Springer Series in Optical Sciences 182 Sergio Musazzi Umberto Perini Editors Laser-Induced Breakdown Spectroscopy Theory and Applications Springer Series in Optical Sciences Volume 182 Founded by H. K. V. Lotsch Editor-in-Chief William T. Rhodes,Boca Raton,USA Editorial Board Ali Adibi, Atlanta, USA Toshimitsu Asakura, Sapporo, Japan Theodor W. Hänsch, Garching, Germany Takeshi Kamiya, Tokyo, Japan Ferenc Krausz, Garching, Germany Bo A. J. Monemar, Linköping, Sweden Herbert Venghaus, Berlin, Germany Horst Weber, Berlin, Germany Harald Weinfurter, München, Germany For furthervolumes: http://www.springer.com/series/624 Springer Series in Optical Sciences TheSpringerSeriesinOpticalSciences,undertheleadershipofEditor-in-ChiefWilliamT.Rhodes, GeorgiaInstituteofTechnology,USA,providesanexpandingselectionofresearchmonographsinall majorareasofoptics:lasersandquantumoptics,ultrafastphenomena,opticalspectroscopytechniques, optoelectronics, quantum information, information optics, applied laser technology, industrial appli- cations,andothertopicsofcontemporaryinterest. Withthisbroadcoverageoftopics,theseriesisofusetoallresearchscientistsandengineerswhoneed up-to-datereferencebooks. Theeditorsencourageprospectiveauthorstocorrespondwiththeminadvanceofsubmittingaman- uscript.SubmissionofmanuscriptsshouldbemadetotheEditor-in-ChieforoneoftheEditors.Seealso www.springer.com/series/624 Editor-in-Chief WilliamT.Rhodes SchoolofElectricalandComputerEngineering GeorgiaInstituteofTechnology Atlanta,GA30332-0250 USA e-mail:[email protected] EditorialBoard AliAdibi BoA.J.Monemar SchoolofElectricalandComputerEngineering DepartmentofPhysicsandMeasurementTechnology GeorgiaInstituteofTechnology MaterialsScienceDivision Atlanta,GA30332-0250 LinköpingUniversity USA 58183Linköping,Sweden e-mail:[email protected] e-mail:[email protected] ToshimitsuAsakura HerbertVenghaus FacultyofEngineering FraunhoferInstitutfürNachrichtentechnik Hokkai-GakuenUniversity Heinrich-Hertz-Institut 1-1,Minami-26,Nishi11,Chuo-ku Einsteinufer37 Sapporo,Hokkaido064-0926,Japan 10587Berlin,Germany e-mail:[email protected] e-mail:[email protected] TheodorW.Hänsch HorstWeber Max-Planck-InstitutfürQuantenoptik OptischesInstitut Hans-Kopfermann-Straße1 TechnischeUniversitätBerlin 85748Garching,Germany Straßedes17.Juni135 e-mail:[email protected] 10623Berlin,Germany e-mail:[email protected] TakeshiKamiya MinistryofEducation,Culture,Sports HaraldWeinfurter ScienceandTechnology SektionPhysik NationalInstitutionforAcademicDegrees Ludwig-Maximilians-UniversitätMünchen 3-29-1OtsukaBunkyo-ku Schellingstraße4/III Tokyo112-0012,Japan 80799München,Germany e-mail:[email protected] e-mail:[email protected] FerencKrausz Ludwig-Maximilians-UniversitätMünchen LehrstuhlfürExperimentellePhysik AmCoulombwall1 85748Garching,Germanyand Max-Planck-InstitutfürQuantenoptik Hans-Kopfermann-Straße1 85748Garching,Germany e-mail:[email protected] Sergio Musazzi Umberto Perini • Editors Laser-Induced Breakdown Spectroscopy Theory and Applications 123 Editors SergioMusazzi Umberto Perini Ricerca sulSistema Energetico—RSE SpA TTD Milan Italy ISSN 0342-4111 ISSN 1556-1534 (electronic) ISBN 978-3-642-45084-6 ISBN 978-3-642-45085-3 (eBook) DOI 10.1007/978-3-642-45085-3 Springer Heidelberg NewYork Dordrecht London LibraryofCongressControlNumber:2014931863 (cid:2)Springer-VerlagBerlinHeidelberg2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Laser-Induced Breakdown Spectroscopy (LIBS) also known as laser-induced plasma spectroscopy (LIPS) or laser spark spectrometry (LSS) is a relatively new type of atomic emission spectroscopy made possible by the invention of the laser. More precisely, the use of laser-induced spark emission for elemental analysis of materials originated from the pioneering work of D. A. Kremers and L. J. Radziensky at Los Alamos National Laboratory (USA) in the early 1980s, about 20 years after the invention of the laser. Since then, LIBS has developed into a major analytical tool capable of providing real-time measurements of constituents in almost any kind of material. TheLIBSprincipleofoperationisquitesimple,althoughthephysicalprocesses involved in the laser–matter interaction are complex and still not completely understood. The technique relies on the use of a pulsed laser source (with energy per pulse ranging from tens to hundreds of mJ and pulse durations typically smaller than 10 ns) and a measuring chain for the analysis of the plasma emitted spectrum. In detail, the laser pulses are focused down to a target (solid, liquid as well as gas samples have so far been analyzed) so as to generate a high- temperature plasma that vaporizes a small amount of material. A portion of the light emitted by the excited atomic and ionic species in the plasma is then collectedandspectrallyanalyzed todeterminethesampleelemental composition. Quantitative LIBS analysis can also be performed when the assumptions of local thermal equilibrium (LTE) and optically thin plasma are satisfied. Becauseofitsuniquefeatures,liketheabsenceofsamplepreparation,theability to perform real-time, and in situ analysis as well as the quasi non-destructive and micro-analysischaracterofthemeasurements,thenumberofLIBSapplicationshas dramatically increased in the last years. For this reason, the main purpose of this book is toprovide an overview ofthe latest developments and applications of the LIBS technique as well as to recall (especially for readers not familiar with these topics)sometheoreticalandexperimentalaspectsofthelaser–matterinteractionin LIBS experiments. The book is divided into two main parts: the first part deals with some fundamental aspects of the technique and the second part is dedicated to the descriptionofthemostimportantapplicationsofLIBSindifferentdisciplinesand areas of interest. In Part I of the book (Fundamentals of LIBS), the physical processesoccurringduringtheformationandexpansionofalaser-inducedplasma v vi Preface are described in the Chap. 1, where the role of the various effects characterizing theenergyflowfromthelaserpulsetotheobservedspectroscopicquantities(e.g., thermal diffusion, electron and ion temperatures, particle ablation, and kinetics) areelucidated.OtheraspectsofthesametopicarealsodiscussedinChap.2where different features of the physical mechanisms involved in optical emission spec- troscopy (OES) are analyzed in equilibrium and non-equilibrium conditions. The contentofChap.3dealswiththeinstrumentalaspectsofLIBS.Thepurposeofthis chapteristoprovideadescriptionofthebasiccomponentsofaLIBSsystem(laser source, focusing optics, ablation chamber, and detection system) and how their technical features as well as their experimental arrangement may affect the mea- surements.Newdevelopmentsinlasersourcesandfiberopticstechnologyarealso highlighted.LIBSperformanceundernon-standardpressuresandwithsurrounding atmospheric gases other than air is the content of Chap. 4. The interest for this topic has been mainly driven by the applications of LIBS for space exploration (described in more detail elsewhere in the book) but the gained experience has provedfruitfulinimprovingLIBSmeasurements.Infact,alteringtheatmospheric pressure and gas composition can dramatically change the observed spectra, such as modifying (and in many cases improving) the spectral resolution, the signal intensity,andtheoverallsignal-to-noiseratio.MorerecentLIBStechniqueswhere multiple laser pulses and ultrashort laser pulses are used to excite the plasma are alsodiscussedinthissection(Chaps.5and6).Chapter5coversseveralimportant aspectsofdoubleandmultiplepulseLIBS,includingthephysicalprinciplesofthe laser–target plasma interactions, an overview of the currently available instru- mentation, and some examples of representative applications of this technique (e. g., the analysis of metallic alloys, soils, underwater materials, etc.). Chapter 6 deals with the use offemtosecond lasers in LIBS. Since the duration of a femto- second laser pulse is shorter than the electron-to-ion energy transfer time and the heat conduction time in sample lattice, the resulting laser ablation and heat dis- sipation mechanisms are very different from those observed when more conven- tional nanosecond laser pulses are used. The basics offemtosecond laser ablation processes and the application of this technique are presented in this chapter. PartIIofthebook(ApplicationsofLIBS)showshowLIBScanbeconveniently used to provide analytical information about different disciplines. Applications of LIBS to the analysis of solid targets, like metals and different alloy types, is the subject matter of Chap. 7, while LIBS analysis of liquids at gas–liquid interface as well as the underwater analysis of both solid and soft targets are described in Chap.8.TheuseofLIBSfordeterminingthechemicalcompositionofaerosolsis presentedinChap.9whereparticularemphasisisgiventotheanalysisoffineand ultra-fineaerosols.SpaceutilizationofLIBS,oneofthemoreexoticapplicationsof thistechnique,formsthesubjectmatterofChap.10.Inthischapterthecapabilities of LIBS for geological analysis at close-up and stand-off distances as well as for atmospheric pressures and compositions (simulating the Mars, Venus, and Moon environments) are discussed. The elementalanalysis ofsoils andthe geochemical fingerprintingusingLIBSarethecontentofChaps.11and12.Althoughapparently verysimilar,thesetwotopicscovertwodifferentaspectsofgroundanalysis.While Preface vii soil testing and analysis has an impact on both crops yield and environment, the importance of geochemical fingerprinting stems from its ability to determine the geographical provenience of a large variety of minerals, gemstones, and volcanicrocks.ThedetectionofexplosivesintracesbymeansofLIBSisdiscussed in Chap. 13. The advantages and disadvantages of using LIBS as a technique for forensic evidence analysis are presented in Chap. 14 together with examples of current applications of LIBS to the analysis of materials offorensic interest (e.g., paperandinks,counterfeitcurrency,gun-shotresidues,fingerprints,etc.).Chapter 15dealswiththeutilizationofLIBSfortheidentificationoforganiccompounds(in particularpolymermaterials)whileChap.16includestheapplicationsofLIBSin research related to globally important aspects such as climate change, carbon sequestration,phytoremediation,anddendrochemistry.Lifescienceapplicationsof LIBS are the subject matter of Chap. 17 where the use of LIBS for the elemental signatureofbiomedicalspecimensisdiscussed.CombustionapplicationsofLIBS aswellastheuseofLIBSfortheanalysisofcoalarediscussedinChaps.18and19. Both these chapters are of great interest in view of the future developments in LIBS-based diagnostic techniques aimed at improving the efficiency of industrial boilersutilizedincoal-firedpowerplants.Analysisofculturalheritagematerialsby means of LIBS is the content of the last chapter of the book. In this chapter, in addition to a number of case studies (such as the use of LIBS techniques in museums, in archeological conservation labs, and in excavation sites), particular emphasis is given to mobile/portable instrumentation to be used in outdoors applications. We believe that this book will be of interest to the large community of con- sumers, researchers, and developers of the LIBS technique, working in academic institutes, research centers, as well as in industrial laboratories. We gratefully thank all the co-authors who spared time from their demanding research and teaching activities for contributing to this book. Milan Sergio Musazzi Umberto Perini Contents Part I Fundamentals of LIBS 1 Laser–Matter Interaction in LIBS Experiments. . . . . . . . . . . . . . 3 Andrea Marco Malvezzi 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Laser Interaction with Gases . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Multiphoton Ionization . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Cascade Ionization . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Laser Interaction with Solid Materials from Milliseconds to Nanoseconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.1 Heating and Melting. . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.2 Vaporization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4 Laser Interaction with Solid Materials: Ultrashort Laser Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 Physical Processes in Optical Emission Spectroscopy. . . . . . . . . . 31 Mario Capitelli, Gianpiero Colonna, Giuliano D’Ammando, Rosalba Gaudiuso and Lucia Daniela Pietanza 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2 LTE Plasmas: The Few Level Approximation for the Partition Function and Thermodynamic Properties of Atomic Species. . . . . . . . . . . . . . . . . . . . . . . . 34 2.3 Non-LTE Plasmas: Collisional Radiative Models Coupled with Electron Energy Distribution Function and Radiation Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4 Fluid Dynamics of Laser-Plasma Expansion in Gas and Liquids: Modeling and Validation . . . . . . . . . . . . . . . . . 45 2.5 Conclusions and Perspectives. . . . . . . . . . . . . . . . . . . . . . . . 53 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ix x Contents 3 LIBS Instrumental Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Sergio Musazzi and Umberto Perini 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2 The Laser Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2.1 Laser Sources Utilized in LIBS Systems. . . . . . . . . . 63 3.2.2 Laser–Matter Interaction: Dependence on Wavelength and Pulse Duration. . . . . . . . . . . . . . 65 3.3 The Focusing Optics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4 The Target Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.5 The Light Collection System. . . . . . . . . . . . . . . . . . . . . . . . 72 3.6 Spectral Detection Systems . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.6.1 Wavelength Selectors . . . . . . . . . . . . . . . . . . . . . . . 74 3.6.2 Detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.6.3 Spectrometer-Detector Combination: The Right Trade Off. . . . . . . . . . . . . . . . . . . . . . . . 82 3.7 Control Electronics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.8 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4 Influence of Atmospheric Pressure and Composition on LIBS . . . 91 Jill R. Scott, Andrew J. Effenberger and Jeremy J. Hatch 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2 Spectral Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.2.1 Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2.2 Signal Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2.3 Signal-to-Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . 102 4.3 Material Ablation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.4 Experimental Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.4.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . 106 4.4.2 Field of View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.4.3 Multiple Pulse Configurations . . . . . . . . . . . . . . . . . 108 4.5 Overview of Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.5.1 Isotope Measurements. . . . . . . . . . . . . . . . . . . . . . . 109 4.5.2 LIBS in Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.5.3 Process Monitoring. . . . . . . . . . . . . . . . . . . . . . . . . 110 4.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5 Double and Multiple Pulse LIBS Techniques. . . . . . . . . . . . . . . . 117 Stefano Legnaioli, Giulia Lorenzetti, Lorenzo Pardini, Gildo H. Cavalcanti and Vincenzo Palleschi 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117