ebook img

Large gap electron-hole superfluidity and shape resonances in coupled graphene nanoribbons PDF

1.6 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Large gap electron-hole superfluidity and shape resonances in coupled graphene nanoribbons

Large gap electron-hole superfluidity and shape resonances in coupled graphene nanoribbons M. Zarenia1,*, A. Perali2, F. M. Peeters1, and D. Neilson2 1DepartmentofPhysics,UniversityofAntwerp,Groenenborgerlaan171,B-2020Antwerpen,Belgium 2DipartamentidiFisicaediFarmacia,Universita` diCamerino,62032Camerino,Italy 6 *[email protected] 1 0 2 ABSTRACT n a Wepredictenhancedelectron-holesuperfluidityintwocoupledelectron-holearmchair-edgeterminatedgraphenenanoribbons J separatedbyathininsulatingbarrier. Incontrasttographenemonolayers, themultiplesubbandsofthenanoribbonsare 6 parabolic at low energy with a gap between the conduction and valence bands, and with lifted valley degeneracy. These 2 properties make screening of the electron-hole interaction much weaker than for coupled electron-hole monolayers, thus ] boostingthepairingstrengthandenhancingthesuperfluidproperties. Thepairingstrengthisfurtherboostedbythequasi- n one-dimensional quantum confinement of the carriers, as well as by the large density of states near the bottom of each o subband. Thelattermagnifiesthesuperfluidshaperesonancescausedbythequantumconfinement. Severalsuperfluidpartial c condensatesarepresentforfinite-widthnanoribbonswithmultiplesubbands. Wefindthatsuperfluidityispredominatelyinthe - r strongly-coupledBECandBCS-BECcrossoverregimes,withlargesuperfluidgapsupto100meVandbeyond. Whenthegaps p exceedthesubbandspacing,thereissignificantmixingofthesubbands,aroundingoftheshaperesonances,andaresulting u reductionintheone-dimensionalnatureofthesystem. s . t a m Introduction - d Superfluidityofspatiallyseparatedelectronsandholeswaspredictednearlyhalfacenturyago1butuptonowexperimental n o observationofthisexoticstatehasbeenelusiveatzeromagneticfield,notwithstandingmultipleattemptsonverydifferent c systems. Thediscoveryofthewondermaterialgrapheneinconjunctionwiththelargebandgapinsulatorhexagonalboron [ nitride(h-BN)hasraisednewhopesforrealizationofthisnewcollectivemanybodystate. Recently,superconductivityat 1 temperatures above liquid Heliumhas been reportedin doped monolayergraphene by fourgroups, amplifyinginterest in v quantumcoherentphenomenaingraphene.2 2 Monolayergrapheneisanatomicallyflat,gaplesssemiconductorwithnearidenticalconductionandvalencebands.Spatially 4 separatedelectron-dopedandhole-dopedmonolayerscanbecompletelyinsulatedfromeachotherwithjustafewatomiclayers 9 6 ofh-BN.3,4Withsuchsmallspatialseparations,electron-holepairingbydirectCoulombattractionwouldbeexpectedtobe 0 strong.5–7 HoweverthelineardispersionofthemonolayergrapheneenergybandsresultsinverystrongCoulombscreeningof 1. theelectron-holepairingattraction,andthissuppressessuperfluidityincoupledelectron-holegraphenemonolayers.3,8 To 0 overcomethestrongscreening,Refs.9and10proposedusingcoupledelectron-holegraphenemultilayers. Usingmultilayers 6 takesadvantageofthenonlineardispersionoftheirenergybands,11,12andtheexistenceofagapbetweentheconductionand 1 valencebandswhenagatepotentialisapplied. : v Hereweproposeanewdesigntoboostelectron-holepairingandtheonsetofsuperfluidityusingnanoribbonsetchedin Xi monolayergraphene. Monolayersheetsofgraphenearepromisingcandidatesforapplicationsintransparentconductivefilms, electronicandopto-electronicdevices,actuators,sensors,composites,andmore. Howeveraseriouslimitationofgraphene r a monolayersisthatfield-effecttransistor(FET)devicesarenotpossiblebecausethemasslessnatureoftheelectronsprevents electronconfinementingraphene. Quasi-one-dimensionalgraphenenanoribbonswithtuneablebandgapsresolvethisissue, withimportantimplicationsforthefabricationofnovelandultrafastelectronicnanodevices. Forexample,FETdeviceswith 100GHzswitchingfrequencieshavebeenfabricatedusinggraphenenanoribbons.13 Thenanoribbonedgescanbeterminated usingavarietyofdifferentatoms,whichopensupapplicationopportunities,inparticularfornanoribbonsinpolymerhostsfor fabricationofnovelcompositematerials.14,15 Finally,graphenenanoribbonsareshowinggreatpromiseaselectrodematerials forbatteriesandsupercapacitors.16 The electronic properties of graphene nanoribbons depend on the type of edge termination.17 We focus on armchair- edgeterminatednanoribbonssince(i)theirsubbandsareparabolicaroundtheirminima(Fig.1(a)),(ii)thereisasizeable semiconductor-like energy gap between the conduction and valence bands, and (iii) the valley degeneracy of monolayer (a) (b) 4 3 V) 2 e E ( 1 0 -1 -1 -0.5 0 0.5 1 0 5 10 15 ky(π/3a) DOS (eV-1nm-1) Figure1. (a)Lowestsingle-particleenergysubbandsε (k ),j=1,2,... inanarmchairgraphenenanoribbonofwidthW =2 j y nm. (b)CorrespondingdensityofstatesDOS(E)innanoribbon. VanHovesingularitiesarevisibleatbottomofeachsubband. (a) grapheneislifted. Thesepropertiescombinetogreatlyreducethestrengthofscreeningoftheelectron-holepairinginteraction. NotethatuniformarmchairgraphenenanoribbonsofwidthsW (cid:28)10nmhaverecentlybeenfabricated.18 Figure2showsthedeviceweareproposing. Itconsistsoftwoarmchair-edgeterminatedmonolayergraphenenanoribbons, oneelectron-dopedandtheotherhole-doped,separatedbyafewatomiclayersofah-BNinsulatingbarrier. Thenanoribbons areindependentlycontacted,andtopandbackmetalgatescontrolthecarrierdensities. top gate n o b b ori n a n e n e h p a gr e d grapnhaennoeribbon W h h-B N back gate Figure2. Proposeddevice. Upperelectron-dopedandlowerhole-dopedarmchair-edgeterminatedgraphenenanoribbonsof widthsW separatedbyh-BNinsulatorofthicknessd. Topandbackgatescontrolelectronandholedensities. Gatesare separatedfromnanoribbonsbyh-BNlayers. Nanoribbonsareindependentlycontacted. Inadditiontoreducingtheeffectofscreening, electron-holepairingstrengthswillbefurtherboostedinourproposed systembytheenhanceddensityofstatesneartheminimumofeachsubbandthatarisesfromthevanHovesingularitiesofthe quasi-one-dimensionalnanoribbons,andalsobythequantumconfinementofthecarriersinthenanoribbons. Enhancementof superconductinggapsandcriticaltemperatureinstripedsystemsduetoshaperesonancesandquantumconfinementatthe nanoscalewaspredictedinRefs.19–21. Superconductivityhasbeenobservedinquasi-one-dimensionalsystemsincludingSn andAlmetallicnanowiresandcarbonnanotubes,withenhancedtransitiontemperaturesascomparedwiththeirbulkvalues.22 Methods Wetakethey-directionparalleltothenanoribbons,withthecarriersconfinedinthetransversex-direction.Figure1(b)showsthe √ (cid:113) single-particleenergysubbandsobtainedinthecontinuummodel,ε (k )=( 3ta /2) k2+k2, j=1,2,... foranarmchair j y 0 y j graphene nanoribbon of widthW =2 nm. The intralayer hopping energyt =2.7 eV 23 and the graphene lattice constant 2/8 1.6 1.4 d=2nm 1.2 1 V) d=3nm e ( 0.8 x a m ∆ 0.6 d=4nm 0.4 d=5nm 0.2 2 3 4 5 6 0 0 0.5 1 1.5 2 2.5 3 14 -2 n (10 cm ) Figure3. Maximumsuperfluidgap∆maxaveragedoverthesubbands. d isthicknessoftheinsulatingbarrierseparatingthe nanoribbons. NanoribbonwidthisW =2nm. DensitiesatwhichE entersthebottomofanewsubbandε areindicatedby F j theverticallines. √ (cid:2) (cid:3) a =0.24nm. k =[jπ/W]− 4π/(3 3a ) isthequantizedwave-numberforthe j-subbandinthex-direction. Figure1(b) 0 j 0 showsthecorrespondingdensityofstatesDOS(E). ThevanHovesingularitiescoincidewiththebottomofeachsubband. Notonlythefinitewidthofthenanoribbonsbutalsotheirmultipleoccupiedsubbandsmakethesystemonlyquasi-one- dimensional. Inaddition,inthesuperfluidstatetheenergygapmixesclose-bysubbands. Thequasi-one-dimensionalitytogether withthesubbandmixingwillsuppressorderparameterfluctuationsthatareresponsiblefordestroyingsuperfluidityinapure one-dimensionalsystem. Forthesereasonswecancalculatepropertiesofthesuperfluidgroundstateusingmeanfieldtheory. Recently Ref. 24 discussed a quasi-condensate of excitons in coupled electron-hole one-dimensional wires using the weak-coupledBCSgapequationinthelowdensitylimitwithonlythelowestsubbandcontributingtothepairing,andwith screeningneglected. Sinceonlyonechannelwasconsidered,therearenoshaperesonanceeffectsatfinitedensities. Also, becauseoftheonedimensionality,fluctuationsoftheorderparametershouldbesevereandwouldstronglysuppresssuperfluidity. Interestingly,Ref.24arguesthatevenintheone-channelcase,thefinitesizeofthenanoribbonswouldallowforshortrange superfluidcorrelations. Inourcasethemanyavailablechannelsduetothemultiplesubbandsinvolvedinthepairingallowfora suppressionofthecriticalfluctuationsanditshouldbestraightforwardtoobserveconventionallongrangesuperfluidity. Ourcalculationsareforcoupledelectron-holearmchairgraphenenanoribbonsofequalwidthW andequal(two-dimensional) electronandholedensitiesn=(r W)−1,wherer istheaverageinter-particlespacingalongthenanoribbon. Thesubbands 0 0 ε (k ), j=1,2,... areidenticalfortheelectronsandholes. j y Becauseofthemultiplesubbandstructure,thezerotemperaturemeanfieldequationsforthesuperfluidstateacquirean additionalindexforthesubband j. Theequationsforthewave-vectordependentsuperfluidenergygaps∆ (k )forsubbands j j y become, ∆j(ky)=−L1y∑jjc(cid:48) ∑kkcy(cid:48) Fky,j,ky(cid:48),j(cid:48)Ve-h(ky−ky(cid:48))2∆Ej(cid:48)j(cid:48)((kky(cid:48)y(cid:48))) , (1) where Ly is the nanoribbon length, Fky,j,ky(cid:48),j(cid:48) =[1+cos(θky,j−θky(cid:48),j(cid:48))]/2 is the form factor coming from the overlap of the single-particlenanoribbonwavefunctions,withθ =tan−1(k /k ),V (q)istheeffectiveelectron-holepairinginteraction, ky,j y j e-h andE (k )=[(ε (k )−µ)2+∆ (k )2]1/2 isthesingle-particleenergydispersioninthesuperfluidstateforsubband j. The j y j y j y wave-vectork(cid:48) isboundedbytheBrillouinzoneboundary±k . Wetruncatethesumoverthesubbandindexat j(cid:48)= j ,where y c c j isthelowestsubbandwithaminimumabovethegraphenenanoribbonworkfunctionenergy,takentobe∼4.5eV.The c 3/8 0.4 (a) 2.5 (b) 9 8 V) 0.2 d 5 7 6 e 0.35 140 2 ∆(k) (jy 0.1 m=e2 3 0 0.3 2 c (c) 0.3 (eV) 0.25 j=1 1.5eV) k) (eV)y 0.2 m=e3 max∆j E(F ∆(j 0.1 1 0.2 b 0 (d) 0.3 V) e m=e 0.15 0.5 k) (y0.2 4 ∆(j0.1 2 3 4 5 6 0.1 0 0 0.5 1 1.5 2 2.5 3 0 0.2 0.4 0.6 0.8 1 n (1014cm-2) ky(kF) Figure4. (a)Maximumsuperfluidgap∆maxforsubbands j=1,2... asfunctionofdensityn. Thedottedlineshowsthetotal j FermienergyE . NanoribbonwidthsW =2nmandbarrierthicknessd=5nm. ThedensitiesatwhichE entersthebottom F F ofanewsubbandareindicatedbytheverticallines. Notethatthe∆maxarealloforderE . Rightpanels(b)-(d): j F momentum-dependentgaps∆ (k )forsubbands jatdensitiesmarkedbythearrowsinpanel(a)(atwhichµ =ε ,ε ,ε ). j y 2 3 4 chemicalpotentialµ isfixedbythedensityequation, 2 jc kc n = ∑∑v (k )2; (2) j y WL y j ky (cid:20) (cid:21) 1 ε (k )−µ v (k )2 = 1− j y . (3) j y 2 E (k ) j y Thefactor2inEq.(2)isduetothespindegeneracy. Inthecalculationsweneglectscreening,anapproximationthatisjustifiedaposterioriasfollows. Thescreeningisexpected tobeweakwhenthesuperfluidityliesinthestrongly-coupledBECorBCS-BECcrossoverregimesbecausethesuperfluidgap intheseregimesofpairingiscomparabletotheFermienergy,resultinginalargesmearingoftheFermisurface,andcompact electron-holepairscomparedwiththeiraveragespacing. Thismakestheirmutualinteractionsdipolarandweak. IntheBECor BCS-BECcrossoverregimeswecanthusexpectscreeningtobeweak,andsoweneglectit. Howeverforweak-coupledBCS superfluidity,screeningisknowntobeastrongeffect,whichwouldmakeourunscreenedapproximationapooroneinthe BCSregime. Theseeffectshavebeendocumentedintherelatedsystemofsuperfluidityincoupledelectron-holesheetswith parabolicenergybanddispersion.9,25 ThusinEq.(1)weapproximatetheelectron-holepairingattractionV (q)bythebareCoulombinteraction. Forelectrons e-h andholesconfinedinnanoribbonsofwidthW,separatedbyaninsulatingh-BNbarrierofthicknessdanddielectricconstant κ =3,weobtain,26 −2e2(cid:90) W(cid:90) W (cid:113) V (q)= dx(cid:48)dxK (|q| (x−x(cid:48))2+d2). (4) e-h κW2 0 0 0 FollowingFig.1ofRef.26,weexpectthatinterbandmatrixelementswillbesmallcomparedwithintrabandmatrixelements. ThusinEq.(1)weneglectthecrosspairingterms,whereCooperpairswouldformwithcarriersfromdifferentsubbands. Results Figure3showsthemaximumsuperfluidgap∆maxasafunctionofthedensityn,averagedoverthemultiplesubbandsofthe nanoribbons,calculatedusingEqs.1to4. ∆max isthemaximumvalueofthewave-vectordependent∆(k )averagedwith y 4/8 respecttothesubbandindex j. ThenanoribbonwidthisW =2nm,anddisthethicknessoftheinsulatingbarrier. Thedensities atwhichtheFermienergyentersthebottomofanewsubbandε , j=1,2,...,areindicatedbytheverticallines. j InFig.3wenoticealocalboostin∆max neartheminimumofeachsubbandforbarrierthicknessd=5nm. Thisboost arisesfromshaperesonanceeffectsassociatedwiththevanHovesingularities(Fig.1(b))andthequantumsizeeffectsinthe pairinginteraction. However,forthinnerbarriersd∼<4nm,wheretheelectron-holepairingbecomesprogressivelystronger,the shaperesonanceeffectsaremaskedbyamixingofthesubbandscausedbythelargesuperfluidgap. As∆maxgrowslargerthan thetypicalspacingbetweensubbands,thesystembecomesdecreasinglessone-dimensionalincharacter,thankstothemany channelsavailablebothforCooperpairingandforformingthesuperfluidcondensate. 0.8 d=5nm d=4nm 0.6 d=3nm d=2nm F E 0.4 /m 0.2 0 0 0.5 1 1.5 2 2.5 3 n (1014cm-2) Figure5. Ratioofchemicalpotentialµ toFermienergyE asfunctionofdensityn. d isthicknessoftheinsulatingbarrier F separatingthenanoribbons. NanoribbonwidthW =2nm. TheverticallinesshowthedensitiesatwhichE entersthebottom F ofasubband. Figure4(a)showsthemaximumsuperfluidgap∆maxfortheseparatesubbands jasafunctionofnfornanoribbonwidth j W =2nmandbarrierthicknessd=5nm. Forcomparison,thetotalFermienergyE ofthenon-interactingnanoribbonsystem F atdensitynisalsoshown. TheverticallinesmarkthedensitiesatwhichE entersanewsubband. Forthelowestconduction F subbands,thereisanotablelocalboostin∆maxasE entersanewsubband. Thisboosttakestheformofashaperesonancein j F thesuperfluidgapsassociatedwithaparticularsubband. Howeverevenforthelowestsubbands,welosesomefinestructureof theshaperesonancesbecauseofmixingbythegapofcloselyingsubbands. Overthedensityrangeshown,the∆maxremain j alwaysoforderE ,andhencetheylieinthestronglycoupledregime. F Figures4(b)-(d),showthemomentum-dependenceofthesubbandgaps∆ (k )fordensitiesatwhichthechemicalpotential j y µ entersanewlow-lyingsubband(markedinFig.4(a)bytheverticalarrows). Thepeaksin∆ (k )arebroadonthescaleof j y k =π/(2r ),theinverseoftheaverageinterparticlespacing,whichconfirmsthatweareintheBCS-BECcrossoverregimeof F 0 compactelectron-holepairs. Inpanels(c)and(d)ofFig.4,themultiplepeaksof∆ (k )areassociatedwiththedifferentFermi j y energiesofthesubbands(k ) ,displayingaremainingfermioniccharacteroftheCooperpairingintheBCS-BECcrossover F j regime. Figure5showsthechemicalpotentialµ asafunctionofdensitynfornanoribbonwidthW =2nmandbarrierthickness d. µ isnormalizedtothecorrespondingFermienergyofthenon-interactingnanoribbonsystematdensityn. Thechemical potentialisstronglyrenormalizedwithrespecttotheFermienergyoverthefullrangeofnandd shown. WhenE entersa F subband,µ hasadip. Thisisincontrasttothepeakseeninthesuperfluidgap,anditisashapeantiresonancecausedbythe shape-resonance-generatedpeakinthegap. Asd isdecreasedandthepairingstrengthweakens,µ increasestowardsE and F theshape(anti)resonancesbecomesizeable,indicatingthatthesystemhasenteredtheBCS-BECcrossoverregime. Inthecase ofd=2nm,µ (cid:28)E andtheshape(anti)resonancesarecompletelysmoothedout. Thisisaresultoflargesuperfluidgapsand F itsignalsthatthesystemisinthestrongpairingBECregime. Whenthedensityincreases,thesystemalwaysevolvestowards theweakerpairingBCSregimeforallvaluesofd,withµ eventuallyarrivingatE . F TheaveragepairsizeoftheCooperpairsξ insubband jisdefinedastheexpectationvalueofthesquareoftherelative j coordinateoftheCooperpairswithrespecttothesquareoftheBCSwavefunctionprojectedinthesubband. Thisdefinition 5/8 6 d=5nm 5 BCS d=4nm 4 Crossover ) 0 r 3 ( d=3nm ξ d=2nm 2 1 BEC 0 0 0.5 1 1.5 2 2.5 3 14 -2 n (10 cm ) Figure6. Paircorrelationlengthξ/r averagedoversubbandsasfunctionofn,thecarrierdensity. d isthicknessofthe 0 insulatingbarrierseparatingthenanoribbons. NanoribbonwidthW =2nm. wasoriginallyintroducedinRef.27toinvestigatethedifferentregimesofpairinginhigh-T superconductivityincupratesasa c functionofdensity. IthasbeenextendedtoamultigapsuperconductorthroughouttheBCS-BECcrossoverinRef.28andtoa multigapquasi-one-dimensionalsuperfluidofultracoldfermionsconfinedincigar-shapedtraps.29 Inwave-vectorspace, (cid:34) (cid:35)1 ξ = ∑ky|∇ky(uj(ky)vj(ky))|2 2 , (5) j ∑ky(uj(ky)vi(ky))2 whereu (k )2=1−v (k )2. j y j y Figure6showsthepaircorrelationlengthξ/r asafunctionofdensity.ξ/r isthepartialaveragepairsizeforeachsubband 0 0 averagedoverthesubbands. ThenanoribbonwidthW =2nm. Wedesignateξ/r <0.25astheBECregime,0.25<ξ/r <4 0 0 theBCS-BECcrossoverregime,andξ/r >4theBCSregime. Asdiscussed,ourapproximationofneglectingscreeningis 0 expectedtobeagoodonefordensitieslyingintheBCS-BECcrossoverandBECregimes. Asexpected,thedensityrangefor thestrongly-coupledregimecontractswithincreasingbarrierthicknessd becausethepairingbecomesweaker. Wehaveneglectedeffectsfromimpuritiesanddisorder. Weexpecttheseeffectstobesmallsincewhilethereisnodirect informationonimpurityanddisordereffectsingraphenenanoribbons,butbasedonpropertiesofanalogouscoupledelectron- holegraphenemonolayers,chargeimpuritiesconcentrationsupton <k /(πd)arenotexpectedtodestroysuperfluidity.30 At i F graphene-hBNinterfaces,thechargeimpuritydensityni∼>1010cm−2,31soford∼<5nm,theinequalityissatisfiedprovided n∼>3×106cm−2. Thisdensityisordersofmagnitudelessthancurrentexperimentaldensities. Conclusions Thesuperfluidgapsinourcoupledelectron-holenanoribbonsystemsarelargeinabsolutevalueandcomparabletotheFermi energy. Thequasi-one-dimensionalconfinementandthesuperfluidshaperesonancesduetoquantumsizeeffectsbothplay an important role here. The van Hove singularities in the densities of states act non-linearly through the gap equation to significantly enhance the magnitude of the superfluid gaps. In the range of nanoribbon densities and barrier separations considered,wefindthattheelectron-holesuperfluidisforthemostpartinthestronglycoupledpairingregime,andsoCoulomb screeningeffectsareexpectedtobeweak. Whenthesuperfluidgapsarecomparabletothesubbandenergyseparations,thegapsmixthesubbandsandthisresultsina roundingoftheshaperesonances. Thiseffectismostpronouncedforsmallseparationsbetweenthenanoribbonswherethe 6/8 electron-holecouplingisparticularlystrong. Forlargerseparations,theelectron-holecouplingisweakerandthesuperfluidgaps aresmaller. Thisresultsinweakersubbandmixing. Whenthisisthecase,theshaperesonancesaresharperwhichstrengthens thelocalamplificationofthegaps. Inourquasi-one-dimensionalsystemthereisnodirectlinkbetweenthesuperfluidtransitiontemperatureandthesizeofthe superfluidgapscalculatedwithinmeanfield. Inourproposeddevicethezerotemperaturesuperfluidgapsarecomparabletothe Fermienergy,andcanbeoforderofhundredsofmeV.Thushightransitiontemperatureelectron-holesuperfluiditycouldbe expected,withpropertiesthataretuneablebychangingthedensity. Thedeviceconfigurationsweproposeareexperimentally realizablewithcurrentlyavailabletechnologies. Asuperlatticeformedofsuchnanoribbondevicescouldfurtherstabilizethe electron-holesuperfluidphaseoverlargeareas. References 1. Lozovik, Yu. E. & Yudson, V. I. Feasibility of superfluidity of paired spacially separated electrons and holes: a new superconductivitymechanism.Pis(cid:48)maZh.Eksp.Teor.Fiz.22,556-559(1975)[JETPLett.22,274-276(1975)]. 2. Cartlidge,E.Graphenesuperconductivityseen.PhysicsWorld28,10(2015). 3. Gorbachev,R.V.etal.StrongCoulombdragandbrokensymmetryindouble-layergraphene.NaturePhys.8,896-901 (2012). 4. Geim,A.K.&Grigorieva,I.V.VanderWaalsheterostructures.Nature499,419-425(2013). 5. Mink,M.P.,Stoof,H.T.C.,Duine,R.A.,&MacDonald,A.H.Influenceofremotebandsonexcitoncondensationin double-layergraphene.Phys.Rev.B84,155409(2011). 6. Min,H.,Bistritzer,R.,Su,J.,&MacDonald,A.H.Room-temperaturesuperfluidityingraphenebilayers.Phys.Rev.B78, 121401(R)(2008). 7. Bistritzer,R.,Min,H.,Su,J.-J.,&MacDonald,A.H.,Commenton“Electronscreeningandexcitoniccondensationin double-layergraphenesystems.”.http://arxiv.org/abs/0810.0331v1(2008). 8. Lozovik,Yu.E.,Ogarkov,S.L.,&Sokolik,A.A.Condensationofelectron-holepairsinatwo-layergraphenesystem: Correlationeffects.Phys.Rev.B86,045429(2012). 9. Perali,A.,Neilson,D.,&Hamilton,A.R.,High-TemperatureSuperfluidityinDouble-BilayerGraphene.Phys.Rev.Lett. 110,146803(2013). 10. Zarenia,M.,Perali,A.,Neilson,D.,&Peeters,F.M.Enhancementofelectron-holesuperfluidityindoublefew-layer graphene.ScientificReports4,7319(2014). 11. McCann,E.&Fal´ko,V.I.Landau-LevelDegeneracyandQuantumHallEffectinaGraphiteBilayer.Phys.Rev.Lett.96, 086805(2006). 12. Min,H.&MacDonald,A.H.Chiraldecompositionintheelectronicstructureofgraphenemultilayers.Phys.Rev.B77, 155416(2008). 13. Lin,Y.etal.100-GHzTransistorsfromWafer-ScaleEpitaxialGraphene.Science327,662(2010). 14. Dimiev,A.etal.LowLoss,HighPermittivityCompositesMadefromGrapheneNanoribbons.ACSAppl.Mater.Interfaces 3,4657-4661(2011). 15. Dimiev, A. M. et al. Permittivity of dielectric composite materials comprising graphene nanoribbons, The effect of nanostructure.ACSAppl.Mater.Interfaces5,7567-7573(2013). 16. Li, L., Raji, A-R. O., & Tour, J. M. Graphene-Wrapped MnO -Graphene Nanoribbons as Anode Materials for high 2 performancelithiumbatteries.Adv.Mater.256298-6302(2013). 17. Han,M.Y.,O¨zyilmaz,B.,Zhang,Y.,&Kim,Ph.EnergyBand-GapEngineeringofGrapheneNanoribbons.Phys.Rev. Lett.98,206805(2007). 18. Cai,J.etal.Atomicallyprecisebottom-upfabricationofgraphenenanoribbons.Nature466,470-473(2010). 19. Perali,A.,Bianconi,A.,Lanzara,A.,&Saini,N.L.Thegapamplificationatashaperesonanceinasuperlatticeofquantum stripes: AmechanismforhighT .SolidStateCommun.100,181-186(1996). c 20. Bianconi,A.,Valletta,A.,Perali,A.,Saini,N.L.HighT superconductivityinasuperlatticeofquantumstripes.Solid c StateCommun.102,369-374(1997). 21. Bianconi,A.,Valletta,A.,Perali,A.,Saini,N.L.Superconductivityofastripedphaseattheatomiclimit.PhysicaC296, 269-280(1998). 7/8 22. Shanenko,A.A.,Croitoru,M.D.,Zgirski,M.,Peeters,F.M.,&Arutyunov,K.Size-dependentenhancementofsupercon- ductivityinAlandSnnanowires: Shape-resonanceeffect.Phys.Rev.B74,052502(2006). 23. Brey,L.&Fertig,H.A.ElectronicstatesofgraphenenanoribbonsstudiedwiththeDiracequationPhys.Rev.B73,235411 (2006). 24. Abergel,D.S.L.Excitoniccondensationinspatiallyseparatedone-dimensionalsystems.Appl.Phys.Lett.106,213103 (2015). 25. Maezono,R.,R´ıos,P.L.,Ogawa,T.andNeeds,R.J.Excitonsandbiexcitonsinsymmetricelectron-holebilayers.Phys. Rev.Lett.110,216407(2013). 26. Brey,L.&Fertig,H.A.Elementaryelectronicexcitationsingraphenenanoribbons.Phys.Rev.B75,125434(2007). 27. Pistolesi,F.,&Strinati,G.C.EvolutionfromBCSsuperconductivitytoBosecondensation: roleoftheparameterk ξ. F Phys.Rev.B49,6356(1994). 28. GuidiniA.,&Perali,A.Band-edgeBCS-BECcrossoverinatwo-bandsuperconductor: physicalpropertiesanddetection parameters.Supercond.Sci.Technol.27,124002(2014). 29. Shanenko,A.A.etal.AtypicalBCS-BECcrossoverinducedbyquantum-sizeeffects.Phys.Rev.A86,033612(2012). 30. Bistritzer,R.&MacDonald,A.H.InfluenceofDisorderonElectron-HolePairCondensationinGrapheneBilayers.Phys. Rev.Lett.101,256406(2008). 31. Martin,J.etal.Observationofelectron-holepuddlesingrapheneusingascanningsingle-electrontransistor.NaturePhys. 4,144-148(2008). Acknowledgements M.Z.acknowledgessupportbytheFlemishScienceFoundation(FWO-Vl),theUniversityResearchFund(BOF),andthe EuropeanScienceFoundation(POLATOM).A.P.andD.N.acknowledgesupportbytheUniversityofCamerinoFARproject CESEMN.TheauthorsthankthecolleaguesinvolvedintheMultiSuperInternationalNetwork(http://www.multisuper.org)for exchangeofideasandsuggestionsforthiswork. 8/8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.