ebook img

Laser Assisted Machining of Inconel 718 Super Alloy PDF

124 Pages·2009·18.46 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Laser Assisted Machining of Inconel 718 Super Alloy

Laser Assisted Machining of Inconel 718 Super Alloy By Salar Tavakoli Manshadi Department of Mechanical Engineering McGill University Montréal, Québec February 2009 A Thesis Submitted to the Faculty of Graduate Studies Research in Partial Fulfillment of the Requirement for the Degree of Master of Engineering © Salar Tavakoli Manshadi Abstract This research work assesses the effect of Laser Assisted Machining (LAM) on the machinability of Inconel 718 using a triple layer coated carbide and a sialon ceramic tool. This study was motivated by issues related to poor machinability of IN718 under conventional machining operations. In this work a focused Nd:YAG laser beam was used as a localized heat source to thermally soften the workpiece prior to material removal. Finishing operations were assumed throughout the experiments. Optimization screening tests were performed over a wide range of cutting speeds (ranging from 100 to 500 m/min) and feeds (ranging from 0.125 to 0.5 mm/rev). Results showed a significant drop in all three components of cutting force when thermal softening caused by the laser power was in effect. These tests yielded the optimum cutting speed and feed to be 200 m/min and 0.25 mm/rev for the coated carbide and 300 m/min and 0.4 mm/rev for the ceramic tool. Under these optimum conditions tool life tests were carried out. Drastic increase in terms of the material removal rate (MRR) was demonstrated under LAM conditions as compared to conventional machining. A nearly %300 increase in MRR was established for the coated carbide tool while slightly reducing tool life, mainly because the coatings offering thermal and wear protection could not withstand the high temperatures associated with LAM. Nearly %800 increase in MRR for the ceramic tool was achieved while improving tool life (about %50). In all cases, improvements in surface finish and surface integrity were observed. The dominant mode of tool failure was observed to be average flank wear for all tools tested. However, the coated carbide tool exhibited signs of chipping and flaking in the coatings. The morphology of the chips produced was analyzed and it was shown that temperature and increased chip thickness were the main causes of transition from steady state to shear localized chip structure. Shear localized or sawtooth chips tended to form at high temperatures when maximum undeformed chip thickness reached 140 μm. i Résumé Cette recherche évalue l'effet de l’usinage assisté par Laser (UAL) sur l’usinabilité d'Inconel 718 en utilisant deux outils : Le premier est enrobé d’une triple couche de carbure et le second est en céramique sialon. Cette étude a été motivée par la difficulté d’usiner IN718 conventionnellement. Dans ce travail, un rayon laser Nd:YAG a été utilisé comme une source de chaleur localisée pour adoucir thermiquement la pièce avant l'usinage. Les expériences représentaient les opérations de finitions. Une optimisation a été exécutée à travers une sélection unitaire pour une large gamme de vitesses de coupes (aux limites de 100 à 500 m/min) et de vitesses d’avance (aux limites de 0.125 à 0.5 mm/rév). Les résultats ont manifesté une réduction significative dans toutes les trois composantes de la force de coupe quand l'adoucissement thermique provoqué par le laser était mis en effet. D’après les tests, les valeurs optimales de vitesse de coupe et d’avance sont 200 m/min et 0.25 mm/rév pour l’outil avec la couche de carbure et 300 m/min et 0.4 mm/rév pour l’outil en céramique. Dans ces conditions optimales, des épreuves de tenue d’outils ont été réalisées. Une augmentation du taux d’enlèvement de matière a été démontrée lors de l’application de l’UAL en comparaison à l’usinage conventionnel. Une augmentation dans le taux d’enlèvement de matière de 300% a été établie pour l’outil enrobé de carbure avec une légère réduction en tenue d’outil. La raison de cette réduction est le fait que ces couches qui offrent une protection thermique et une résistance d’usure ne pouvaient pas résister aux températures élevées associées à l’UAL. Une augmentation de 800% dans le taux d’enlèvement de matière a été accomplie pour l’outil en céramique avec une amélioration de tenue d’outils d’environ 50%. Dans tous les cas, une amélioration de l’intégrité de la surface à été observée. En générale, ça été remarqué que le mode dominant d'échec des outils est l’usure frontale. Pourtant, l’outil avec une couche de carbure a fait signe d’usure frontale et d’écaillage de la couche. La morphologie des copeaux produits a été analysée; il a été montré que la température et l’augmentation de l'épaisseur des copeaux étaient les causes principales de transition du régime permanent au cisaillement localisé de la structure des copeaux. Le cisaillement localisé et les copeaux en forme de dent de scie en tendance à se former à de hautes températures quand l'épaisseur des copeaux non-déformée atteint une valeur maximale de 140 µm. ii Acknowledgements First and foremost, I would like to express my sincere gratitude to my principal supervisor Prof. Helmi Attia and co-supervisor Prof. Vincent Thomson for their invaluable guidance in the accomplishment of this research. My extended gratefulness goes to Mr. Raul Vargas for his critical contributions and constructive comments in the development of this work. I would also like to thank the Natural Science and Engineering Research Council of Canada (NSERC), the National Research Council of Canada (NRC) and my principle supervisor for their financial support throughout the course of this research. All experiments performed in this work were carried out at the Aerospace Manufacturing Technology Center (AMTC), National Research Council of Canada (NRC). I would like to thank Prof. Attia for providing me with the opportunity to conduct my experiments at the AMTC and to interact with leading researchers in the field. Furthermore, I am grateful to Mr. Nicola De Palma for his technical help and support on performing the machining tests at the AMTC. As well, my deep appreciation is extended to all the members at AMTC, NRC who helped during the experimental phase, and to Mrs. Helen Campbell at McGill University for her help with the SEM imagery. Last but not least I would like to express my deepest gratitude to my parents for their endless support and encouragement. Without you none of this would be possible. iii Contents Abstract ............................................................................................................................... i  Résumé ............................................................................................................................... ii  Acknowledgements .......................................................................................................... iii  Contents ............................................................................................................................ iv  List of Figures .................................................................................................................. vii  List of Tables .................................................................................................................. xiii  Nomenclature ................................................................................................................. xiv  Chapter 1: Introduction .............................................................................................. 1  1.1  General ................................................................................................................. 1  1.2  Terminal Thesis Objectives .................................................................................. 3  1.3  Thesis Organization .............................................................................................. 3  Chapter 2:  Literature Review ....................................................................................... 5  2.1  Introduction .......................................................................................................... 5  2.2  Superalloys ........................................................................................................... 5  2.3  Inconel 718 ........................................................................................................... 6  2.3.1  Microstructure ............................................................................................... 6  2.3.2  Mechanical Properties ................................................................................... 8  2.3.3  Machinability Issues ................................................................................... 10  2.4  Machining of Inconel 718 .................................................................................. 11  2.4.1  Cutting Forces ............................................................................................. 11  2.4.2  Tool Wear ................................................................................................... 13  2.4.3  Surface Integrity.......................................................................................... 14  2.4.4  Chip Formation ........................................................................................... 15  2.5  Thermally Enhanced Machining (TEM) ............................................................ 17  iv 2.5.1  Plasma Enhanced Machining (PEM) .......................................................... 17  2.6  Laser Assisted Machining (LAM) ...................................................................... 19  2.6.1  LAM Principle of Operation ....................................................................... 19  2.6.2  LAM of Ceramics ....................................................................................... 22  2.6.3  LAM of Inconel 718 ................................................................................... 24  2.7  Gap Analysis ...................................................................................................... 28  2.8  Detailed Objectives of the Research Work ........................................................ 29  Chapter 3:  Experimental Setup .................................................................................. 30  3.1  Introduction ........................................................................................................ 30  3.2  Workpiece Material ............................................................................................ 30  3.3  Cutting Tool ....................................................................................................... 30  3.4  Experimental Setup ............................................................................................ 32  3.4.1  Machine Tool .............................................................................................. 32  3.4.2  Laser ............................................................................................................ 32  3.4.3  LAM Setup.................................................................................................. 34  3.5  Cutting Forces .................................................................................................... 36  3.6  Tool Wear ........................................................................................................... 37  3.7  Surface Roughness Measurements ..................................................................... 38  3.8  Workpiece Temperature Measurements ............................................................. 38  3.8.1  IR Camera Calibration ................................................................................ 40  3.9  Chip and Microstructure analysis ....................................................................... 42  Chapter 4:  Effect of LAM on the Machinability of Inconel 718 .............................. 45  4.1  Introduction ........................................................................................................ 45  4.2  Experimental Results Obtained in Laser Heating Tests ..................................... 45  4.2.1  Preliminary Heating Tests ........................................................................... 45  v 4.2.2  Secondary Heating Test Results ................................................................. 47  4.3  Test Results of LAM Optimization Tests .......................................................... 49  4.3.1  Triple Layer Coated Carbide (KC8050) ..................................................... 49  4.3.2  Sialon Ceramic (KY1540) .......................................................................... 63  Chapter 5:  Tool Life, Surface Integrity and Chip Morphology Under Optimum LAM Conditions....................................................................................... 74  5.1  Introduction ........................................................................................................ 74  5.2  Tool Life Analysis .............................................................................................. 74  5.3  Tool Failure Modes ............................................................................................ 78  5.3.1  Triple Layer Coated Carbide ...................................................................... 78  5.3.2  Ceramic Tool .............................................................................................. 80  5.4  Microstructure Analysis ..................................................................................... 82  5.4.1  Bulk Material .............................................................................................. 83  5.4.2  Machined Surfaces ...................................................................................... 84  5.5  Productivity Analysis ......................................................................................... 89  5.6  Chip Morphology ............................................................................................... 92  5.6.1  Triple Layer Coated Carbide Tool .............................................................. 93  5.6.2  Ceramic Tool .............................................................................................. 97  Chapter 6:  Conclusion and Future Recommendations ........................................... 101  6.1  Conclusions ...................................................................................................... 101  6.2  Recommendations for Future Work ................................................................. 103  References ...................................................................................................................... 104  vi List of Figures Figure 2.1 SEM micrograph showing (a) δ -phase plates, (b) γ˝ discs and (c) γ´ spheroids in IN718 treated isothermally at 850oC/24h. [11] ........................................... 7  Figure 2.2 Yield strength of Inconel 718 vs. temperature. [14] .......................................... 9  Figure 2.3 Optical micrographs of the Inconel 718 chip at 61 m/min. [37] ..................... 15  Figure 2.4 Chip image for cutting speed of 75 m/min and feed of 0.125 mm/rev showing signs of transition to shear localized chips. [12] ............................................ 16  Figure 2.5 Resultant cutting force vs. surface temperature for various cutting speeds for PEM. [14] ...................................................................................................... 18  Figure 2.6 Surface roughness vs. surface temperature for various cutting speeds using PEM. [14] ...................................................................................................... 18  Figure 2.7 (a) LAM process overview. [4] (b) heat gradient created near laser beam. [2] ....................................................................................................................... 20  Figure 2.8 LAM setup. (a) As demonstrated by Anderson [42], (b) LAM setup at the NRC Aerospace Manufacturing Technology Center (Photo courtesy of NRC- AMTC) .......................................................................................................... 21  Figure 2.9 Variation of cutting force vs. T [47] ............................................................ 23  mr Figure 2.10 Results for LAM of PSZ material (Pfefferkorn) [41]. ................................... 24  Figure 2.11 Reduction in cutting forces in LAM of Inconel 718 at different speeds.[40] 25  Figure 2.12 (a) effect of different coating materials applied to Inconel 718 to increase absorptivity. (b) Absorptivity of different laser wavelengths on Inconel 718. [42] ................................................................................................................. 26  Figure 2.13 Specific cutting energy vs. material removal temperature. [42] ................... 26  Figure 2.14 Notch wear at different T .[42] ................................................................... 27  mr Figure 2.15 VB and VB vs. T .[42] .................................................................... 27  max ave mr,ave Figure 2.16 Tool cost comparison when machining 1m length of Inconel 718. [42] ....... 27  Figure 3.1 Setup for laser heating experiments ................................................................ 33  Figure 3.2 A spot burned by the laser viewed under magnification. Circle (a) shows the true laser spot diameter for this test. .............................................................. 34  Figure 3.3 Graph showing the results and the trend line obtained for the spot size tests. 34  vii Figure 3.4 (a) Schematic of laser assisted machining (b) Experimental setup used for the laser assisted machining tests ........................................................................ 35  Figure 3.5 Force directions during machining .................................................................. 36  Figure 3.6 (a) Worn insert (KC8050), showing wear region (b) Flank wear criteria ....... 37  Figure 3.7 Online roughness measurements; Portable Taylor Hobson Surtronic 3+ ....... 38  Figure 3.8 IR camera image (viewing workpiece from the top) ....................................... 39  Figure 3.9 Typical heating curve for thermocouple. The conditions for this test are 3000 W, 300 m/min, 0.3 mm/rev, 3 mm spot size. IR measurement point temperature is calculated as 383 °C. .............................................................. 41  Figure 3.10 Comparison of the temperature data obtained from the thermocouple and IR camera during the heating tests at various cutting speeds. ε=0.09- 3,000 W- 2mm spot size- 0.3 mm/rev. .......................................................................... 42  Figure 3.11 Prepared chip sample, mounted in bakelite powder ...................................... 43  Figure.3.12 Etched and polished chip sample showing microhardness indentation. (Magnification: 150X) ................................................................................... 44  Figure 4.1 Typical heating curve for laser heating tests. Temperature vs. time; 500 W, 1179.9 rpm, 0.1 mm/rev ................................................................................ 46  Figure 4.2 Workpiece showing surface damage along the heating length caused by the laser. ............................................................................................................... 47  Figure 4.3 Effect of increasing feed on the temperature of the workpiece during laser heating at 3,000 W - 2mm spot size- 100 m/min. .......................................... 49  Figure 4.4 Methodology for optimization tests ................................................................. 50  Figure 4.5 Comparison of (a) cutting forces (b) feed forces (c) radial forces. Conventional machining and LAM at 100 m/min and 0.125 mm/rev. ................................ 52  Figure 4.6 Change in forces vs. cutting speed for conventional machining and LAM (3,000 W) at feed= 0.125 mm/rev and DOC= 0.25 mm. ............................... 53  Figure 4.7 Surface temperature measured with the IR camera vs. speed, for conventional machining and LAM (3,000 W) at feed= 0.125 mm/rev and DOC= 0.25 mm. ....................................................................................................................... 53  viii Figure 4.8 Average wear measured on the flank face of cutting tool vs. speed. For conventional machining and LAM (3,000 W) at feed= 0.125 mm/rev and DOC= 0.25 mm. ............................................................................................ 54  Figure 4.9 Tool wear on the flank face of the tool at 0.125 mm/rev and (a) 100 m/min, conventional machining (b) 100 m/min, LAM (c) 150 m/min, LAM (d) 200 m/min, LAM (e) 250 m/min, LAM (magnification: 12X). Sliding distance= 30 mm. (Refer to Figure 3.6) ......................................................................... 56  Figure 4.10 Surface roughness vs. speed, measured for conventional machining and LAM (3,000 W) at feed= 0.125 mm/rev and DOC= 0.25 mm. ............................... 57  Figure 4.11 Change in forces vs. feed under LAM (3,000 W). cutting speed= 200 m/min, DOC= 0.25 mm. ............................................................................................ 58  Figure 4.12 Surface temperature vs. feed, as measured by the IR camera for LAM (3,000 W) at cutting speed= 200 m/min and DOC= 0.25 mm. ................................. 59  Figure 4.13 Average flank wear measured on the flank face vs. feed for LAM (3,000 W) at cutting speed= 200 m/min and DOC= 0.25 mm. ....................................... 60  Figure 4.14 Average wear on the flank face of the tool at LAM (3,000 W), 200 m/min and (a) 0.125 mm/rev (b) 0.175 mm/rev (c) 0.2 mm/rev (d) 0.25 mm/rev (e) 0.3 mm/rev (f) 0.5 mm/rev (magnification: 12X). Sliding distance= 30mm. (Refer to Figure 3.6) ...................................................................................... 61  Figure 4.15 Average surface roughness vs. feed for LAM (3,000 W) at cutting speed= 200 m/min, DOC= 0.25 mm. ......................................................................... 62  Figure 4.16 Cutting forces for the triple layer, coated carbide and the ceramic tool for LAM (3,000 W), 200 m/min, 0.25 mm/rev. .................................................. 64  Figure 4.17 Change in forces vs. cutting speed for conventional machining and LAM (3,000 W), feed= 0.25 mm/rev and DOC= 0.25 mm. .................................... 65  Figure 4.18 Surface temperatures measured with the IR camera vs. speed for conventional machining and LAM (3,000 W), feed= 0.25 mm/rev and DOC= 0.25 mm. ........................................................................................................ 65  Figure 4.19 Average flank wear of the cutting tool vs. speed for conventional machining and LAM (3,000 W), feed= 0.25 mm/rev and DOC= 0.25 mm. ................... 66  ix

Description:
This research work assesses the effect of Laser Assisted Machining (LAM) on the goes to Mr. Raul Vargas for his critical contributions and constructive Partially-Stabilized Zirconia (PSZ) is a structural ceramic that is being used
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.