x y y x y tight-bindingmodelintroducedin[13],wherehoppingparameters,givenineV,havebeenestimatedast =−1.486,t =3.729, 1 2 t =−0.252,t −0.071=,t =−0.019,t =0.186,t =−0.063,t =0.101,t =−0.042andt =0.073. Itisworthmentioning 3 4 5 6 7 8 9 10 herethatthenearest-neighborhoppingamplitudesareatleastoneorderofmagnitudelargerthanfurtherhoppingamplitudes. 7 Parityproductsofoccupiedenergybands As long as the phosphorene crystal has inversion symmetry, the Bloch Hamiltonian matrix commutes with the inversion (cid:104) (cid:105) operatorI = σ ⊗σ atthetime-reversalinvariantmomenta,i.e. I,H˜(Γ) = 0. Thus,theeigenvaluesofI,namelyπ = ±1, 1 1 i n becomegoodquantumnumbersthatlabeltheenergybands. AtmomentaΓ andΓ ,thefourenergybandssatisfy 0 2 E (Γ )= F +F −F −F with π (Γ )=+1, 1 0,2 3 2 1 4 1 0,2 E (Γ )= F +F +F +F with π (Γ )=+1, 2 0,2 3 2 1 4 2 0,2 E (Γ )= F −F −F +F with π (Γ )=−1, 3 0,2 3 2 1 4 3 0,2 E (Γ )= F −F +F −F with π (Γ )=−1. 4 0,2 3 2 1 4 4 0,2 Althoughwevoluntarilyomittomentionitintheexpressionsaboveformoreclarity,themomentumdependentfunctionsFj=1,...4 areevaluatedattime-reversalinvariantpoints. Besides,theorderofmagnitudesofhoppingamplitudes(t1,2 (cid:29) ti=3...10)implies thatinversionsbetweenvalenceandconductionbandsarelikelytooccuronlybetweenbandsofoppositeparities,eitherwhen E (Γ )=E (Γ )orwhenE (Γ )=E (Γ ). BothconditionsareindependentofF andF ,andcanberewrittenas 2 0,2 3 0,2 1 0,2 4 0,2 3 4 F ±F =0. 2 1 Theparityproductofthe(two)occupiedenergybandsatΓi=0,2isthengivenby (cid:89) δ = π (Γ) i n i occupiedn =sgn[F (Γ)−F (Γ)]sgn[F (Γ)+F (Γ)]. 2 i 1 i 2 i 1 i Althoughthiscriterionisvalidwithinthetenhoppingmodel,itsuggeststhatbandinversionsarealreadywelldescribedwithina nearest-neighbortight-bindingapproximationas,first,distantprocessesareatleastoneorderofmagnitudesmallerthannearest- neighboronesand,second,theirassociatedzeroth-orderBesselfunctionsdecayfasterwiththefieldthanfornearestneighbors. This is illustrated in Fig. 6 which depicts the four energy levels at Γ for elliptically and linearly polarized fields within both 0 frameworksthetenhoppingmodelandthenearest-neighborapproximation. AtmomentaΓ andΓ ,onesimilarlyobtains 1 3 (cid:113) E (Γ )= F + F2+(F +F )2 with π (Γ )=+1, 1 1,3 3 2 1 4 1 1,3 (cid:113) E (Γ )= F + F2+(F −F )2 with π (Γ )=−1, 2 1,3 3 2 1 4 2 1,3 (cid:113) E (Γ )= F − F2+(F −F )2 with π (Γ )=−1, 3 1,3 3 2 1 4 3 1,3 (cid:113) E (Γ )= F − F2+(F +F )2 with π (Γ )=+1. 4 1,3 3 2 1 4 4 1,3 φ=0 φ=π/2 8 8 +1 +1 1 1 − − 0 0 8 8 − 0 10 − 0 10 A A FIG. 6. (Color online) Illustration of the four energy levels at Γ for elliptic (φ = 0) and linear (φ = π/2) polarizations as a function of 0 A = A = A,giveninÅ−1. Inbothcases, F hasbeentakenastheenergyoriginandenergyisgivenineV. Thedashedlinesrefertothe x y 3 ten-hoppingmodelandareingoodagreementwiththefullonesthatrefertothenearest-neighborapproximation. Lightanddarkbluesrefer topositive(+1)andnegative(−1)parities,respectively 8 Importantly,whenE (Γ )=E (Γ ),orwhenE (Γ )=E (Γ ),nobandinversioncanoccuratΓ andΓ ,wheretheparity 2 1,3 3 1,3 1 1,3 4 1,3 1 3 productoftheoccupiedenergybandsisfixed: δ =−1. Thisresultsin 1,3 (cid:89)3 δ =δ δ . i 0 2 i=0 ThisquantityonlydependsonbandinversionslikelyoccuringattimereversalinvariantmomentaΓ orΓ , amechanismthat 0 2 plays a central role in topological features of phosphorene band-structure and will be the purpose of the upcoming sections. Notefinallythat,inthenearest-neighborapproximation, F ±F correspondstotheenergygap,hencethenotation∆ (Γ ) = 2 1 ± 0,2 F2(Γ0,2)−F1(Γ0,2). TheparityproductoftheoccupiedenergybandsΓi=0,2canthenberewrittenas δi =sgn[∆+(Γi)]sgn[∆−(Γi)] . (11) Bandinversionsfromparityproducts In the high-frequency regime, the Bloch band structure is described by the time-average of the Hamiltonian matrix which, limitedtonearest-neighborprocesses,reads   0 0 F (k) F (k) H˜1(k)=0F1∗(k) 0F2∗(k)e−iϕ(k) 0F21(k)eiϕ(k) 0F12(k). F∗(k) F∗(k) 0 0 2 1 Since it satisfies the relation SH˜ (k)S = −H˜ (k), where S = σ ⊗σ , H˜ is said to have chiral symmetry. As a result, the 1 1 0 3 1 eigenstates come in pairs with opposite energies and the spectrum is particle-hole symmetric. One can then square the above matrixtoshowthatthedispersionrelationsoftheoccupiedenergybandslabelledbytheindex±satisfy E2±(K)=[u1+cosKx+u1−cosKy±u2]2+[u1+sinKx+u1−sinKy]2, (cid:18)(cid:113) (cid:19) whereu =t J α2+α2±2α α sinφ andu =t J (β ). Bandinversionsbetweenvalenceandconductionbandsoccurat 1± 1 0 x y x y 2 2 0 x zeroenergyandextremaofthedispersionrelation. Thoseextremafulfil∇ E2 =0andE (cid:44)0,orequivalently k ± ± 0=u2(cid:2)u1+sinKx+u1−sinKy(cid:3) 0=(cid:2)2u1−cosKy±u2(cid:3)u1+sinKx−(cid:2)2u1+ cosKx±u2(cid:3)u1−sinKy. Ifu (cid:44)0andu (cid:44)0,then 1± 2 0=(cid:2)u1+sinKx+u1−sinKy(cid:3) 0=(cid:2)u1+ cosKx+u1−cosKy±u2(cid:3)u1+sinKx, whereE±(K)=[u1+cosKx+u1−cosKy±u2](cid:44)0. Thus,theextremaofthedispersionrelationarenecessarilylocatedatΓ0and Γ . Theyaretheonlymomentawherebandinversionsareallowedtotakeplace. Consequently,theparityproductsδ andδ are 2 0 2 sufficienttokeeptrackofbandinversions. Notethatothercasesforwhichatleastoneoftheparametersu oru vanishesturnouttobeunstableas,forexample,they 1± 2 mayberemovedbydistanthoppingprocesses. Secondorderinthehigh-frequencylimit Effectivetight-bindingdescription Asdetailedinthemaintext,thesecondorderinthehigh-frequencylimitisdescribedbythetime-independentmatrix: (cid:88)[H ,H ] H˜ =− m −m . 2 m m>0 9 Sincethesystemisqualitativelywellcharacterizedwithinthenearest-neighbortight-bindingapproximation,onefindsthat   0 0 F (k) F (k) Hm(k)=0FF1∗∗,−m((kk)) 0FF2∗∗,−m((kk))e−iϕ(k) 00F12,,mm(k)eiϕ(k) 00F21,,mm(k) , 2,−m 1,−m where (cid:90) +π dt (cid:90) +π dt F1,m(k)=t1 2π eimt eiaxcost eiaysin(t−φ)+t1eiky 2π eimt eiaxcost e−iaysin(t−φ) −π −π (cid:20) (cid:18)(cid:113) (cid:19) (cid:18)(cid:113) (cid:19) (cid:21) =t1e−imπ/2 eimθ1 Jm a2x+a2y +2axaycos(φ+π/2) +eimθ2 Jm a2x+a2y −2axaycos(φ+π/2) eiky , and F (k)=t e−imπ/2J (c)e−iϕ(k). 2,m 2 m Intheexpressionsabove,itisimpliedthatθ = −arctan aysin(φ+π/2) ,θ = +arctan aysin(φ+π/2) ,a = d A anda = d A . 1 ax+aycos(φ+π/2) 2 ax−aycos(φ+π/2) x 1x x y 1y y Besides,onecanshowthat H (k)H (k)=(cid:32) Km(k) 0 (cid:33) , with K (k)=(cid:32) F1,mF1∗,m+F2,−mF2∗,−m F1,mF2∗,me−iϕ+F2,−mF1∗,−m (cid:33) . m −m 0 K (k) m F F∗ eiϕ+F F∗ F F∗ +F F∗ −m 2,m 1,m 1,−m 2,−m 1,m 1,m 2,−m 2,−m Thecommutationrelationcanthenberewrittenas[H ,H ]=(K −K )⊗σ . Twocaseshavetobedistinguished. m −m m −m 3 • Forlinearpolarizations(φ=π/2andθ =θ =0), 1 2 H˜ =0. 2 As a result, the system is still described by its time-average. A fortiori chiral and time-reversal symmetries, as well as invarianceunderspatialinversionarepreserved. • Forellipticpolarizations(φ=0andθ=θ =θ ), 1 2 (cid:32) (cid:33) (cid:32) (cid:33)(cid:34) (cid:32) (cid:33) (cid:32) (cid:33) (cid:35) (cid:16) (cid:17) k k k −k k −k H˜ (k)=τ sin k σ ⊗σ +τ cos x sin y cos x y σ ⊗σ +sin x y σ ⊗σ , 2 3 y 0 3 4 1 3 2 3 2 2 2 2 where  τ3 =4t12(cid:88)m>0 Jm2 (a)smin(2mθ) τ4 =8t1t2(cid:88) Jm(a)Jmm(c)sin(mθ) . m>0 Thoughthesystemisstillinvariantunderinversionsymmetry,i.e. I†H˜ (k)I= H˜ (−k),time-reversalandchiralsymme- 2 2 triesarebothbrokenindividually,sincerespectivelyH˜∗(−k)=−H˜ (k)andS†H˜ (k)S= H˜ (k). 2 2 2 2 Bandinversionsfromparityproducts Thesystemisdescribedbythetime-independenteffectiveHamiltonianH˜ (cid:39) λH˜ +λ2H˜ . Inthecaseofalinearlypolarized 1 2 field,H˜ =0. Consequently,thecriterionalreadygiveninEq. (11)forthetimeaverageinordertokeeptrackofbandinversions 2 stillholds. Inthecaseofellipticallypolarizedfields,however,H˜ (cid:44) 0andwehavetofindthemomentawherebandinversions 2 are likely to occur. To do so, one can first remark that, although chiral and time-reversal symmetries are individually broken, theirproductleadstothefollowingparticle-holesymmetryrelation: S†H˜(k)S=−H˜∗(−k). 10 Thus,eigenstatescomeinpairs|ψ (k)(cid:105)andS|ψ∗(−k)(cid:105)withoppositeenergies,respectivelyE(k)and−E(−k). Thespectrumis n n particle-holesymmetricandbandinversionscanonlyoccuratzeroenergy. Inordertoevaluateatwhatmomentatheyarelikely totakeplace,wecansimplysolveDetH˜(k)=0,whichcanequivalentlyberewrittenas  (cid:32)k (cid:33) u1cos 2y =±u2e−ik2x τ3cos(cid:32)ky(cid:33)sin(cid:32)ky(cid:33)=±τ4cos(cid:32)kx(cid:33)sin(cid:32)ky(cid:33) . 2 2 2 2 When u1τ4 (cid:44) u2τ3, where u1 = u1+ = u1− in the case of elliptic polarization, the determinant only vanishes at k = Γ0 for ∆ (Γ ) = 0. Asaresult,ellipticallypolarizedfieldsyieldanenergygapwhichisonlyallowedtocloseatΓ . Thisimpliesthat ± 0 0 δ =+1isfixed,andfinally 2 (cid:89)3 δ =δ . i 0 i=0 Topologicaltransitionsfrombandinversions In this section, we first define some properties of the Berry connexion and the Berry curvature, before establishing their relationtotopologicalfeaturesoftheBlochbandstructure,namelyaπ-quantizedBerryphaseandafirstChernnumber. BerryconnectionandBerrycurvature Startingfromitsdefinition,theBerryconnectionassociatedtoallbands(occupiedandempty)satisfies (cid:88) A(k)=i (cid:104)ψ (k)|∇ |ψ (k)(cid:105) n k n n (cid:88) =i (cid:104)ψ∗(−k)|S†|∇ |S|ψ∗(−k)(cid:105) n k n n (cid:88) =i (cid:104)ψ∗(−k)|S†I†|∇ |IS|ψ∗(−k)(cid:105) n k n n (cid:88) =i (cid:104)ψ∗(−k)|S†I†|∇ |u (−k)(cid:105)(cid:104)u (−k)|IS|ψ∗(−k)(cid:105) n k m m n mn (cid:88) =i (cid:104)u (−k)|IS|ψ∗(−k)(cid:105)(cid:104)ψ∗(−k)|S†I†|∇ |u (−k)(cid:105) m n n k m mn (cid:88) +i (cid:104)ψ∗(−k)|S†I†|u (−k)(cid:105)∇ (cid:104)u (−k)|IS|ψ∗(−k)(cid:105) n m k m n mn (cid:104) (cid:105) =−A(−k)+iTr M†(k)∇ M(k) k A(k)=−A(−k)+i∇ lnDetM(k) k whereM (k)=(cid:104)ψ (−k)|IS|ψ∗(−k)(cid:105)isaunitarymatrix. mn m n Moreover,theBerryconnectionsforemptyandoccupiedbandsarerelatedinthefollowingway: (cid:88) A+(k)=i (cid:104)ψ (k)|∇ |ψ (k)(cid:105) n k n En>0 (cid:88) =i (cid:104)ψ∗(−k)|S†∇ S|ψ∗(−k)(cid:105) n k n En<0 (cid:88) =i (cid:104)ψ∗(−k)|∇ |ψ∗(−k)(cid:105) n k n En<0 (cid:88) =i (cid:104)ψ (−k)|∇ |ψ (−k)(cid:105) n −k n En<0 =A−(−k) ,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.