Large volume supersymmetry breaking without decompactification problem Herve´Partouche 6 1 0 AbstractWeconsiderheteroticstringbackgroundsinfour-dimensionalMinkowski 2 space,whereN =1supersymmetryisspontaneouslybrokenatalowscalem by 3/2 n astringyScherk-Schwarzmechanism.Wereviewhowtheeffectivegaugecouplings a at1-loopmayevadethe“decompactificationproblem”,namelytheproportionality J ofthegaugethresholdcorrections,withthelargevolumeofthecompactspacein- 8 volvedinthesupersymmetrybreaking. 1 ] h 1 Introduction t - p e Asensiblephysicaltheorymustatleastmeettworequirements:Berealisticandan- h [ alyticallyundercontrol.Thefirstpointcanbesatisfiedbyconsideringstringtheory, whichhastheadvantagetobe,atpresenttime,theonlysetupin whichbothgrav- 1 itationalandgaugeinteractionscanbedescribedconsistentlyatthequantumlevel. v Inthisreview,wedonotconsidercosmologicalissuesandthusanalyzemodelsde- 4 6 finedclassicallyinfour-dimensionalMinkowskispace.The“no-scalemodels”are 5 particularlyinteresting since, by definition, they describe in supergravityor string 4 theoryclassical backgrounds,inwhichsupersymmetryis spontaneouslybrokenat 0 an arbitraryscale m in flat space [1]. In other words, even if supersymmetryis . 3/2 1 notexplicit,theclassicalvacuumenergyvanishes. 0 The most conservative way to preserve analytical control is to ensure the va- 6 lidity of perturbationtheory.In string theory,quantumloopscan be evaluatedex- 1 : plicitly,whentheunderlyingtwo-dimensionalconformalfieldtheoryisitselfunder v control.Clearly,thisisthecase, whenoneconsidersfreefieldonthe worldsheet, i X forinstanceintoroidalorbifoldmodels[2]orfermionicconstructions[3].Inthese r frameworks,theN =1 N =0spontaneousbreakingofsupersymmetrycanbe a implementedat tree leve→l via a stringy version [4] of the Scherk-Schwarzmecha- nism[5].1 Inthiscase,thesupersymmetrybreakingscaleisoforderoftheinverse Herve´Partouche CentredePhysiqueThe´orique,EcolePolytechnique,CNRS,Universite´Paris-Saclay F–91128Palaiseaucedex,France,e-mail:[email protected] 1Notethatnon-perturbativemechanismsbasedongauginocondensationcouldalsobeconsidered, butonlyatthelevelofthelowenergyeffectivesupergravity,thusatthepriceofloosingpartofthe stringpredictability. 1 2 Herve´Partouche volume of the internal directions involved in the breaking. For a single circle of radiusR,onehas M s m = , (1) 3/2 R where M is the string scale, so that havinga low m =O(10TeV) imposesthe s 3/2 circle to be extremely large, R=O(1017) [6]. Such large directions yield towers of light Kaluza-Klein states and a problem arises from those chargedunder some gauge group factor Gi. In general, their contributions to the quantum corrections totheinversesquaredgaugecouplingisproportionaltotheverylargevolumeand invalidatestheuseofperturbationtheory. Tobespecific,letusconsiderinheteroticstringthe1-looplow energyrunning gaugecouplingg(m ),whichsatisfies[7] i 16p 2 16p 2 M2 =ki +biln s +D i. (2) g2(m ) g2 m 2 i s In this expression, g is the string coupling and ki is the Kac-Moody level of Gi. s Thelogarithmiccontribution,whichdependsontheenergyscalem ,arisesfromthe masslessstatesandisproportionaltotheb -functioncoefficientbi,whilethemassive modesyieldthethresholdcorrectionsD i.Themaincontributionstothelatterarise fromthelightKaluza-Kleinstates,whichforasinglelargeradiusyield 1 D i=CiR bilnR2+O , (3) − R (cid:18) (cid:19) whereCi=Cbi Cki,forsomenon-negativeCandC thatdependonothermoduli. ′ ′ − WhenCi=O(1),requiringinEq.(2)theloopcorrectiontobesmallcomparedto thetreelevelcontributionimposesg2R<1.Inotherwords,forperturbationtheory s tobevalid,thestringcouplingmustbeextremelyweak,g <O(10 6.5).IfCi>0, s − which implies Gi is not asymptotically free, Eq. (2) imposes the running gauge coupling to be essentially free, g(m )=O(g ), and Gi describes a hidden gauge i s group.However,ifCi <0, whichis the case if Gi is asymptoticallyfree,the very largetreelevelcontributionproportionalto1/g2 mustcancelCiR,uptoveryhigh s accuracy, for the running gauge coupling to be of order 1 and have a chance to describe realistic gauge interactions. This unnaturalfine-tuning is a manifestation of the so-called “decompactification problem”, which actually arises generically, whenasubmanifoldoftheinternalspaceislarge,comparedtothestringscale,i.e. whentheinternalconformalfieldtheoryallowsageometricalinterpretationinterms ofacompactifiedspace. To avoid the above described behavior, Ci can be required to vanish. This is triviallythecaseintheN =4supersymmetrictheories,whereactuallybi=0and D i=0.TheconditionCi=0remainsvalidinthetheoriesrealizingtheN =4 N =2 spontaneousbreaking, providedN =4 is recoveredwhen the volume→is senttoinfinity[8].Inthiscase,thethresholdcorrectionsscalelogarithmicallywith the volume and no fine-tuning is required for perturbation theory to be valid. In Largevolumesupersymmetrybreakingwithoutdecompactificationproblem 3 Sect. 2, we review the construction of models that realize an N =1 N =0 → spontaneous breaking at a low scale m , while avoiding the decompactification 3/2 problem.ThecorrespondingthresholdcorrectionsarecomputedinSect.3[9,10]. 2 The non-supersymmetric Z Z models 2 2 × Inthepresentwork,wefocusonheteroticstringbackgroundsinfour-dimensional Minkowskispaceandanalyzethegaugecouplingthresholdcorrections.At1-loop, theirformalexpressionis[7,11,12] D i = d2t 1(cid:229) Q a (2v) P2(2w¯) ki t Z a (2v,2w¯) bi ZF t2 2a,b b (cid:18) i −4pt 2(cid:19) 2 b − !(cid:12)(cid:12)v=w¯=0 +bilog2e1−g , (cid:2) (cid:3) (cid:2) (cid:3) (cid:12)(cid:12)(cid:12) (4) p √27 whereF isthe fundamentaldomainof SL(2,Z)andZ a (2v,2w¯) isa refinedpar- b titionfunctionforgivenspinstructure(a,b) Z Z .P(2w¯)actsontheright- 2 2 i ∈ × (cid:2) (cid:3) movingsector as the squared chargeoperator of the gauge groupfactor Gi, while Q a (2v)actsontheleft-movingsectorasthehelicityoperator,2 b (cid:2) (cid:3) 1 ¶ 2(q a (2v)) i i q a (2v) Q ab (2v)= 16p 2 vq ab(cid:2)b((cid:3)2v) −p ¶ t logh ≡ p ¶ t log (cid:2)bh(cid:3) !. (5) (cid:2) (cid:3) Fromnow on, we conside(cid:2)r(cid:3)Z Z orbifoldmodels[2] or fermionicconstruc- 2 2 × tions[3]inwhichthemarginaldeformationsparameterizedbytheKa¨hlerandcom- plexstructuresT,U ,I=1,2,3,associatedtothethreeinternal2-toriareswitched I I on[9,14].Inbothcases, orbifoldsor“moduli-deformedfermionicconstructions”, N =1supersymmetryisspontaneouslybrokenbyastringyScherk-Schwarzmech- anism[4].Theassociatedgenus-1refinedpartitionfunctionis 1 Z(2v,2w¯)= (6) t2(h h¯)2 × 1(cid:229) 1 (cid:229) 1 (cid:229) ( 1)a+b+abq ab (2v) q ab++HG11 q ab++HG22 q ab++HG33 2 2 2 − h h h h × a,b H1,G1 H2,G2 (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) 1 (cid:229) S a,hiI,HI Z hi1 H1 Z hi2 H2 Z hi3 H3 Z hiI,HI (2w¯), 2N hiI,giI Lhb,giI,GIi 2,2hgi1(cid:12)G1i 2,2hgi2(cid:12)G2i 2,2hgi3(cid:12)G3i 0,16hgiI,GIi (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) whereournotationsareasfollows: 2 Our conventions for the Jacobi functions q ab (n |t ) (or q a (n |t ), a =1,...,4) and Dedekind functioncanbefoundin[13]. (cid:2) (cid:3) 4 Herve´Partouche TheZ conformalblocksarisefromthethreeinternal2-tori.Thegenus-1sur- 2,2 • facehavingtwonon-trivialcycles,(hi,gi) Z Z ,i=1,2,I=1,2,3denote associatedshiftsofthesixcoordinatesI.SIim∈ilar2ly×,(H2,G ) Z Z refertothe I I 2 2 ∈ × twists, where we have defined for convenience (H ,G ) ( H H , G 3 3 1 2 1 ≡ − − − − G ).Explicitly,wehave 2 G h1I,h2I (T,U ) 2,2 g1,g2 I I I I , when(H ,G )=(0,0)mod2, h(h h¯i)2 I I wZ2h,2ehregh1I1IG,,gh2I2I(cid:12)(cid:12)(cid:12)HGiIIsia=shiftqe(cid:2)d11−l−aHGt4tIIih(cid:3)cqeh¯¯(cid:2)t11h−−aHGtIId(cid:3)edp(cid:12)(cid:12)(cid:12)ehgn1I1IdHGsII(cid:12)(cid:12)(cid:12)o,0nmtohde2Kd (cid:12)(cid:12)(cid:12)a¨hg2I2IhlHGeIIr(cid:12)(cid:12)(cid:12),a0nmdodc2ompleoxthsetrrwucitsu(e7r,e) 2,2 moduli T,U of the Ith 2-torus. The arguments of the Kronecker symbols are I I determinants. When defining each model, linear constraints on the shifts (hi,gi) and twists • I I (H ,G )maybeimposed,leavingeffectivelyN independentshifts. I I Z denotesthecontributionofthe32extraright-movingworldsheetfermions. 0,16 • ItsdependanceontheshiftsandtwistsmaygeneratediscreteWilsonlines,which breakpartiallyE E orSO(32). 8 8 × Thefirstlinecontainsthecontributionofthespacetimelight-conebosons,while • thesecondisthatoftheleft-movingfermions. S is a conformal block-dependent sign that implements the stringy Scherk- L • Schwarz mechanism. A choice of S that correlates the spin structure (a,b) to L someshift(hi,gi)implementstheN =1 N =0spontaneousbreaking. I I → The Z Z models contain three N =2 sectors. For the decompactification 2 2 × problem not to arise, we impose one of them to be realized as a spontaneously brokenphaseofN =4.ThiscanbedonebydemandingtheZ actioncharacterized 2 by(H ,G )tobefree.Theassociatedgeneratortwiststhe2ndand3rd2-tori(i.e.the 2 2 directionsX6,X7,X8,X9inbosoniclanguage)andshiftssomedirection(s)ofthe1st 2-torus,sayX5 only.Tosimplifyourdiscussion,wetakethegeneratoroftheother Z , whoseactionischaracterizedby(H ,G ), to notbefree:Ittwists the1st and 2 1 1 3rd 2-tori,andfixesthe 2nd one.Similarly,we supposethattheproductofthetwo generators,whoseactionischaracterizedby(H ,G ),twiststhe1st and2nd 2-tori, 3 3 andfixesthe3rd one.TheserestrictionsimposethemoduliT ,U andT ,U notto 2 2 3 3 be far from1, in orderto avoid the decompactificationproblemto occurfromthe remainingtwoN =2sectors.However,ourcareinchoosingtheorbifoldactionis allowingustotakethevolumeofthe1st2-torustobelarge. Theaboveremarkshaveanimportantconsequence,sincethefinalstringyScherk- Schwarz mechanism responsible of the N =1 N =0 spontaneous breaking → must involvethe moduliT ,U only, for the gravitino mass to be light. Thus, this 1 1 breakingmustbeimplementedviaashiftalongthe1st 2-torus,sayX4,andanon- trivial choice of S . Therefore, the sector (H ,G )=(0,0) realizes the pattern of L 1 1 Largevolumesupersymmetrybreakingwithoutdecompactificationproblem 5 spontaneousbreaking N =4 N =2 N =0, while the other two N =2 → → sectors,whichhave2nd and3rd 2-torirespectivelyfixed,areindependentofT and 1 U andthusremainsupersymmetric.Asaresult,wehaveinthetwofollowinginde- 1 pendentmodularorbits: SL=( 1)ag11+bh11+h11g11, when (H1,G1)=(0,0), − S =1, when (H ,G )=(0,0). (8) L 1 1 6 Given the fact that we have imposed (h2,g2) (H ,G ), the 1st 2-toruslattice 1 1 ≡ 2 2 takestheexplicitform G 2,2hhg1111,,HG22i(T1,U1)=m(cid:229)i,ni(−1)m1g11+m2G2e2ip t¯[m1(n1+12h11)+m2(n2+12H2)]× e−ImTpt1I2mU1|T1(n1+21h11)+T1U1(n2+12H2)+U1m1−m2|2. (9) This expression can be used to find the squared scales of spontaneousN =4 N =2andN =2 N =0breaking.ForRe(U ) ( 1,1],theyare → → 1 ∈ −2 2 M2 U 2M2 s , m2 = | 1| s , (10) ImT ImU 3/2 ImT ImU 1 1 1 1 wherethelatterisnothingbutthegravitinomasssquaredofthefullN =0theory. For these scales to be small compared to M , we consider the regime ImT 1, s 1 ≫ U =O(i). 1 3 Threshold corrections The threshold corrections can be evaluated in each conformal block [9]. Starting with those where (H ,G )=(0,0), the discussion is facilitated by summing over 1 1 thespinstructures.Focussingontherelevantpartsoftherefinedpartitionfonction Z,wehave 21(cid:229)a,b(−1)a+b+ab(−1)ag11+bh11+h11g11q ab (2v)q ab q ab++HG22 q ab−−HG22 = (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) ( 1)h11g11+G2(1+h11+H2)q 1−h11 2(v)q 1−h11+H2 2(v), (11) − 1−g11 1−g11+G2 h i h i whichshowshowmanyoddq (v) q [1](v) functions(orequivalentlyhowmany fermionic zero modes in the p1ath i≡ntegr1al) arise for given shift (h1,g1) and twist 1 1 (H ,G ). 2 2 6 Herve´Partouche ConformalblockA :(h1,g1)=(0,0),(H ,G )=(0,0) 1 1 2 2 Thisblockisproportionaltoq 1 4(v)=O(v4).Uptoanoverallfactor1/23,itisthe 1 contributionoftheN =4spectrumoftheparenttheory,whenneithertheZ Z 2 2 (cid:2) (cid:3) × action nor the stringy Scherk-Schwarz mechanism are implemented. Therefore, it doesnotcontributetothe1-loopgaugecouplings. ConformalblocksB :(h1,g1)=(0,0),(H ,G )=(0,0) 1 1 2 2 6 They are proportional to q 1−h11 4(v)=O(1). The parity of the winding number 1 g1 − 1 along the compact directiohn X4ibeing h1, the blocks with h1 =1 involve states, 1 1 whicharesupermassivecomparedtothe pureKaluza-Kleinmodes.Theseblocks arethereforeexponentiallysuppressed,comparedtotheblock(h1,g1)=(0,1).Up 1 1 toanoverallfactor1/22,thelatterarisesfromthespectrumconsideredinthecon- formal block A, but in the N =4 N = 0 spontaneously broken phase, and → contributestothegaugecouplings. ConformalblocksC :(h1,g1)=(0,0),(H ,G )=(0,0) 1 1 2 2 6 tTohtehyeaarcetipornoopforthtieonhaellitcoitqyo11p(evr)a2tqor.11R−−HGea22so2(nvi)ng=aOsi(nv2t)heanpdredvoiocuosnctarisbeu,ttehetopDarii,tyduoef (cid:2) (cid:3) (cid:2) (cid:3) thewindingnumberalongthecompactdirectionX5isH ,whichimpliestheblocks 2 with H =1 yield exponentially suppressed contributions, compared to that asso- 2 ciatedtotheblock(H ,G )=(0,1).Uptoanoverallfactor1/22,thelatterarises 2 2 fromaspectrumrealizingthespontaneousN =4 N =2breaking,whichcon- C → tributestothecouplings. ConformalblocksD :(h1,g1)=(H ,G )=(0,0) 1 1 2 2 6 tThhaetyoafrteheprcoopnofrotiromnaallbtoloqck11s−−CHG22, e2x(cve)qpt11th(avt)t2h=e gOe(nve2r)a.toTrhoefsitthueatZionfriseeidaecnttiiocnalrteo- 2 sponsible of the partial sp(cid:2)ontane(cid:3)ousb(cid:2)rea(cid:3)kingof N =4 twists X6,X7,X8,X9 and shifts X4,X5. The dominant contribution to the threshold corrections arises again fromtheblock(H ,G )=(0,1),whichdescribesaspectrumrealizingthesponta- 2 2 neousN =4 N =2breaking. D → h1 H ConformalblocksE : 1 2 =0 g11 G2 6 The remaining conformal(cid:12)(cid:12)(cid:12)blocks(cid:12)(cid:12)(cid:12)have non-trivial determinant hg1111HG22 , which im- plies q 1−h11 2(v)q 1−h11+H2 2(v)=O(1). However, this condit(cid:12)(cid:12)ion is(cid:12)(cid:12)also saying 1−g11 1−g11+G2 (cid:12) (cid:12) that(h1h,H )i=(0,0h),whichmieansthemodesintheseblockshavenon-trivialwind- 1 2 6 ingnumber(s)alongX4,X5orboth.Therefore,theircontributionstothegaugecou- plingsarenon-trivialbutexponentiallysuppressed. Having analyzedall conformalblockssatisfying (H ,G )=(0,0), we proceed 1 1 with the study of the modularorbit(H ,G )=(0,0), where the sign S is trivial. 1 1 L 6 Largevolumesupersymmetrybreakingwithoutdecompactificationproblem 7 Sincethe1st2-torusistwisted,theseblocksareindependentofthemoduliT ,U and 1 1 thusm .TheycanbeanalyzedasinthecaseofZ Z ,N =1supersymmetric 3/2 2 2 × models.Actually,summingoverthespinstructures,therelevanttermsintherefined partitionfunctionZbecome 12(cid:229)a,b(−1)a+b+abq ab (2v)q ab++HG11 q ab++HG22 q ab−−HG11−−HG22 = (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (−1)(G1+G2)(1+H1+H2)q 11 (v)q 11−−HG11 (v)q 11−−HG22 (v)q 11++HG11++HG22 (v), (12) whichinvitesustosplitthediscuss(cid:2)io(cid:3)nint(cid:2)hreep(cid:3)arts.(cid:2) (cid:3) (cid:2) (cid:3) N =2conformalblocks,with fixed 2nd 2-torus:(H ,G )=(0,0) 2 2 Tfixheedybaryetphreonpoonrt-iforneaelatcotiqon11o2f(tvh)eq Z11−−HGc11ha2r(avc)te=rizOe(dv2b)y.(THhe,2Gnd).inAtedrdnianlg2t-htoerucosnis- (cid:2) (cid:3) (cid:2) 2 (cid:3) 1 1 formalblock A, we obtain an N =2 sector of the theory, up to an overallfactor 1/2 associated to the second Z . This spectrum leads to non-trivialcorrectionsto 2 thegaugecouplings. N =2conformalblocks,withfixed3rd 2-torus:(H ,G )=(H ,G ) 1 1 2 2 Twhhyicahrempearonpsotrhtaiotnthaelt3ordq 211-to2r(uvs)qis11fi−−xHGe11d]2b(vy)t=heOco(vm2b).inAecdtuaacltliyo,n(oHf3t,hGe3g)e=ne(r0a,to0r)s, (cid:2) (cid:3) (cid:2) ofthetwoZ ’s.AddingtheconformalblockA,oneobtainsthelastN =2sector 2 ofthetheory,uptoanoverallfactor1/2.Again,thisspectrumyieldsanon-trivial contributiontothegaugecouplings. N =1conformalblocks: H1 H2 =0 G1 G2 6 Theremainingblockshavenon-trivialdeterminant, H1H2 =0,whichimpliesthey (cid:12) (cid:12) G1G2 6 athreemprwopitohrttihoenhaleltiociqty11o(pve)raqto11r−−,HGth(cid:12)11e(rve)squl(cid:12)t11−−isHGp22r(ovp)oqrti11(cid:12)(cid:12)o++nHGa11l++tHG(cid:12)(cid:12)o22 (v)=O(v).Actingon (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) ¶ v2 q 11 (v)q 11−−HG11 (v)q 11−−HG22 (v)q 11++HG11++HG22 (v) v=0(cid:181) (cid:16) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) ¶(cid:2)2 q (v)(cid:3)q (v(cid:17))(cid:12)(cid:12)q (v)q (v) =0, (13) v 1 2 (cid:12) 3 4 v=0 (cid:16) (cid:17)(cid:12) thanks to the oddness of q 1(v) and evenness of q 2,3,4(v). Thus, th(cid:12)(cid:12)ese conformal blocksdonotcontributetothethresholds. In the class of models we consider, the effective runninggauge couplingasso- ciatedtosomegaugegroupefactorGi hasauniversalformat1-loop[9].Itcanbe elegantlyexpressedintermsofthreemoduli-dependentsquaredmassscalesarising fromthecorrectionsassociatedtotheconformalblocksB,C,D, 8 Herve´Partouche M2 M2 M2 M2= s ,M2= s ,M2= s , B q (U )4ImT ImU C q (U )4ImT ImU D q (U )4ImT ImU 2 1 1 1 4 1 1 1 3 1 1 1 | | | | | | (14) whichareoforderm2 ,andtwomorescales 3/2 M2 M2= s , I=2,3, (15) I 16 h (T)4 h (U )4ImT ImU I I I I | | of order Ms2 that encode t(cid:12)(cid:12)he contr(cid:12)(cid:12)ibutionsof the N =2 sectors associated to the fixed2ndand3rd internal2-tori.Itisalsousefultointroducea“renormalizedstring coupling”[11], 16p 2 16p 2 1 1 = Y(T ,U ) Y(T ,U ), g2 g2 −2 2 2 −2 3 3 renor s 1 d2t 3 E¯ E¯ where Y(T,U)= G (T,U) E¯ 4 6 j¯+1008 , (16) 12ZF t2 2,2 (cid:20)(cid:16) 2−pt 2(cid:17) h¯24 − (cid:21) in which G =G 0,0 is the unshifted lattice, while for q=e2ipt , E =1+ 2,2 2,2 0,0 2,4,6 O(q) are holomorphic Eisenstein series of modular weights 2,4,6 and j =1/q+ (cid:2) (cid:3) 744+O(q)isholomorphicandmodularinvariant.Theinversesquared1-loopgauge couplingatenergyscaleQ2=m 2p 2 isthen 4 16p 2 16p 2 bi Q2 bi Q2 bi Q2 =ki Bln Cln Dln g2(Q) g2 − 4 Q2+M2 − 4 Q2+M2 − 4 Q2+M2 i renor (cid:18) B(cid:19) (cid:18) C(cid:19) (cid:18) D(cid:19) bi2ln Q2 bi3ln Q2 +O m23/2 , (17) − 2 (cid:18)M22(cid:19)− 2 (cid:18)M32(cid:19) Ms2 ! whichdependsonlyonfivemodel-dependentb -functioncoefficientsandtheKac- Moody level. In this final result, we have shifted M2 Q2+M2 in order B,C,D → B,C,D to implementthe thresholdsat which the sectors B,C or D decouple,i.e. when Q exceedsM ,M orM .Thus,thisexpressionisvalidaslongasQislowerthanthe B C D massoftheheavystateswehaveneglectedtheexponentiallysuppressedcontribu- tionsi.e.thestringorGUTscale,dependingonthemodel.TakingQlowerthanat leastoneofthescalesM ,M orM ,ther.h.s.ofEq.(17)scalesaslnImT ,which B C D 1 isthelogarithmofthelarge1st2-torusvolume,asexpectedforthedecompactifica- tionproblemnottoarise. To conclude,we would like to mentiontwo importantremarks.First of all, we stress that the Z Z models, where a Z is freely acting and a stringy Scherk- 2 2 2 Schwarzmechanis×mresponsibleofthefinalbreakingofN =1 takesplace,have non-chiral massless spectra. This is due to the fact that in the N =1, Z Z 2 2 × models, chiral families occur from twisted states localized at fixed points. In the modelswehaveconsidered,fixedpointslocalizedonthe2ndand3rd2-toricanarise but are independentof the moduli T ,U i.e. m . Thus, taking the large volume 1 1 3/2 Largevolumesupersymmetrybreakingwithoutdecompactificationproblem 9 limitofthe1st 2-torus,whereN =2supersymmetryisrecovered,oneconcludes thatthetwistedstatesareactuallyhypermultipletsi.e.couplesoffamiliesandanti- families. Second,we pointoutthatin themodelsanalyzedin the presentwork,thecon- formalblockBisthe onlynon-supersymmetricandnon-negligiblecontributionto thepartitionfunctionZ,andthustothe1-loopeffectivepotential.InRef.[10,15],it isshownthatinsomemodels,thelatterispositivesemi-definite.Themotionofthe moduliT ,U andT ,U isthusattractedtopoints[?],wheretheeffectivepotential 2 2 3 3 vanishes,allowingm tobearbitrary.Inotherwords,thedefiningpropertiesofthe 3/2 no-scalemodels,namelyarbitrarinessofthesupersymmetrybreakingscalem in 3/2 flatspace,whicharevalidattreelevel,areextendedtothe1-looplevel.Thisvery fact, characteristic of the so-called “super no-scale models”, may have interesting consequenceson the smallnessof a cosmologicalconstantgeneratedat higheror- ders.InRef.[17],othermodelshaving1-loopvanishingcosmologicalconstantare alsoconsidered,whichhoweversufferfromthedecompactificationproblem. Acknowledgements IamgratefultoA.FaraggiandK.Kounnas,withwhomtheoriginalwork[9] hasbeendoneincollaboration.IwouldalsoliketothankC.Angelantonj,I.AntoniadisandJ.Rizos forfruitfuldiscussions,andtheLaboratoiredePhysiqueThe´oriqueofEcoleNormaleSupe´rieure forhospitality. References 1. E.Cremmer,S.Ferrara,C.KounnasandD.V.Nanopoulos,“Naturallyvanishingcosmologi- calconstantinN =1supergravity,”Phys.Lett.B133(1983)61; J. R.Ellis,C.Kounnas andD.V.Nanopoulos, “Phenomenological SU(1,1) supergravity,” Nucl.Phys.B241(1984)406. 2. L.J.Dixon,J.A.Harvey,C.VafaandE.Witten,“Stringsonorbifolds,”Nucl.Phys.B261 (1985)678; L.J.Dixon,J.A.Harvey,C.VafaandE.Witten,“StringsonorbifoldsII,”Nucl.Phys.B274 (1986)285. 3. I.Antoniadis,C.Bachas,C.KounnasandP.Windey,“Supersymmetryamongfreefermions andsuperstrings,”Phys.Lett.B171(1986)51; I.Antoniadis,C.P.BachasandC.Kounnas,“Four-dimensionalsuperstrings,”Nucl.Phys.B 289(1987)87; H. Kawai, D. C. Lewellen and S. H. H. Tye, “Construction of fermionic string models in four-dimensions,”Nucl.Phys.B288(1987)1. 4. R.Rohm,“Spontaneous supersymmetrybreakinginsupersymmetricstringtheories,”Nucl. Phys.B237(1984)553; C.KounnasandM.Porrati,“Spontaneoussupersymmetry breakinginstringtheory,”Nucl. Phys.B310(1988)355; S.Ferrara,C.Kounnas,M.PorratiandF.Zwirner,“Superstringswithspontaneouslybroken supersymmetryandtheireffectivetheories,”Nucl.Phys.B318(1989)75; S. Ferrara, C. Kounnas and M. Porrati, “Superstring solutions with spontaneously broken four-dimensionalsupersymmetry,”Nucl.Phys.B304(1988)500; C.KounnasandB.Rostand,“Coordinatedependentcompactificationsanddiscretesymme- tries,”Nucl.Phys.B341(1990)641. 10 Herve´Partouche 5. J.ScherkandJ.H.Schwarz,“Spontaneousbreakingofsupersymmetrythroughdimensional reduction,”Phys.Lett.B82(1979)60. 6. I.Antoniadis,“ApossiblenewdimensionatafewTeV,”Phys.Lett.B246(1990)377. 7. V. S. Kaplunovsky, “One loop threshold effects in string unification,” Nucl. Phys. B 307 (1988)145[Erratum-ibid.B382(1992)436][hep-th/9205068]; L.J.Dixon,V.KaplunovskyandJ.Louis,“Modulidependenceofstringloopcorrectionsto gaugecouplingconstants,”Nucl.Phys.B355(1991)649; I.Antoniadis,K.S.NarainandT.R.Taylor,“Highergenusstringcorrectionstogaugecou- plings,”Phys.Lett.B267(1991)37; P.MayrandS.Stieberger,“Thresholdcorrectionstogaugecouplingsinorbifoldcompactifi- cations,”Nucl.Phys.B407(1993)725[hep-th/9303017]; E.KiritsisandC.Kounnas,“Infrared regularizationofsuperstringtheoryandtheoneloop calculationofcouplingconstants,”Nucl.Phys.B442(1995)472[hep-th/9501020]. 8. E.Kiritsis,C.Kounnas,P.M.PetropoulosandJ.Rizos,“Solvingthedecompactificationprob- leminstringtheory,”Phys.Lett.B385(1996)87[hep-th/9606087]; E. Kiritsis, C. Kounnas, P. M. Petropoulos and J. Rizos, “String threshold corrections in models with spontaneously broken supersymmetry,” Nucl. Phys. B 540 (1999) 87 [arXiv:hep-th/9807067]. 9. A.E.Faraggi,C.KounnasandH.Partouche,“Largevolumesusybreakingwithasolutionto thedecompactificationproblem,”Nucl.Phys.B899(2015)328[arXiv:1410.6147[hep-th]]. 10. C.KounnasandH.Partouche, “StringyN =1superno-scalemodels,”arXiv:1511.02709 [hep-th]. 11. E.Kiritsis,C.Kounnas,P.M.PetropoulosandJ.Rizos,“UniversalitypropertiesofN =2 andN =1heteroticthresholdcorrections,”Nucl.Phys.B483(1997)141[hep-th/9608034]; P. M.Petropoulos andJ. Rizos,“Universal moduli dependent stringthresholds inZ Z 2 2 × orbifolds,”Phys.Lett.B374(1996)49[hep-th/9601037]. 12. C. Angelantonj, I. Florakis and M. Tsulaia, “Universality of gauge thresholds in non- supersymmetricheteroticvacua,”Phys.Lett.B736(2014)365[arXiv:1407.8023[hep-th]]; C. Angelantonj, I. Florakis and M. Tsulaia, “Generalised universality of gauge thresh- olds in heterotic vacua with and without supersymmetry,” Nucl. Phys. B 900 (2015) 170 [arXiv:1509.00027[hep-th]]. 13. E.Kiritsis,“Stringtheoryinanutshell,”PrincetonUniversityPress,2007. 14. C.KounnasandB.Rostand,“Deformationsofsuperstringsolutionsandspontaneous sym- metrybreaking,”HellenicSchool1989:0657-668. 15. C.KounnasandH.Partouche,“Superno-scalemodelsinstringtheory,”toappear. 16. F.Bourliot,J.Estes,C.KounnasandH.Partouche,“Cosmologicalphasesofthestringther- maleffectivepotential,”Nucl.Phys.B830(2010)330[arXiv:0908.1881[hep-th]]; J.Estes,C.KounnasandH.Partouche,“SuperstringcosmologyforN4=1 0superstring → vacua,”Fortsch.Phys.59(2011)861[arXiv:1003.0471[hep-th]]; J.Estes,L.LiuandH.Partouche,“MasslessD-stringsandmodulistabilizationintypeIcos- mology,”JHEP1106(2011)060[arXiv:1102.5001[hep-th]]; L. Liu and H. Partouche, “Moduli stabilization in type II Calabi-Yau compactifications at finitetemperature,”JHEP1211(2012)079[arXiv:1111.7307[hep-th]]. 17. S.Abel,K.R.DienesandE.Mavroudi,“Towardsanonsupersymmetricstringphenomenol- ogy,”Phys.Rev.D91(2015)12,126014[arXiv:1502.03087[hep-th]].