Laser diode systems for photodynamic therapy and medical diagnostics Eva Samsøe Lund Reports on Atomic Physics LRAP-321 Doctoral Thesis Department of Physics Lund Institute of Technology July 2004 (cid:13)c 2004byEvaSamsøe Allrightsreserved. DoctoralThesis AtomicPhysicsDivision DepartmentofPhysics LundInstituteofTechnology P.O.Box118 SE–22100Lund Sweden LundReportsonAtomicPhysics,ISSN 0281-2762 LRAP-321 ISBN 91-628-6144-1 PrintedbyPitneyBowesManagementServices,Dk To Anders and my Family In memory of my beloved Father ... Abstract This work concerns techniques for improvement of the coherence properties of diode lasers so that they may be used be used in two specific medical applications: (Interstitial) photodynamic therapy (PDT) and laser-induced fluorescence diagnostics. In the first ap- plication, spatial coherence is crucial, since the therapeutic light should be delivered through relatively thin optical fibers to op- timize treatment and to facilitate minimally invasive treatment. In the second application a pulsed, blue source at 405nm is de- sired. Thishasbeenapproachedbyfrequencydoublingtheoutput from an external-cavity laser diode at 810nm. Thus, both spatial and temporal coherence are important to ensure that the second harmonic generation is efficient. Two red (635nm) laser diode systems for PDT, a first and a second generation, have been developed and tested in preliminary clinical trials. The first generation system is based on asymmetri- calopticalfeedbackfromaBaTiO crystal. Thissystemiscoupled 3 into a thin (50µm core diameter) optical fiber and tested in pre- liminary clinical trials involving interstitial PDT of solid tumors in rat. The second generation system couples two similar systems by means of polarization coupling, whereby the output power is doubled. The individual systems are based on asymmetrical feed- back from ordinary mirrors. This system has been tested in PDT treatment of skin cancer in human and has been compared with a conventional treatment. Forlaser-inducedfluorescencediagnostics, an810nmexternal- cavity laser diode system with improved spatial and temporal co- herence has been constructed. The system is based on a new con- figuration that employs double feedback from the first diffracted and the zeroth reflected order of a diffraction grating. The output from this system is frequency doubled to 405nm using a single pass configuration with a periodically poled KTP crystal. It has been shown that the double grating feedback improves the second harmonic conversion efficiency by several orders of magnitude as compared with the freely running laser. v Sammanfattning Arbetetidennaavhandlingsyftartillattutvecklab¨attreljuska¨llor f¨or fluorescensavbildning och fotodynamisk behandling av cancer- tumo¨rer. Sm˚a kompakta diodlasrar ¨ar ideala ljuska¨llor f¨or detta, menendelkliniskaanv¨andningarkr¨averattderasprestandaf¨orba¨t- tras. Gemensamt f¨or de b¨agge diagnostik- och behandlingsme- toderna ¨ar att man beho¨ver uppn˚a h¨ogre str˚alkvalitet av laserljus med h¨og effekt. Detta har till dels f¨orverkligats i detta arbete genom att utveckla en speciell ˚aterkoppling av ljus tillbaka in i diodlasern med hj¨alp av en yttre kavitet. Fotodynamisk tumo¨rterapi (PhotoDynamic Therapy - PDT) ¨ar en behandlingsmetod som p˚a senare tid utnyttjas allt mer i be- handlingen av vissa tumo¨rsjukdomar, medan metoden fortfarande utvecklas och utv¨arderas i kliniska studier f¨or andra tumo¨rtyper. Metodeninneb¨arattpatiententarettl¨akemedelsomg¨oratttumo¨r- enblirljuska¨nslig. Ommansedanbelysertumo¨renmedljusaven speciell f¨arg, startar en kemisk reaktion som d¨odar tumo¨rcellerna. Metodenharm˚angaf¨ordelar,s˚asomattden¨areffektivmottumo¨r- en, medan den ofta kan spara omkringliggande frisk v¨avnad. L¨ak- ningen after behandlingen ¨ar ¨aven ofta b¨attre ¨an f¨or de flesta andra behandlingsmetoder. Den stora nackdelen med metoden ¨ar att ljuset inte n˚ar till alla delar av tumo¨ren om tumo¨ren ¨ar stor, och d¨armed blir behandlingen inte effektiv i dessa delar av tumo¨ren. Vid behandling av sto¨rre tumo¨rer med PDT, ¨ar det d¨arf¨or en f¨ordel att sticka in en eller flera optiska fibrer som kan belysa tumo¨ren innifr˚an, och d¨armed lysa ut tumo¨ren b¨attre. F¨or attkunnag¨oradettaeffektivt,¨onskarmankunnaledaljusetirela- tivt tunna optiska fibrer. Problem uppst˚ar d˚a n¨ar man ska koppla in laserljuset in i fibrerna. F¨or att detta ska kunna ske effektivt, beho¨ver str˚alkvaliteten p˚a laserljuset vara god. Arbetet i denna avhandlinghandlarblandannatomattf¨orba¨ttrastr˚alkvalitetenav behandlingslasern, s˚a att denna koppling blir effektiv och d¨armed g¨ora det mo¨jligt att utveckla b¨attre lasrar f¨or denna behandling. Fluorescensavbildning ¨ar ett diagnostiskt hj¨alpmedel som kan anv¨andas f¨or att finna tidiga tumo¨rer eller f¨or att markera var tumo¨rgr¨ansen g˚ar. Med fluorescens menas ljus som molekyler i olika matrial skickar ut n¨ar de de belyses med ultraviolett eller vii viii Sammanfattning violett ljus. Fluorescens g¨or t.ex. att vita kla¨der lyser bl˚att p˚a diskotekd¨armanharlampormedosynligtultraviolettljusitaket. N¨ar man anv¨ander fluorescens f¨or diagnostik av cancer, utnyttjar manatttumo¨rerfluorescerarannorlunda¨anfriskv¨avnad,eftersom de delvis inneh˚aller andra molekyler. Denna typ av diagnostiska ma¨tningar kan g¨oras punktma¨ssigt, d¨ar man belyser v¨avnaden genomenoptiskfibersomh˚allesikontaktmedv¨avnadensomun- ders¨oks, eller genom en avbildning d¨ar en sto¨rre v¨avnadsyta kan studeras. Ofta g¨ors dessa unders¨okningar med hj¨alp av endoskop, s˚a att v¨avnadsytor av inre organ, s˚asom matstrupe, mags¨ack, tar- mar, urinbl˚asa, luftv¨agar, osv, kan unders¨okas. Detta medfo¨r att ljuset m˚aste ledas genom optiska fibrer. Det ¨ar d¨armed viktigt att utveckla en kompakt och robust ljuska¨lla som klarar att ge tillr¨ackligt mycket violett ljus genom en fibrer. Denna avhan- dling handlar delvis om utveckling med syfte att ta fram en s˚adan ljuska¨lla. Diodlasrar kan vara konstruerade p˚a olika s¨att f¨or att opti- mera olika egenskaper. De viktigaste egenskaperna ¨ar ofta utef- fekten, str˚alkvaliteten och hur smalbandig lasern ¨ar (dvs hur bred lasertoppen ¨ar v˚agl¨angdsm¨assigt). F¨or de tilla¨mpningar som nu ¨ar aktuella ¨ar uteffekten den viktigaste egenskapen, men de andra parametrarna ¨ar ocks˚a mycket viktiga. Generellt kan man s¨aga attjuh¨ogreuteffektenlaserhar,jus¨amrebliroftadeandraegen- skaperna. Huvuddelen av arbetet f¨or denna avhandling har varit att teoretiskt modellera, bygga upp och testa olika typer av yttre kaviteter till diodlasrar som v¨asentligt f¨orba¨ttrar en h¨ogeffekts- diodlasersstr˚alegenskaperochbandbredd,utanattf¨orloraf¨ormy- cket ljus. Arbetet har dessutom g˚att ut p˚a att effektivt konvert- era r¨ott ljus fr˚an en s˚adan laser till violett ljus i en olinj¨ar op- tisk kristall. Detta kan vara den mest effektiva metoden idag att ˚astadkomma h¨og effekt med i diodlaser vid dessa v˚agl¨angder. Contents Contents ix List of Papers xiii Part I 1 Introduction 3 1.1 Statusofclinicalapparatus . . . . . . . . . . . . . . . . . . . 4 1.2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Structureofthesis . . . . . . . . . . . . . . . . . . . . . . . . 6 2 High-power diode lasers 7 2.1 Emissionandabsorptioninsemiconductors . . . . . . . . . . 7 2.2 Structuresofdiodelasers. . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Broadarealasers . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Laserdiodearrays. . . . . . . . . . . . . . . . . . . . 11 2.2.3 Laserdiodebars. . . . . . . . . . . . . . . . . . . . . 11 2.3 Materialsforhigh-powerdiodelasers . . . . . . . . . . . . . . 12 2.3.1 GaAsandAlGaAs . . . . . . . . . . . . . . . . . . . 12 2.3.2 GaInPandAlGaInP . . . . . . . . . . . . . . . . . . 13 2.3.3 InGaN,AlGaN,andGaN . . . . . . . . . . . . . . . 13 2.4 Fieldconfinement . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.1 Transverseconfinement . . . . . . . . . . . . . . . . . 15 2.4.2 Lateralconfinement . . . . . . . . . . . . . . . . . . . 16 2.5 Emissioncharacteristics . . . . . . . . . . . . . . . . . . . . . 17 2.5.1 Transversemodes . . . . . . . . . . . . . . . . . . . . 18 2.5.2 Lateralmodes . . . . . . . . . . . . . . . . . . . . . . 18 2.5.3 Highandlowcoherenceaxes . . . . . . . . . . . . . . 22 2.5.4 Astimatism . . . . . . . . . . . . . . . . . . . . . . . 22 2.5.5 Spectralpropertiesofdiodelasers . . . . . . . . . . . 22 2.6 Pulsingdiodelasers. . . . . . . . . . . . . . . . . . . . . . . . 23 2.6.1 Fundamentalsofpulseddiodelasers. . . . . . . . . . 23 2.6.2 Impedance . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6.3 Turn-ondelayandrelaxationoscillation . . . . . . . 25 2.6.4 Experimentalresults . . . . . . . . . . . . . . . . . . 25 ix x 3 External-cavity diode lasers 29 3.1 Singlelobefarfieldformation . . . . . . . . . . . . . . . . . . 29 3.2 SpatialmodefilteringintheFourierplane . . . . . . . . . . . 30 3.3 Externalcavitymodes . . . . . . . . . . . . . . . . . . . . . . 31 3.4 Feedbackmechanisms . . . . . . . . . . . . . . . . . . . . . . 31 3.4.1 Mirrorfeedback . . . . . . . . . . . . . . . . . . . . . 31 3.4.2 Gratingfeedback . . . . . . . . . . . . . . . . . . . . 32 3.4.3 Phaseconjugatefeedback. . . . . . . . . . . . . . . . 35 3.5 Singlelobeoutputformationwithoutspatialfiltering . . . . . 35 4 Second harmonic generation 37 4.1 BasicprinciplesofSHG . . . . . . . . . . . . . . . . . . . . . 37 4.1.1 Thenonlinearpolarization . . . . . . . . . . . . . . . 38 4.1.2 Thedcoefficient. . . . . . . . . . . . . . . . . . . . . 40 4.1.3 Thegeneratedwave . . . . . . . . . . . . . . . . . . . 41 4.2 Spatialconfinement . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.1 Boyd-KleinmananalysisforSHGwithcirculargaus- sianbeams . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.2 Extended analysis for SHG with elliptical Gaussian beams . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 Phasematching . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3.1 Birefringentphasematching . . . . . . . . . . . . . . 48 4.3.2 Quasi-Phasematching . . . . . . . . . . . . . . . . . . 51 4.3.3 OtherPhasematchingtechniques . . . . . . . . . . . 56 4.4 MaterialsforSHG . . . . . . . . . . . . . . . . . . . . . . . . 56 4.4.1 Potassiumtitanylphosphate-KTiOPO4 . . . . . . . 56 4.4.2 Othermaterials . . . . . . . . . . . . . . . . . . . . . 57 5 Photodynamic therapy 61 5.1 Mechanismsofaction. . . . . . . . . . . . . . . . . . . . . . . 61 5.1.1 Photosensitizers . . . . . . . . . . . . . . . . . . . . . 62 5.1.2 Photo-oxidation . . . . . . . . . . . . . . . . . . . . . 65 5.1.3 Therapeuticlight . . . . . . . . . . . . . . . . . . . . 66 5.2 Clinicalapplications . . . . . . . . . . . . . . . . . . . . . . . 67 5.2.1 SuperficialPDTofskincancers . . . . . . . . . . . . 67 5.2.2 InterstitialPDTofdeeper-lyingsolidtumors . . . . . 68 6 Laser-induced fluorescence diagnostics 71 6.1 Basicprinciples . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.2 Tissueautofluorescence. . . . . . . . . . . . . . . . . . . . . . 73 6.3 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3.1 Excitationlightsources . . . . . . . . . . . . . . . . . 74 6.3.2 Detectionprinciples . . . . . . . . . . . . . . . . . . . 75 6.4 Clinicalapplications . . . . . . . . . . . . . . . . . . . . . . . 77 7 Diode laser-based systems for PDT and laser-induced flu- orescence diagnostics 79 7.1 DiodelasersystemsforPDT . . . . . . . . . . . . . . . . . . 79 7.1.1 InterstitialPDTofcolonadenocarcinomas . . . . . . 80 7.1.2 PDTofsuperficialBCC . . . . . . . . . . . . . . . . 83 7.1.3 ClinicalevaluationofPDTsystems . . . . . . . . . . 85 7.2 Frequency doubled diode laser system for laser-induced fluo- rescencediagnostics. . . . . . . . . . . . . . . . . . . . . . . . 86 7.2.1 Evaluationofclinicalpossibilities . . . . . . . . . . . 86 Acknowledgements 89 Comments on the Papers 91
Description: