ebook img

Large volume supersymmetry breaking without decompactification problem PDF

0.09 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Large volume supersymmetry breaking without decompactification problem

Large volume supersymmetry breaking without decompactification problem Herve´Partouche 6 1 0 AbstractWeconsiderheteroticstringbackgroundsinfour-dimensionalMinkowski 2 space,whereN =1supersymmetryisspontaneouslybrokenatalowscalem by 3/2 n astringyScherk-Schwarzmechanism.Wereviewhowtheeffectivegaugecouplings a at1-loopmayevadethe“decompactificationproblem”,namelytheproportionality J ofthegaugethresholdcorrections,withthelargevolumeofthecompactspacein- 8 volvedinthesupersymmetrybreaking. 1 ] h 1 Introduction t - p e Asensiblephysicaltheorymustatleastmeettworequirements:Berealisticandan- h [ alyticallyundercontrol.Thefirstpointcanbesatisfiedbyconsideringstringtheory, whichhastheadvantagetobe,atpresenttime,theonlysetupin whichbothgrav- 1 itationalandgaugeinteractionscanbedescribedconsistentlyatthequantumlevel. v Inthisreview,wedonotconsidercosmologicalissuesandthusanalyzemodelsde- 4 6 finedclassicallyinfour-dimensionalMinkowskispace.The“no-scalemodels”are 5 particularlyinteresting since, by definition, they describe in supergravityor string 4 theoryclassical backgrounds,inwhichsupersymmetryis spontaneouslybrokenat 0 an arbitraryscale m in flat space [1]. In other words, even if supersymmetryis . 3/2 1 notexplicit,theclassicalvacuumenergyvanishes. 0 The most conservative way to preserve analytical control is to ensure the va- 6 lidity of perturbationtheory.In string theory,quantumloopscan be evaluatedex- 1 : plicitly,whentheunderlyingtwo-dimensionalconformalfieldtheoryisitselfunder v control.Clearly,thisisthecase, whenoneconsidersfreefieldonthe worldsheet, i X forinstanceintoroidalorbifoldmodels[2]orfermionicconstructions[3].Inthese r frameworks,theN =1 N =0spontaneousbreakingofsupersymmetrycanbe a implementedat tree leve→l via a stringy version [4] of the Scherk-Schwarzmecha- nism[5].1 Inthiscase,thesupersymmetrybreakingscaleisoforderoftheinverse Herve´Partouche CentredePhysiqueThe´orique,EcolePolytechnique,CNRS,Universite´Paris-Saclay F–91128Palaiseaucedex,France,e-mail:[email protected] 1Notethatnon-perturbativemechanismsbasedongauginocondensationcouldalsobeconsidered, butonlyatthelevelofthelowenergyeffectivesupergravity,thusatthepriceofloosingpartofthe stringpredictability. 1 2 Herve´Partouche volume of the internal directions involved in the breaking. For a single circle of radiusR,onehas M s m = , (1) 3/2 R where M is the string scale, so that havinga low m =O(10TeV) imposesthe s 3/2 circle to be extremely large, R=O(1017) [6]. Such large directions yield towers of light Kaluza-Klein states and a problem arises from those chargedunder some gauge group factor Gi. In general, their contributions to the quantum corrections totheinversesquaredgaugecouplingisproportionaltotheverylargevolumeand invalidatestheuseofperturbationtheory. Tobespecific,letusconsiderinheteroticstringthe1-looplow energyrunning gaugecouplingg(m ),whichsatisfies[7] i 16p 2 16p 2 M2 =ki +biln s +D i. (2) g2(m ) g2 m 2 i s In this expression, g is the string coupling and ki is the Kac-Moody level of Gi. s Thelogarithmiccontribution,whichdependsontheenergyscalem ,arisesfromthe masslessstatesandisproportionaltotheb -functioncoefficientbi,whilethemassive modesyieldthethresholdcorrectionsD i.Themaincontributionstothelatterarise fromthelightKaluza-Kleinstates,whichforasinglelargeradiusyield 1 D i=CiR bilnR2+O , (3) − R (cid:18) (cid:19) whereCi=Cbi Cki,forsomenon-negativeCandC thatdependonothermoduli. ′ ′ − WhenCi=O(1),requiringinEq.(2)theloopcorrectiontobesmallcomparedto thetreelevelcontributionimposesg2R<1.Inotherwords,forperturbationtheory s tobevalid,thestringcouplingmustbeextremelyweak,g <O(10 6.5).IfCi>0, s − which implies Gi is not asymptotically free, Eq. (2) imposes the running gauge coupling to be essentially free, g(m )=O(g ), and Gi describes a hidden gauge i s group.However,ifCi <0, whichis the case if Gi is asymptoticallyfree,the very largetreelevelcontributionproportionalto1/g2 mustcancelCiR,uptoveryhigh s accuracy, for the running gauge coupling to be of order 1 and have a chance to describe realistic gauge interactions. This unnaturalfine-tuning is a manifestation of the so-called “decompactification problem”, which actually arises generically, whenasubmanifoldoftheinternalspaceislarge,comparedtothestringscale,i.e. whentheinternalconformalfieldtheoryallowsageometricalinterpretationinterms ofacompactifiedspace. To avoid the above described behavior, Ci can be required to vanish. This is triviallythecaseintheN =4supersymmetrictheories,whereactuallybi=0and D i=0.TheconditionCi=0remainsvalidinthetheoriesrealizingtheN =4 N =2 spontaneousbreaking, providedN =4 is recoveredwhen the volume→is senttoinfinity[8].Inthiscase,thethresholdcorrectionsscalelogarithmicallywith the volume and no fine-tuning is required for perturbation theory to be valid. In Largevolumesupersymmetrybreakingwithoutdecompactificationproblem 3 Sect. 2, we review the construction of models that realize an N =1 N =0 → spontaneous breaking at a low scale m , while avoiding the decompactification 3/2 problem.ThecorrespondingthresholdcorrectionsarecomputedinSect.3[9,10]. 2 The non-supersymmetric Z Z models 2 2 × Inthepresentwork,wefocusonheteroticstringbackgroundsinfour-dimensional Minkowskispaceandanalyzethegaugecouplingthresholdcorrections.At1-loop, theirformalexpressionis[7,11,12] D i = d2t 1(cid:229) Q a (2v) P2(2w¯) ki t Z a (2v,2w¯) bi ZF t2 2a,b b (cid:18) i −4pt 2(cid:19) 2 b − !(cid:12)(cid:12)v=w¯=0 +bilog2e1−g , (cid:2) (cid:3) (cid:2) (cid:3) (cid:12)(cid:12)(cid:12) (4) p √27 whereF isthe fundamentaldomainof SL(2,Z)andZ a (2v,2w¯) isa refinedpar- b titionfunctionforgivenspinstructure(a,b) Z Z .P(2w¯)actsontheright- 2 2 i ∈ × (cid:2) (cid:3) movingsector as the squared chargeoperator of the gauge groupfactor Gi, while Q a (2v)actsontheleft-movingsectorasthehelicityoperator,2 b (cid:2) (cid:3) 1 ¶ 2(q a (2v)) i i q a (2v) Q ab (2v)= 16p 2 vq ab(cid:2)b((cid:3)2v) −p ¶ t logh ≡ p ¶ t log (cid:2)bh(cid:3) !. (5) (cid:2) (cid:3) Fromnow on, we conside(cid:2)r(cid:3)Z Z orbifoldmodels[2] or fermionicconstruc- 2 2 × tions[3]inwhichthemarginaldeformationsparameterizedbytheKa¨hlerandcom- plexstructuresT,U ,I=1,2,3,associatedtothethreeinternal2-toriareswitched I I on[9,14].Inbothcases, orbifoldsor“moduli-deformedfermionicconstructions”, N =1supersymmetryisspontaneouslybrokenbyastringyScherk-Schwarzmech- anism[4].Theassociatedgenus-1refinedpartitionfunctionis 1 Z(2v,2w¯)= (6) t2(h h¯)2 × 1(cid:229) 1 (cid:229) 1 (cid:229) ( 1)a+b+abq ab (2v) q ab++HG11 q ab++HG22 q ab++HG33 2 2 2 − h h h h × a,b H1,G1 H2,G2 (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) 1 (cid:229) S a,hiI,HI Z hi1 H1 Z hi2 H2 Z hi3 H3 Z hiI,HI (2w¯), 2N hiI,giI Lhb,giI,GIi 2,2hgi1(cid:12)G1i 2,2hgi2(cid:12)G2i 2,2hgi3(cid:12)G3i 0,16hgiI,GIi (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) whereournotationsareasfollows: 2 Our conventions for the Jacobi functions q ab (n |t ) (or q a (n |t ), a =1,...,4) and Dedekind functioncanbefoundin[13]. (cid:2) (cid:3) 4 Herve´Partouche TheZ conformalblocksarisefromthethreeinternal2-tori.Thegenus-1sur- 2,2 • facehavingtwonon-trivialcycles,(hi,gi) Z Z ,i=1,2,I=1,2,3denote associatedshiftsofthesixcoordinatesI.SIim∈ilar2ly×,(H2,G ) Z Z refertothe I I 2 2 ∈ × twists, where we have defined for convenience (H ,G ) ( H H , G 3 3 1 2 1 ≡ − − − − G ).Explicitly,wehave 2 G h1I,h2I (T,U ) 2,2 g1,g2 I I I I , when(H ,G )=(0,0)mod2,  h(h h¯i)2 I I wZ2h,2ehregh1I1IG,,gh2I2I(cid:12)(cid:12)(cid:12)HGiIIsia=shiftqe(cid:2)d11−l−aHGt4tIIih(cid:3)cqeh¯¯(cid:2)t11h−−aHGtIId(cid:3)edp(cid:12)(cid:12)(cid:12)ehgn1I1IdHGsII(cid:12)(cid:12)(cid:12)o,0nmtohde2Kd (cid:12)(cid:12)(cid:12)a¨hg2I2IhlHGeIIr(cid:12)(cid:12)(cid:12),a0nmdodc2ompleoxthsetrrwucitsu(e7r,e) 2,2 moduli T,U of the Ith 2-torus. The arguments of the Kronecker symbols are I I determinants. When defining each model, linear constraints on the shifts (hi,gi) and twists • I I (H ,G )maybeimposed,leavingeffectivelyN independentshifts. I I Z denotesthecontributionofthe32extraright-movingworldsheetfermions. 0,16 • ItsdependanceontheshiftsandtwistsmaygeneratediscreteWilsonlines,which breakpartiallyE E orSO(32). 8 8 × Thefirstlinecontainsthecontributionofthespacetimelight-conebosons,while • thesecondisthatoftheleft-movingfermions. S is a conformal block-dependent sign that implements the stringy Scherk- L • Schwarz mechanism. A choice of S that correlates the spin structure (a,b) to L someshift(hi,gi)implementstheN =1 N =0spontaneousbreaking. I I → The Z Z models contain three N =2 sectors. For the decompactification 2 2 × problem not to arise, we impose one of them to be realized as a spontaneously brokenphaseofN =4.ThiscanbedonebydemandingtheZ actioncharacterized 2 by(H ,G )tobefree.Theassociatedgeneratortwiststhe2ndand3rd2-tori(i.e.the 2 2 directionsX6,X7,X8,X9inbosoniclanguage)andshiftssomedirection(s)ofthe1st 2-torus,sayX5 only.Tosimplifyourdiscussion,wetakethegeneratoroftheother Z , whoseactionischaracterizedby(H ,G ), to notbefree:Ittwists the1st and 2 1 1 3rd 2-tori,andfixesthe 2nd one.Similarly,we supposethattheproductofthetwo generators,whoseactionischaracterizedby(H ,G ),twiststhe1st and2nd 2-tori, 3 3 andfixesthe3rd one.TheserestrictionsimposethemoduliT ,U andT ,U notto 2 2 3 3 be far from1, in orderto avoid the decompactificationproblemto occurfromthe remainingtwoN =2sectors.However,ourcareinchoosingtheorbifoldactionis allowingustotakethevolumeofthe1st2-torustobelarge. Theaboveremarkshaveanimportantconsequence,sincethefinalstringyScherk- Schwarz mechanism responsible of the N =1 N =0 spontaneous breaking → must involvethe moduliT ,U only, for the gravitino mass to be light. Thus, this 1 1 breakingmustbeimplementedviaashiftalongthe1st 2-torus,sayX4,andanon- trivial choice of S . Therefore, the sector (H ,G )=(0,0) realizes the pattern of L 1 1 Largevolumesupersymmetrybreakingwithoutdecompactificationproblem 5 spontaneousbreaking N =4 N =2 N =0, while the other two N =2 → → sectors,whichhave2nd and3rd 2-torirespectivelyfixed,areindependentofT and 1 U andthusremainsupersymmetric.Asaresult,wehaveinthetwofollowinginde- 1 pendentmodularorbits: SL=( 1)ag11+bh11+h11g11, when (H1,G1)=(0,0), − S =1, when (H ,G )=(0,0). (8) L 1 1 6 Given the fact that we have imposed (h2,g2) (H ,G ), the 1st 2-toruslattice 1 1 ≡ 2 2 takestheexplicitform G 2,2hhg1111,,HG22i(T1,U1)=m(cid:229)i,ni(−1)m1g11+m2G2e2ip t¯[m1(n1+12h11)+m2(n2+12H2)]× e−ImTpt1I2mU1|T1(n1+21h11)+T1U1(n2+12H2)+U1m1−m2|2. (9) This expression can be used to find the squared scales of spontaneousN =4 N =2andN =2 N =0breaking.ForRe(U ) ( 1,1],theyare → → 1 ∈ −2 2 M2 U 2M2 s , m2 = | 1| s , (10) ImT ImU 3/2 ImT ImU 1 1 1 1 wherethelatterisnothingbutthegravitinomasssquaredofthefullN =0theory. For these scales to be small compared to M , we consider the regime ImT 1, s 1 ≫ U =O(i). 1 3 Threshold corrections The threshold corrections can be evaluated in each conformal block [9]. Starting with those where (H ,G )=(0,0), the discussion is facilitated by summing over 1 1 thespinstructures.Focussingontherelevantpartsoftherefinedpartitionfonction Z,wehave 21(cid:229)a,b(−1)a+b+ab(−1)ag11+bh11+h11g11q ab (2v)q ab q ab++HG22 q ab−−HG22 = (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) ( 1)h11g11+G2(1+h11+H2)q 1−h11 2(v)q 1−h11+H2 2(v), (11) − 1−g11 1−g11+G2 h i h i whichshowshowmanyoddq (v) q [1](v) functions(orequivalentlyhowmany fermionic zero modes in the p1ath i≡ntegr1al) arise for given shift (h1,g1) and twist 1 1 (H ,G ). 2 2 6 Herve´Partouche ConformalblockA :(h1,g1)=(0,0),(H ,G )=(0,0) 1 1 2 2 Thisblockisproportionaltoq 1 4(v)=O(v4).Uptoanoverallfactor1/23,itisthe 1 contributionoftheN =4spectrumoftheparenttheory,whenneithertheZ Z 2 2 (cid:2) (cid:3) × action nor the stringy Scherk-Schwarz mechanism are implemented. Therefore, it doesnotcontributetothe1-loopgaugecouplings. ConformalblocksB :(h1,g1)=(0,0),(H ,G )=(0,0) 1 1 2 2 6 They are proportional to q 1−h11 4(v)=O(1). The parity of the winding number 1 g1 − 1 along the compact directiohn X4ibeing h1, the blocks with h1 =1 involve states, 1 1 whicharesupermassivecomparedtothe pureKaluza-Kleinmodes.Theseblocks arethereforeexponentiallysuppressed,comparedtotheblock(h1,g1)=(0,1).Up 1 1 toanoverallfactor1/22,thelatterarisesfromthespectrumconsideredinthecon- formal block A, but in the N =4 N = 0 spontaneously broken phase, and → contributestothegaugecouplings. ConformalblocksC :(h1,g1)=(0,0),(H ,G )=(0,0) 1 1 2 2 6 tTohtehyeaarcetipornoopforthtieonhaellitcoitqyo11p(evr)a2tqor.11R−−HGea22so2(nvi)ng=aOsi(nv2t)heanpdredvoiocuosnctarisbeu,ttehetopDarii,tyduoef (cid:2) (cid:3) (cid:2) (cid:3) thewindingnumberalongthecompactdirectionX5isH ,whichimpliestheblocks 2 with H =1 yield exponentially suppressed contributions, compared to that asso- 2 ciatedtotheblock(H ,G )=(0,1).Uptoanoverallfactor1/22,thelatterarises 2 2 fromaspectrumrealizingthespontaneousN =4 N =2breaking,whichcon- C → tributestothecouplings. ConformalblocksD :(h1,g1)=(H ,G )=(0,0) 1 1 2 2 6 tThhaetyoafrteheprcoopnofrotiromnaallbtoloqck11s−−CHG22, e2x(cve)qpt11th(avt)t2h=e gOe(nve2r)a.toTrhoefsitthueatZionfriseeidaecnttiiocnalrteo- 2 sponsible of the partial sp(cid:2)ontane(cid:3)ousb(cid:2)rea(cid:3)kingof N =4 twists X6,X7,X8,X9 and shifts X4,X5. The dominant contribution to the threshold corrections arises again fromtheblock(H ,G )=(0,1),whichdescribesaspectrumrealizingthesponta- 2 2 neousN =4 N =2breaking. D → h1 H ConformalblocksE : 1 2 =0 g11 G2 6 The remaining conformal(cid:12)(cid:12)(cid:12)blocks(cid:12)(cid:12)(cid:12)have non-trivial determinant hg1111HG22 , which im- plies q 1−h11 2(v)q 1−h11+H2 2(v)=O(1). However, this condit(cid:12)(cid:12)ion is(cid:12)(cid:12)also saying 1−g11 1−g11+G2 (cid:12) (cid:12) that(h1h,H )i=(0,0h),whichmieansthemodesintheseblockshavenon-trivialwind- 1 2 6 ingnumber(s)alongX4,X5orboth.Therefore,theircontributionstothegaugecou- plingsarenon-trivialbutexponentiallysuppressed. Having analyzedall conformalblockssatisfying (H ,G )=(0,0), we proceed 1 1 with the study of the modularorbit(H ,G )=(0,0), where the sign S is trivial. 1 1 L 6 Largevolumesupersymmetrybreakingwithoutdecompactificationproblem 7 Sincethe1st2-torusistwisted,theseblocksareindependentofthemoduliT ,U and 1 1 thusm .TheycanbeanalyzedasinthecaseofZ Z ,N =1supersymmetric 3/2 2 2 × models.Actually,summingoverthespinstructures,therelevanttermsintherefined partitionfunctionZbecome 12(cid:229)a,b(−1)a+b+abq ab (2v)q ab++HG11 q ab++HG22 q ab−−HG11−−HG22 = (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (−1)(G1+G2)(1+H1+H2)q 11 (v)q 11−−HG11 (v)q 11−−HG22 (v)q 11++HG11++HG22 (v), (12) whichinvitesustosplitthediscuss(cid:2)io(cid:3)nint(cid:2)hreep(cid:3)arts.(cid:2) (cid:3) (cid:2) (cid:3) N =2conformalblocks,with fixed 2nd 2-torus:(H ,G )=(0,0) 2 2 Tfixheedybaryetphreonpoonrt-iforneaelatcotiqon11o2f(tvh)eq Z11−−HGc11ha2r(avc)te=rizOe(dv2b)y.(THhe,2Gnd).inAtedrdnianlg2t-htoerucosnis- (cid:2) (cid:3) (cid:2) 2 (cid:3) 1 1 formalblock A, we obtain an N =2 sector of the theory, up to an overallfactor 1/2 associated to the second Z . This spectrum leads to non-trivialcorrectionsto 2 thegaugecouplings. N =2conformalblocks,withfixed3rd 2-torus:(H ,G )=(H ,G ) 1 1 2 2 Twhhyicahrempearonpsotrhtaiotnthaelt3ordq 211-to2r(uvs)qis11fi−−xHGe11d]2b(vy)t=heOco(vm2b).inAecdtuaacltliyo,n(oHf3t,hGe3g)e=ne(r0a,to0r)s, (cid:2) (cid:3) (cid:2) ofthetwoZ ’s.AddingtheconformalblockA,oneobtainsthelastN =2sector 2 ofthetheory,uptoanoverallfactor1/2.Again,thisspectrumyieldsanon-trivial contributiontothegaugecouplings. N =1conformalblocks: H1 H2 =0 G1 G2 6 Theremainingblockshavenon-trivialdeterminant, H1H2 =0,whichimpliesthey (cid:12) (cid:12) G1G2 6 athreemprwopitohrttihoenhaleltiociqty11o(pve)raqto11r−−,HGth(cid:12)11e(rve)squl(cid:12)t11−−isHGp22r(ovp)oqrti11(cid:12)(cid:12)o++nHGa11l++tHG(cid:12)(cid:12)o22 (v)=O(v).Actingon (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) ¶ v2 q 11 (v)q 11−−HG11 (v)q 11−−HG22 (v)q 11++HG11++HG22 (v) v=0(cid:181) (cid:16) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) ¶(cid:2)2 q (v)(cid:3)q (v(cid:17))(cid:12)(cid:12)q (v)q (v) =0, (13) v 1 2 (cid:12) 3 4 v=0 (cid:16) (cid:17)(cid:12) thanks to the oddness of q 1(v) and evenness of q 2,3,4(v). Thus, th(cid:12)(cid:12)ese conformal blocksdonotcontributetothethresholds. In the class of models we consider, the effective runninggauge couplingasso- ciatedtosomegaugegroupefactorGi hasauniversalformat1-loop[9].Itcanbe elegantlyexpressedintermsofthreemoduli-dependentsquaredmassscalesarising fromthecorrectionsassociatedtotheconformalblocksB,C,D, 8 Herve´Partouche M2 M2 M2 M2= s ,M2= s ,M2= s , B q (U )4ImT ImU C q (U )4ImT ImU D q (U )4ImT ImU 2 1 1 1 4 1 1 1 3 1 1 1 | | | | | | (14) whichareoforderm2 ,andtwomorescales 3/2 M2 M2= s , I=2,3, (15) I 16 h (T)4 h (U )4ImT ImU I I I I | | of order Ms2 that encode t(cid:12)(cid:12)he contr(cid:12)(cid:12)ibutionsof the N =2 sectors associated to the fixed2ndand3rd internal2-tori.Itisalsousefultointroducea“renormalizedstring coupling”[11], 16p 2 16p 2 1 1 = Y(T ,U ) Y(T ,U ), g2 g2 −2 2 2 −2 3 3 renor s 1 d2t 3 E¯ E¯ where Y(T,U)= G (T,U) E¯ 4 6 j¯+1008 , (16) 12ZF t2 2,2 (cid:20)(cid:16) 2−pt 2(cid:17) h¯24 − (cid:21) in which G =G 0,0 is the unshifted lattice, while for q=e2ipt , E =1+ 2,2 2,2 0,0 2,4,6 O(q) are holomorphic Eisenstein series of modular weights 2,4,6 and j =1/q+ (cid:2) (cid:3) 744+O(q)isholomorphicandmodularinvariant.Theinversesquared1-loopgauge couplingatenergyscaleQ2=m 2p 2 isthen 4 16p 2 16p 2 bi Q2 bi Q2 bi Q2 =ki Bln Cln Dln g2(Q) g2 − 4 Q2+M2 − 4 Q2+M2 − 4 Q2+M2 i renor (cid:18) B(cid:19) (cid:18) C(cid:19) (cid:18) D(cid:19) bi2ln Q2 bi3ln Q2 +O m23/2 , (17) − 2 (cid:18)M22(cid:19)− 2 (cid:18)M32(cid:19) Ms2 ! whichdependsonlyonfivemodel-dependentb -functioncoefficientsandtheKac- Moody level. In this final result, we have shifted M2 Q2+M2 in order B,C,D → B,C,D to implementthe thresholdsat which the sectors B,C or D decouple,i.e. when Q exceedsM ,M orM .Thus,thisexpressionisvalidaslongasQislowerthanthe B C D massoftheheavystateswehaveneglectedtheexponentiallysuppressedcontribu- tionsi.e.thestringorGUTscale,dependingonthemodel.TakingQlowerthanat leastoneofthescalesM ,M orM ,ther.h.s.ofEq.(17)scalesaslnImT ,which B C D 1 isthelogarithmofthelarge1st2-torusvolume,asexpectedforthedecompactifica- tionproblemnottoarise. To conclude,we would like to mentiontwo importantremarks.First of all, we stress that the Z Z models, where a Z is freely acting and a stringy Scherk- 2 2 2 Schwarzmechanis×mresponsibleofthefinalbreakingofN =1 takesplace,have non-chiral massless spectra. This is due to the fact that in the N =1, Z Z 2 2 × models, chiral families occur from twisted states localized at fixed points. In the modelswehaveconsidered,fixedpointslocalizedonthe2ndand3rd2-toricanarise but are independentof the moduli T ,U i.e. m . Thus, taking the large volume 1 1 3/2 Largevolumesupersymmetrybreakingwithoutdecompactificationproblem 9 limitofthe1st 2-torus,whereN =2supersymmetryisrecovered,oneconcludes thatthetwistedstatesareactuallyhypermultipletsi.e.couplesoffamiliesandanti- families. Second,we pointoutthatin themodelsanalyzedin the presentwork,thecon- formalblockBisthe onlynon-supersymmetricandnon-negligiblecontributionto thepartitionfunctionZ,andthustothe1-loopeffectivepotential.InRef.[10,15],it isshownthatinsomemodels,thelatterispositivesemi-definite.Themotionofthe moduliT ,U andT ,U isthusattractedtopoints[?],wheretheeffectivepotential 2 2 3 3 vanishes,allowingm tobearbitrary.Inotherwords,thedefiningpropertiesofthe 3/2 no-scalemodels,namelyarbitrarinessofthesupersymmetrybreakingscalem in 3/2 flatspace,whicharevalidattreelevel,areextendedtothe1-looplevel.Thisvery fact, characteristic of the so-called “super no-scale models”, may have interesting consequenceson the smallnessof a cosmologicalconstantgeneratedat higheror- ders.InRef.[17],othermodelshaving1-loopvanishingcosmologicalconstantare alsoconsidered,whichhoweversufferfromthedecompactificationproblem. Acknowledgements IamgratefultoA.FaraggiandK.Kounnas,withwhomtheoriginalwork[9] hasbeendoneincollaboration.IwouldalsoliketothankC.Angelantonj,I.AntoniadisandJ.Rizos forfruitfuldiscussions,andtheLaboratoiredePhysiqueThe´oriqueofEcoleNormaleSupe´rieure forhospitality. References 1. E.Cremmer,S.Ferrara,C.KounnasandD.V.Nanopoulos,“Naturallyvanishingcosmologi- calconstantinN =1supergravity,”Phys.Lett.B133(1983)61; J. R.Ellis,C.Kounnas andD.V.Nanopoulos, “Phenomenological SU(1,1) supergravity,” Nucl.Phys.B241(1984)406. 2. L.J.Dixon,J.A.Harvey,C.VafaandE.Witten,“Stringsonorbifolds,”Nucl.Phys.B261 (1985)678; L.J.Dixon,J.A.Harvey,C.VafaandE.Witten,“StringsonorbifoldsII,”Nucl.Phys.B274 (1986)285. 3. I.Antoniadis,C.Bachas,C.KounnasandP.Windey,“Supersymmetryamongfreefermions andsuperstrings,”Phys.Lett.B171(1986)51; I.Antoniadis,C.P.BachasandC.Kounnas,“Four-dimensionalsuperstrings,”Nucl.Phys.B 289(1987)87; H. Kawai, D. C. Lewellen and S. H. H. Tye, “Construction of fermionic string models in four-dimensions,”Nucl.Phys.B288(1987)1. 4. R.Rohm,“Spontaneous supersymmetrybreakinginsupersymmetricstringtheories,”Nucl. Phys.B237(1984)553; C.KounnasandM.Porrati,“Spontaneoussupersymmetry breakinginstringtheory,”Nucl. Phys.B310(1988)355; S.Ferrara,C.Kounnas,M.PorratiandF.Zwirner,“Superstringswithspontaneouslybroken supersymmetryandtheireffectivetheories,”Nucl.Phys.B318(1989)75; S. Ferrara, C. Kounnas and M. Porrati, “Superstring solutions with spontaneously broken four-dimensionalsupersymmetry,”Nucl.Phys.B304(1988)500; C.KounnasandB.Rostand,“Coordinatedependentcompactificationsanddiscretesymme- tries,”Nucl.Phys.B341(1990)641. 10 Herve´Partouche 5. J.ScherkandJ.H.Schwarz,“Spontaneousbreakingofsupersymmetrythroughdimensional reduction,”Phys.Lett.B82(1979)60. 6. I.Antoniadis,“ApossiblenewdimensionatafewTeV,”Phys.Lett.B246(1990)377. 7. V. S. Kaplunovsky, “One loop threshold effects in string unification,” Nucl. Phys. B 307 (1988)145[Erratum-ibid.B382(1992)436][hep-th/9205068]; L.J.Dixon,V.KaplunovskyandJ.Louis,“Modulidependenceofstringloopcorrectionsto gaugecouplingconstants,”Nucl.Phys.B355(1991)649; I.Antoniadis,K.S.NarainandT.R.Taylor,“Highergenusstringcorrectionstogaugecou- plings,”Phys.Lett.B267(1991)37; P.MayrandS.Stieberger,“Thresholdcorrectionstogaugecouplingsinorbifoldcompactifi- cations,”Nucl.Phys.B407(1993)725[hep-th/9303017]; E.KiritsisandC.Kounnas,“Infrared regularizationofsuperstringtheoryandtheoneloop calculationofcouplingconstants,”Nucl.Phys.B442(1995)472[hep-th/9501020]. 8. E.Kiritsis,C.Kounnas,P.M.PetropoulosandJ.Rizos,“Solvingthedecompactificationprob- leminstringtheory,”Phys.Lett.B385(1996)87[hep-th/9606087]; E. Kiritsis, C. Kounnas, P. M. Petropoulos and J. Rizos, “String threshold corrections in models with spontaneously broken supersymmetry,” Nucl. Phys. B 540 (1999) 87 [arXiv:hep-th/9807067]. 9. A.E.Faraggi,C.KounnasandH.Partouche,“Largevolumesusybreakingwithasolutionto thedecompactificationproblem,”Nucl.Phys.B899(2015)328[arXiv:1410.6147[hep-th]]. 10. C.KounnasandH.Partouche, “StringyN =1superno-scalemodels,”arXiv:1511.02709 [hep-th]. 11. E.Kiritsis,C.Kounnas,P.M.PetropoulosandJ.Rizos,“UniversalitypropertiesofN =2 andN =1heteroticthresholdcorrections,”Nucl.Phys.B483(1997)141[hep-th/9608034]; P. M.Petropoulos andJ. Rizos,“Universal moduli dependent stringthresholds inZ Z 2 2 × orbifolds,”Phys.Lett.B374(1996)49[hep-th/9601037]. 12. C. Angelantonj, I. Florakis and M. Tsulaia, “Universality of gauge thresholds in non- supersymmetricheteroticvacua,”Phys.Lett.B736(2014)365[arXiv:1407.8023[hep-th]]; C. Angelantonj, I. Florakis and M. Tsulaia, “Generalised universality of gauge thresh- olds in heterotic vacua with and without supersymmetry,” Nucl. Phys. B 900 (2015) 170 [arXiv:1509.00027[hep-th]]. 13. E.Kiritsis,“Stringtheoryinanutshell,”PrincetonUniversityPress,2007. 14. C.KounnasandB.Rostand,“Deformationsofsuperstringsolutionsandspontaneous sym- metrybreaking,”HellenicSchool1989:0657-668. 15. C.KounnasandH.Partouche,“Superno-scalemodelsinstringtheory,”toappear. 16. F.Bourliot,J.Estes,C.KounnasandH.Partouche,“Cosmologicalphasesofthestringther- maleffectivepotential,”Nucl.Phys.B830(2010)330[arXiv:0908.1881[hep-th]]; J.Estes,C.KounnasandH.Partouche,“SuperstringcosmologyforN4=1 0superstring → vacua,”Fortsch.Phys.59(2011)861[arXiv:1003.0471[hep-th]]; J.Estes,L.LiuandH.Partouche,“MasslessD-stringsandmodulistabilizationintypeIcos- mology,”JHEP1106(2011)060[arXiv:1102.5001[hep-th]]; L. Liu and H. Partouche, “Moduli stabilization in type II Calabi-Yau compactifications at finitetemperature,”JHEP1211(2012)079[arXiv:1111.7307[hep-th]]. 17. S.Abel,K.R.DienesandE.Mavroudi,“Towardsanonsupersymmetricstringphenomenol- ogy,”Phys.Rev.D91(2015)12,126014[arXiv:1502.03087[hep-th]].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.