ebook img

Large Scale Geometry PDF

203 Pages·2012·3.897 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Large Scale Geometry

EMS Textbooks in Mathematics EMS Textbooks in Mathematics is a series of books aimed at students or professional mathemati- cians seeking an introduction into a particular field. The individual volumes are intended not only to provide relevant techniques, results, and applications, but also to afford insight into the motivations and ideas behind the theory. Suitably designed exercises help to master the subject and prepare the reader for the study of more advanced and specialized literature. Jørn Justesen and Tom Høholdt, A Course In Error-Correcting Codes Markus Stroppel, Locally Compact Groups Peter Kunkel and Volker Mehrmann, Differential-Algebraic Equations Dorothee D. Haroske and Hans Triebel, Distributions, Sobolev Spaces, Elliptic Equations Thomas Timmermann, An Invitation to Quantum Groups and Duality Oleg Bogopolski, Introduction to Group Theory Marek Jarnicki and Peter Pflug, First Steps in Several Complex Variables: Reinhardt Domains Tammo tom Dieck, Algebraic Topology Mauro C. Beltrametti et al., Lectures on Curves, Surfaces and Projective Varieties Wolfgang Woess, Denumerable Markov Chains Eduard Zehnder, Lectures on Dynamical Systems. Hamiltonian Vector Fields and Symplectic Capacities Andrzej Skowron´ski and Kunio Yamagata, Frobenius Algebras I. Basic Representation Theory Piotr W. Nowak Guoliang Yu Large Scale Geometry Authors: Piotr W. Nowak Guoliang Yu Institute of Mathematics of the Department of Mathematics Polish Academy of Sciences Texas A&M University ul. S´niadeckich 8 College Station, TX 77843, USA P. O. Box 21 E-mail: [email protected] 00-956 Warszawa, Poland and Faculty of Mathematics, Informatics, and Mechanics University of Warsaw Banacha 2 02-097 Warszawa, Poland E-mail: [email protected] 2010 Mathematics Subject Classification: 51-01; 50F99, 20F69; 19K56, 57-01, 46L87, 58B34, 46L99, 53C20 Key words: Large scale geometry, quasi-isometry, coarse geometry, asymptotic dimension, finite decomposition complexity, amenability, Property A, coarse embedding, expanders, a-T-menability, coarse homology, uniformly finite homology, Baum–Connes conjecture, coarse Baum–Connes con- jecture, Novikov conjecture, Borel conjecture ISBN 978-3-03719-112-5 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broad- casting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © European Mathematical Society 2012 Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum SEW A27 CH-8092 Zürich Switzerland Phone: +41 (0)44 632 34 36 Email: [email protected] Homepage: www.ems-ph.org Typeset using the authors’ TEX files: I. Zimmermann, Freiburg Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany ∞ Printed on acid free paper 9 8 7 6 5 4 3 2 1 Thisbookisdedicatedtoourfamilies Franek,Ania,parentsandgrandparents; Alexandria,Andrew,Jenny,parentsandgrandparents. Preface Large scale geometry is the study of geometric objects viewed from afar. In this type of geometry two objects are considered to be the same, if they look roughly thesamefromalargedistance. Forexample,whenviewedfromagreaterdistance theEarthlookslikeapoint,whilethereallineisnotmuchdifferentfromthespace ofintegers. Inthepastdecadesmathematicianshavediscoveredmanyinteresting andbeautifullargescalegeometricproperties, whichhaveimportantapplications intopology,analysis,computerscienceanddataanalysis. Historically,largescalegeometricideasappearedinMostow’srigiditytheorem [172], [173] and its generalization due to Margulis [155], [158], as well as in the work of Švarc [227] and later Milnor [166] andWolf [243] on growth of groups. TheimpetuscamewithGromov’spolynomialgrowththeorem[105]andsincethen largescalegeometricideashaveenteredtheworldofgrouptheory,wheretheyhave becomeafundamentaltool. Bynowitiswellknownthatmanyclassicalnotions areinfactoflargescalegeometricnature,oneexamplebeingamenability,defined byvonNeumanninhisworkontheBanach–Tarskiparadoxin1929. Oneofthemotivationsforthisbookistheuseoflargescalegeometricmethods in index theory. After theAtiyah–Singer index theorem was proved for compact manifolds,anaturalquestionwaswhetheronecanextendsuchindextheoremsto non-compact manifolds. Connes and Moscovici developed a higher index theory forcoveringspaces[62]. Motivatedbytheirwork,Roeintroducedahigherindex theory for general non-compact manifolds [207]. Powerful large scale geometric methodshavebeenintroducedtocomputehigherindicesfornon-compactmanifolds [249],[250]. Suchcomputationshaveallowedustoobtainsignificantprogresson problemsliketheNovikovconjecture,theGromov–Lawson–Rosenbergconjecture, orthezero-in-the-spectrumproblem,andthisareaisinastageofrapiddevelopment. Morerecently, Guentner,TesseraandYu[117], [118]haveintroducedlargescale geometricmethodstostudytopologicalrigidityofmanifolds. Theirmethodallows themtoprovestrongresultsforthestableBorelconjectureandtheboundedBorel conjecture. At the same time, large scale geometric techniques are also of interest in ar- eas such as Banach space geometry, where the coarse classification of Banach spaces remains an interesting problem. Another area of application is theoretical computerscience,whereembeddabilityproperties,suchascompressionofcoarse embeddings of discrete metric spaces and graphs, allow one to obtain computa- tional efficiency. Finally, we mention that large scale geometric methods have foundinterestingapplicationsinlargedataanalysis[52],[236]. Our goal is to provide a gentle and fairly detailed introduction to large scale geometric ideas that are used in the study of index problems. We hope that the viii text will be accessible to a broad audience, in particular to graduate students and newcomerstothefield. Weprovidedetailedproofsformostofthetheoremsstated in the text and every chapter has several exercises at the end. Additionally, some stepsintheproofsareleftasexercisestothereader. Theseomissionsarealways pointedoutinthetext. Thebookisorganizedinthefollowingway. Inthefirstchapterwediscussbasic properties of the coarse category, the geometric viewpoint on finitely generated groups, and we conclude with a section on Gromov hyperbolicity. In the second chapter we give a detailed overview of the notions of asymptotic dimension and decomposition complexity. The third chapter covers amenability of groups. It is slightly shorter, since amenability, as a classical notion, is already a subject of several excellent monographs. In the fourth chapter we discuss the notion of propertyAformetricspacesanditsconnectionstoamenability. Inthefifthchapter, coarse embeddings into Banach spaces are studied. The sixth chapter is about affine isometric actions of groups on Banach spaces, in particular a-T-menability (alsoknownastheHaagerupproperty),Kazhdan’sproperty(T)andconstructions of expanders. In the last chapter we introduce elements of large scale algebraic topology: uniformlyfinitehomologyandcoarsehomologytheories. Theappendix providesabriefsurveyofapplicationsofcoarsegeometricproperties,discussedin thetext,tohigherindextheoryofellipticoperators,andtotopologicalandgeometric rigidity. WewouldliketothankWernerBallmann,FlorentBaudier,AlexanderDranish- nikov,TomaszOdrzygóz´dz´,LinShan,RomainTesseraandYi-JunYaoforhelpful commentsandcorrections. WeareparticularlygratefultoGrahamNiblo,Bogdan Nica, Ján Špakula, AlainValette and Rufus Willett for carefully reading the text andsuggestingnumerousimprovements. ItisapleasuretothankManfredKarbe forhiswonderfulhelpandsupportforthisprojectandIreneZimmermannforher beautifultypesetting. Partofthisworkwasdoneduringthefirstauthor’sstaysatTexasA&MUniver- sityandMSRI.Hewouldliketoexpresshisgratitudetobothinstitutionsfortheir hospitality. BothauthorswouldliketothanktheNationalScienceFoundationfor itsgeneroussupportduringthepreparationofthismanuscript. Nashville/Warsaw,February2012 PiotrNowak,GuoliangYu Contents Preface vii Notationandconventions xiii 1 Metricspacesandlargescalegeometry 1 1.1 Metricspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Groupsasmetricspaces. . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Quasi-isometries . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Coarseequivalences . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5 Hyperbolicspaces . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Notesandremarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2 Asymptoticdimensionanddecompositioncomplexity 26 2.1 Topologicaldimension . . . . . . . . . . . . . . . . . . . . . . . 26 2.2 Asymptoticdimension . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Dimensionofhyperbolicgroups . . . . . . . . . . . . . . . . . . 30 2.4 Upperboundsforasymptoticdimension . . . . . . . . . . . . . . 32 2.5 Asymptoticdimensionofsolvablegroups . . . . . . . . . . . . . 36 2.6 Groupswithinfiniteasymptoticdimension . . . . . . . . . . . . . 38 2.7 Decompositioncomplexity . . . . . . . . . . . . . . . . . . . . . 39 2.8 Invarianceandpermanence . . . . . . . . . . . . . . . . . . . . . 42 2.9 Groupswithfinitedecompositioncomplexity . . . . . . . . . . . 45 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Notesandremarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3 Amenability 49 3.1 Følnerconditions . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 TheHulanicki–Reitercondition . . . . . . . . . . . . . . . . . . 55 3.3 Invariantmeans . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Notesandremarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4 PropertyA 63 4.1 Definitionandbasicproperties . . . . . . . . . . . . . . . . . . . 63 4.2 TheHigson–Roecondition . . . . . . . . . . . . . . . . . . . . . 66 4.3 FiniteasymptoticdimensionimpliespropertyA . . . . . . . . . . 70 x Contents 4.4 PropertyAandresiduallyfinitegroups . . . . . . . . . . . . . . . 73 4.5 Locallyfiniteexamples . . . . . . . . . . . . . . . . . . . . . . . 78 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Notesandremarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5 Coarseembeddings 83 5.1 Coarseembeddings . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2 EmbeddabilityintoHilbertspaces . . . . . . . . . . . . . . . . . 84 5.3 ExamplesofembeddablespaceswithoutpropertyA . . . . . . . . 89 5.4 Convexityandreflexivity . . . . . . . . . . . . . . . . . . . . . . 91 5.5 Coarseembeddingsandfinitesubsets . . . . . . . . . . . . . . . 96 5.6 Expanders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.7 Ageometriccharacterizationofnon-embeddability . . . . . . . . 101 5.8 Compressionofcoarseembeddings . . . . . . . . . . . . . . . . 108 5.9 Compression> 1 impliespropertyA . . . . . . . . . . . . . . . 110 2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Notesandremarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6 GroupactionsonBanachspaces 119 6.1 Affineisometricactions . . . . . . . . . . . . . . . . . . . . . . . 119 6.2 Metricallyproperactionsanda-T-menability . . . . . . . . . . . 121 6.3 Actionson` -spacesandreflexiveBanachspaces . . . . . . . . . 125 p 6.4 Kazhdan’sproperty(T) . . . . . . . . . . . . . . . . . . . . . . . 128 6.5 FixedpointsandKazhdan’sproperty(T) . . . . . . . . . . . . . . 130 6.6 Constructionofexpanders . . . . . . . . . . . . . . . . . . . . . 132 6.7 Property(T)andspectralconditions . . . . . . . . . . . . . . . . 134 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Notesandremarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7 Coarsehomology 143 7.1 Coarselocallyfinitehomology . . . . . . . . . . . . . . . . . . . 143 7.2 Uniformlyfinitehomology . . . . . . . . . . . . . . . . . . . . . 144 7.3 EilenbergswindlesandPonzischemes . . . . . . . . . . . . . . . 149 7.4 Aperiodictilesandnon-amenablespaces . . . . . . . . . . . . . . 154 7.5 Coarseninghomologytheories . . . . . . . . . . . . . . . . . . . 160 7.6 Thecoarseninghomomorphism . . . . . . . . . . . . . . . . . . 162 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Notesandremarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.