ebook img

Large-Signal Modeling of GaN HEMTs for Linear Power Amplifier PDF

151 Pages·2008·4.23 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Large-Signal Modeling of GaN HEMTs for Linear Power Amplifier

Endalkachew Shewarega Mengistu Large-Signal Modeling of GaN HEMTs for Linear Power Amplifier Design This work has been accepted by the faculty of electrical engineering / computer science of the University of Kassel as a thesis for acquiring the academic degree of Doktor der Ingenieurwissenschaften (Dr.-Ing.). Supervisor: Prof. Dr.-Ing. G. Kompa Co-Supervisor: Prof. Dr. H. Hillmer Defense day: 25th January 2008 Bibliographic information published by Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.d-nb.de. Zugl.: Kassel, Univ., Diss. 2008 ISBN: 978-3-89958-381-6 URN: urn:nbn:de:0002-3816 © 2008, kassel university press GmbH, Kassel www.upress.uni-kassel.de Printed by: Unidruckerei, University of Kassel Printed in Germany Dedicated to the memory of my father Acknowledgments I wish to express my special gratitude to my research advisor Prof. Dr.-Ing. G. Kompa, head of the Department of High Frequency Engineering, Kassel University, for giving me the chance to work in different research projects in the past four years. I am very grateful for his continuous support and encouragement in the course of this work. My thanks also goes to our industry research partners for their cooperation by providing devices and some of the measurement data. I am very grateful to Prof. Dr. H. Hillmer for his time in accepting the task of second examiner of this dissertation. In addition, I would also like to thank the members of the examination committee Prof. Dr.-Ing. J. Börcsök and Prof. Dr. K.-J. Langenberg for accepting to sit in the commission at a short notice. I am thankful to all members of the Department of High Frequency Engineering for their support and teamwork spirit. My gratitude goes to Dr.-Ing. B. Bunz, Dipl.-Ing. J. Weide, Mrs. H. Nauditt, Mr. A. Zena Markos, Mr. S. Embar, Mr. B. Wittwer, and all others who I did not mention by name. I want to thank them all for their encouragement and comforting help. Endalkachew Shewarega Mengistu Dec. 2007 Contents Chapter 1: Introduction 1 1.1 State-of-the-Art Power HEMTs ……………………………….… 2 1.2 Need for Large-Signal Model ……………………………….… 3 Chapter 2: AlGaN/GaN HEMTs 7 2.1 HEMT Structure and Processing ………………………………..… 10 2.1.1 Substrates ………………………………..… 11 2.1.2 Piezoelectric and Spontaneous Polarizations ………..… 11 2.1.3 Epitaxy and Device Fabrication …………………….….… 12 2.1.3.1 Epitaxy ………………………………..… 13 2.1.3.2 Device Fabrication ……………………………….… 15 2.1.3.3 Technology Related Problems .……………….… 17 2.2 Key Power FET Parameters ………………………………..… 18 Chapter 3: Bias-Dependent Linear AlGaN/GaN HEMTs Model 25 3.1 S-Parameter Measurements ………………………… 26 3.2 Electrical Equivalent Circuit Model ……………………………… 28 3.3 Extraction of Extrinsic Parameters …………………………….… 29 3.3.1 Optimizer Based Data Fitting Techniques ………………… 30 3.3.2 Analytical Method ………………………………… 30 3.4 Standard Equivalent Circuit Model 3.4.1 Extrinsic Parameters ………………………………..… 31 3.4.2 Intrinsic Parameters ……………………………..…… 39 3.5 Modified Procedure for Extraction of Extrinsic Elements ………… 42 3.5.1 Improved Parasitic Network ……………………….…. 44 3.6 Small-Signal Model Verification ……………………….…. 50 3.7 Nonlinear Voltage Referencing ………………………..… 52 Chapter 4: Large-Signal Modeling of Power FETs 53 4.1 Data Bases for Large-Signal Model …………………………… 53 v 4.2 Large-Signal Models for IMD Prediction …………………………… 55 4.3 Top-Down Modeling …………………………… 60 4.4 Device Characterization …………………………… 66 4.4.1 Pulsed DC Measurement …………………………… 69 4.4.1.1 System Requirements …………………………… 70 4.4.1.2 External Temperature Controller …………………… 71 4.4.1.3 Characterization of Dispersion Effects …………… 72 4.4.1.4 Trapping Effects …………………………… 73 4.4.1.5 Thermal Effects …………………………… 77 4.4.2 Transients …………………………… 78 4.4.3 Characterization of High Power HEMTs …………………… 83 Chapter 5: AlGaN/GaN HEMTs Large-Signal Modeling 85 5.1 Nonlinear Charge Modeling …………………………… 86 5.2 Drain Current Models Based on DC I(V) and S-Parameters …… 88 5.3 Data Bases for Dispersive Large-Signal Models …………………… 89 5.3.1 Drain Current Models Based on Pulsed I(V) Measurements …. 92 5.3.2 Diode Current Models …………………………… 98 5.3.3 Thermal Modeling of AlGaN/GaN HEMT Structures …… 100 5.3.3.1 Thermal Resistance …………………………… 104 5.4 Large-Signal Model Equivalent Circuit …………………………… 107 5.4.1 Model Implementation …………………………… 108 5.4.2 Model Verification …………………………… 110 5.4.2.1 Static and Pulsed I(V) Characteristics ..………...….. 111 5.4.2.2 S-Parameters ……………………..…….… 113 5.4.2.3 Large-Signal Waveforms ……………………… … 113 5.4.2.4 Intermodulation Distortion …………………. 115 Chapter 6: Conclusion and Future Work 119 6.1 Key Research Results …………………………… 119 6.2 Future Characterization and Modeling of Power FETs ……………… 122 A. Pulsed DC System Test ………………………………………….… 125 B. Device Stability in Pulsed I(V) Measurements ..…………………… 129 References 131 vi List of Symbols BV Gate-drain breakdown voltage V gd C Drain-source capacitance F ds C Gate-drain capacitance F gd C , C Gate-source and gate-drain capacitance of a ‘cold- F gs0 gd0 FET’ biased below pinchoff C Gate-source capacitance F gs C Parasitic drain-source pad capacitance F pda C Drain-source inter-electrode capacitance F pdi C Parasitic gate-source pad capacitance F pga C Gate-source inter-electrode capacitance F pgi C Thermal capacitance s·W/K th e Electron charge (1.602x10-19C) C E Electric field V/cm E Fermi level eV F E Bottom edge of conduction band eV C f Current gain cutoff frequency Hz T f Power gain cutoff frequency Hz max f Function modeling traps associated with deep-level A/V D f Function modeling traps associated with surface state A/V G f Function modeling thermal effects A/K θ G , G Differential gate-source diode conductance S fs gs G , G Differential gate-drain diode conductance S fd gd G Channel transconductance S m G Drain-to-source conductance S ds i , i Pulsed DC gate-source and drain-source current A GS DS I , I Static DC gate-source and drain-source current A GS DS I Maximum drain-source current (gate-forward bias) A max I Saturated drain-source current (zero gate bias voltage) A dss iISO Isothermal drain source DC current A DS IISO Static DC drain-source current A DS L Gate length µm G L Drain-source spacing µm DS L Gate-source spacing µm GS L Gate-drain spacing µm GD L , L , L Gate, drain, and source inductance Η g d s n Sheet charge concentration (σ/e) cm-2 S P Output power at Fundamental frequency W out P RF input power W in P DC input power W DC PAE Power Added Efficiency, % P Instantaneous dissipated power W diss vii P , P Average dissipated power W diss0 0 P Spontaneous polarization induced charge density C/cm2 SP P Piezoelectric polarization induced charge density C/cm2 PE Q Gate-source charge C gs Q Gate-drain charge C gd R Thermal resistance K/W th R , R , R Gate, drain, and source resistance Ω g d s R Gate-source charging resistance Ω i R Channel resistance Ω c R Gate-drain charging resistance Ω gd s Gate-pitch (gate-to-gate spacing) µm S Scattering parameters ij T Ambient temperature K 0 T Chuck (back-plate) temperature K c T Channel temperature K ch Te Estimated channel temperature K ch v Saturation velocity cm/s s v , v Pulsed DC gate-source and drain-source voltage V GS DS V , V Bias gate-source and drain-source voltage V GS0 DS0 V , V Terminal gate-source and drain-source voltage V GS DS V , V Intrinsic gate-source and drain-source voltage V gs ds V Pinchoff gate-source voltage V P W Gate width µm G Y Small-signal admittance parameters S ij Z , Z , Z Intrinsic gate, drain, and source branch impedance Ω g d s Z Small-signal impedance parameters Ω ij ∆T Change in channel temperature K ch ∆Te Change in channel temperature, estimated K ch ε Relative dielectric permittivity r η Drain Efficiency % d κ Thermal conductivity W/cm·K µ Electron mobility cm2/V·s σ Sheet charge density C/cm2 τ Transit delay time s φ Barrier height V B viii List of Abbreviations and Acronyms 2-DEG Two-Dimensional Electron Gas 3G Third Generation ACPR Adjacent Channel Power Ratio ADC Analog-to-Digital Converter ADS® Advanced Design System BTS Base Transceiver Station CAD Computer Aided Design CCDF Complementary Cumulative Distribution Function CW Continuous Wave DAC Data Access Component DC Direct Current DiVA Dynamic I(V) Analyzer DPD Digital Predistortion EEC Electrical Equivalent Circuit EER Envelope Elimination and Restoration EVM Error Vector Magnitude FET Field Effect Transistor HPA High Power Amplifier HEMT High Electron Mobility Transistor HFET Heterojunction FET HBT Heterojunction Bipolar Transistor IMD Intermodulation Distortion LDMOS Laterally Diffused MOS LUT Look-up Table MBE Molecular Beam Epitaxy MESFET MEtal-Semiconductor FET MOCVD Metal-Organic Chemical Vapor Deposition MOS Metal-Oxide-Semiconductor MSG Maximum Stable Gain PAE Power Added Efficiency PAR Peak-to-Average Ratio RF Radio Frequency SDD Symbolically Defined Device SFP Source Filed Plate TEC Thermal Expansion Coefficient UMTS Universal Mobile Telecommunications System VNA Vector Signal Analyzer W-CDMA Wideband Code Division Multiple Access WiMAX Worldwide Interoperability for Microwave Access (Based on IEEE 802.16 Standard) WirelessMAN Wireless Metropolitan Area Network (Official Name for IEEE 802.16) ix

Description:
Jan 25, 2008 5.3.3 Thermal Modeling of AlGaN/GaN HEMT Structures …… 100. 5.3.3.1 . HEMT. High Electron Mobility Transistor. HFET. Heterojunction FET. HBT thermal resistance and the thermal time constant of the device structure.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.