ebook img

Laser Beam Micro-milling of Micro-channels in Aerospace Alloys PDF

368 Pages·2017·15.095 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Laser Beam Micro-milling of Micro-channels in Aerospace Alloys

Advanced Structured Materials Saied Muhammed Hassan Darwish Naveed Ahmed Abdulrahman M. Al-Ahmari E ditors Laser Beam Micro-milling of Micro-channels in Aerospace Alloys Advanced Structured Materials Volume 68 Series editors Andreas Öchsner, Southport Queensland, Australia Lucas F.M. da Silva, Porto, Portugal Holm Altenbach, Magdeburg, Germany More information about this series at http://www.springer.com/series/8611 Saied Muhammed Hassan Darwish Naveed Ahmed Abdulrahman M. Al-Ahmari (cid:129) Editors Laser Beam Micro-milling of Micro-channels in Aerospace Alloys 123 Editors SaiedMuhammed Hassan Darwish and Princess Fatima Alnijris’s Research Chair forAdvanced Manufacturing Technology DepartmentofIndustrialandManufacturing (FARCAMT), AdvancedManufacturing Engineering(IME) Institute (AMI), Industrial Engineering University of Engineering andTechnology Department(IED) (UET) KingSaud University (KSU) Lahore Riyadh Pakistan SaudiArabia Abdulrahman M.Al-Ahmari Naveed Ahmed Princess Fatima Alnijris’s Research Chair Princess Fatima Alnijris’s Research Chair forAdvanced Manufacturing Technology forAdvanced Manufacturing Technology (FARCAMT), AdvancedManufacturing (FARCAMT), AdvancedManufacturing Institute (AMI), Industrial Engineering Institute (AMI), Industrial Engineering Department(IED) Department(IED) KingSaud University (KSU) KingSaud University (KSU) Riyadh Riyadh SaudiArabia SaudiArabia ISSN 1869-8433 ISSN 1869-8441 (electronic) AdvancedStructured Materials ISBN978-981-10-3601-9 ISBN978-981-10-3602-6 (eBook) DOI 10.1007/978-981-10-3602-6 LibraryofCongressControlNumber:2016963630 ©SpringerNatureSingaporePteLtd.2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721,Singapore Acknowledgements InTheNameofAllah,TheMostBeneficent,TheMostMerciful First of all, I praise and express my heartiest gratitude to the most merciful Almighty ALLAH who has given me strength and ability to write this book. Without His help, it would have been impossible to conduct this research and compile this draft. TheauthorswouldliketoacknowledgethePrincessFatimaAlnijris’sResearch Chair for Advanced Manufacturing Technology (FARCAMT), Vice Deanship of Research Chairs, King Saud University, Saudi Arabia for financial support of this project. v Contents Introduction .. .... .... .... .... ..... .... .... .... .... .... ..... 1 Literature Review.. .... .... .... ..... .... .... .... .... .... ..... 15 Research Methodology.. .... .... ..... .... .... .... .... .... ..... 81 Under-Water Laser Beam Micro-milling (UWLBMM) of Aerospace Alloys .... .... .... ..... .... .... .... .... .... ..... 101 Dry Laser Beam Micro-milling (DLBMM) of Aerospace Alloys.. ..... 133 Dimensional Variations in DLBMM of Aerospace Alloys... .... ..... 171 Mathematical Modeling and Multi-objective Optimization .. .... ..... 201 Validations—Modeling and Optimization.... .... .... .... .... ..... 241 Conclusions and Future Work Recommendations. .... .... .... ..... 259 Appendix A... .... .... .... ..... .... .... .... .... .... ..... .... 265 Appendix B... .... .... .... ..... .... .... .... .... .... ..... .... 313 References.... .... .... .... ..... .... .... .... .... .... ..... .... 327 vii Abbreviations AA Aluminum alloy CFRP Carbon fiber reinforced polymers CM Conventional machining DLBMM Dry laser beam micro-milling EDM Electric discharge machining EDS Energy dispersive X-ray spectroscopic FCCCD Face centered central composite design HAZ Heat affected zone HVA Vicker’s hardness LAECM Laser assisted electrochemical machining LAM Laser assisted machining LBM Laser beam machining LBMM Laser beam micro-milling LCM/E Laser chemical machining/etching MRR Material removal rate NA Nickel alloy NCM Non-conventional machining Nd:YAG Neodymium-doped yttrium aluminum garnet; Nd:Y Al O 3 5 12 Nd:YVO Neodymium-doped yttrium orthovanadate 4 NP Nanoparticle PC Polycarbonate PMMA Poly-methyl methacrylate RL Recast layer RSM Response surface methodology SEM Scanning electron microscopy SiC Silicon carbide TA Titanium alloy TFTPs Thin film thermocouples ix x Abbreviations UV Ultra Violet UWLBMM Underwater laser beam micro-milling WEDM Wire-electric discharge machining Nomenclature µ Dynamic viscosity (Ns/m2) A Area of water container base (mm2) wc AXB Actual bottom width (µm) AXT Actual top width (µm) AZ Actual depth (µm) Ah Actual taper angle (degree) C Specific heat capacity (J/kg °C) p DXB Designed bottom width (µm) DXT Designed top width (µm) DZ Designed depth (µm) Dh Designed taper angle (degree) f Pulse frequency (kHz) FR Feed rate (µm/laser scan) I actual transmitted intensity (kW/mm2) I Intensity above water film (kW/mm2) o K Thermal conductivity (W/m °C) Ø Spot diameter (µm) PPP Pulse peak power (MW/s) T Melting temperature (°C) m t Average water film thickness (mm) w V Scan speed (mm/s) V Volume of substrate (mm3) s V Total volume of water required (mm3) total V Volume of water at the substrate (mm3) w V Volume of water container (mm3) wc V Volume of water film layer t (mm3) wl w a Absorption coefficient of water (cm−1) w DXB Variation in bottom width (%) DXT Variation in top width (%) DZ Variation in depth (%) s Wavelength (nm) List of Figures Chapter 1 Introduction Figure 1 Overview of laser machining processes [3]. . . . . . . . . . . . . 2 Figure 2 Function principle of Q-switching . . . . . . . . . . . . . . . . . . . 4 Figure 3 Various mechanisms of laser ablation [6] . . . . . . . . . . . . . . 6 Figure 4 Microfluidic device and micro-channel heat exchanger [20] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 5 Research methodology in general . . . . . . . . . . . . . . . . . . . 11 Chapter 2 Literature Review Figure 1 Nanosecond and longer pulse laser ablation [66]. . . . . . . . . 18 Figure 2 Temperature distribution along the x-axis and y-axis at different heating periods [93] . . . . . . . . . . . . . . . . . . . . . . 24 Figure 3 Recast layer piling procedure according to the scanning repeat count [101]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 4 Laser machining of a Al O , b Si N , c SiC 2 3 3 4 and d MgO [102] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 5 Configuration of laser cutting system with the dual-laser-beam method [86]. . . . . . . . . . . . . . . . . . . . . . . 29 Figure 6 Effect of cutting speed on cutting forces for conventional and LAM machining (feed = 0.25 mm/rev) [131] . . . . . . . . 33 Figure 7 Damageinthecuttingtoolwhenthelaserbeamisfocused at a circumferential distance of 25 mm from the cutting tool [132]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 8 Comparison of conventional and LAM tool wear [138]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 9 Variation of material removal temperature with laser power [144] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 10 Nano-holes. a–c Laser irradiation power 5, 6 and 7.3 W, respectively, d count of nano-hole size distribution and xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.