Large gap electron-hole superfluidity and shape resonances in coupled graphene nanoribbons M. Zarenia1,*, A. Perali2, F. M. Peeters1, and D. Neilson2 1DepartmentofPhysics,UniversityofAntwerp,Groenenborgerlaan171,B-2020Antwerpen,Belgium 2DipartamentidiFisicaediFarmacia,Universita` diCamerino,62032Camerino,Italy 6 *[email protected] 1 0 2 ABSTRACT n a Wepredictenhancedelectron-holesuperfluidityintwocoupledelectron-holearmchair-edgeterminatedgraphenenanoribbons J separatedbyathininsulatingbarrier. Incontrasttographenemonolayers, themultiplesubbandsofthenanoribbonsare 6 parabolic at low energy with a gap between the conduction and valence bands, and with lifted valley degeneracy. These 2 properties make screening of the electron-hole interaction much weaker than for coupled electron-hole monolayers, thus ] boostingthepairingstrengthandenhancingthesuperfluidproperties. Thepairingstrengthisfurtherboostedbythequasi- n one-dimensional quantum confinement of the carriers, as well as by the large density of states near the bottom of each o subband. Thelattermagnifiesthesuperfluidshaperesonancescausedbythequantumconfinement. Severalsuperfluidpartial c condensatesarepresentforfinite-widthnanoribbonswithmultiplesubbands. Wefindthatsuperfluidityispredominatelyinthe - r strongly-coupledBECandBCS-BECcrossoverregimes,withlargesuperfluidgapsupto100meVandbeyond. Whenthegaps p exceedthesubbandspacing,thereissignificantmixingofthesubbands,aroundingoftheshaperesonances,andaresulting u reductionintheone-dimensionalnatureofthesystem. s . t a m Introduction - d Superfluidityofspatiallyseparatedelectronsandholeswaspredictednearlyhalfacenturyago1butuptonowexperimental n o observationofthisexoticstatehasbeenelusiveatzeromagneticfield,notwithstandingmultipleattemptsonverydifferent c systems. Thediscoveryofthewondermaterialgrapheneinconjunctionwiththelargebandgapinsulatorhexagonalboron [ nitride(h-BN)hasraisednewhopesforrealizationofthisnewcollectivemanybodystate. Recently,superconductivityat 1 temperatures above liquid Heliumhas been reportedin doped monolayergraphene by fourgroups, amplifyinginterest in v quantumcoherentphenomenaingraphene.2 2 Monolayergrapheneisanatomicallyflat,gaplesssemiconductorwithnearidenticalconductionandvalencebands.Spatially 4 separatedelectron-dopedandhole-dopedmonolayerscanbecompletelyinsulatedfromeachotherwithjustafewatomiclayers 9 6 ofh-BN.3,4Withsuchsmallspatialseparations,electron-holepairingbydirectCoulombattractionwouldbeexpectedtobe 0 strong.5–7 HoweverthelineardispersionofthemonolayergrapheneenergybandsresultsinverystrongCoulombscreeningof 1. theelectron-holepairingattraction,andthissuppressessuperfluidityincoupledelectron-holegraphenemonolayers.3,8 To 0 overcomethestrongscreening,Refs.9and10proposedusingcoupledelectron-holegraphenemultilayers. Usingmultilayers 6 takesadvantageofthenonlineardispersionoftheirenergybands,11,12andtheexistenceofagapbetweentheconductionand 1 valencebandswhenagatepotentialisapplied. : v Hereweproposeanewdesigntoboostelectron-holepairingandtheonsetofsuperfluidityusingnanoribbonsetchedin Xi monolayergraphene. Monolayersheetsofgraphenearepromisingcandidatesforapplicationsintransparentconductivefilms, electronicandopto-electronicdevices,actuators,sensors,composites,andmore. Howeveraseriouslimitationofgraphene r a monolayersisthatfield-effecttransistor(FET)devicesarenotpossiblebecausethemasslessnatureoftheelectronsprevents electronconfinementingraphene. Quasi-one-dimensionalgraphenenanoribbonswithtuneablebandgapsresolvethisissue, withimportantimplicationsforthefabricationofnovelandultrafastelectronicnanodevices. Forexample,FETdeviceswith 100GHzswitchingfrequencieshavebeenfabricatedusinggraphenenanoribbons.13 Thenanoribbonedgescanbeterminated usingavarietyofdifferentatoms,whichopensupapplicationopportunities,inparticularfornanoribbonsinpolymerhostsfor fabricationofnovelcompositematerials.14,15 Finally,graphenenanoribbonsareshowinggreatpromiseaselectrodematerials forbatteriesandsupercapacitors.16 The electronic properties of graphene nanoribbons depend on the type of edge termination.17 We focus on armchair- edgeterminatednanoribbonssince(i)theirsubbandsareparabolicaroundtheirminima(Fig.1(a)),(ii)thereisasizeable semiconductor-like energy gap between the conduction and valence bands, and (iii) the valley degeneracy of monolayer (a) (b) 4 3 V) 2 e E ( 1 0 -1 -1 -0.5 0 0.5 1 0 5 10 15 ky(π/3a) DOS (eV-1nm-1) Figure1. (a)Lowestsingle-particleenergysubbandsε (k ),j=1,2,... inanarmchairgraphenenanoribbonofwidthW =2 j y nm. (b)CorrespondingdensityofstatesDOS(E)innanoribbon. VanHovesingularitiesarevisibleatbottomofeachsubband. (a) grapheneislifted. Thesepropertiescombinetogreatlyreducethestrengthofscreeningoftheelectron-holepairinginteraction. NotethatuniformarmchairgraphenenanoribbonsofwidthsW (cid:28)10nmhaverecentlybeenfabricated.18 Figure2showsthedeviceweareproposing. Itconsistsoftwoarmchair-edgeterminatedmonolayergraphenenanoribbons, oneelectron-dopedandtheotherhole-doped,separatedbyafewatomiclayersofah-BNinsulatingbarrier. Thenanoribbons areindependentlycontacted,andtopandbackmetalgatescontrolthecarrierdensities. top gate n o b b ori n a n e n e h p a gr e d grapnhaennoeribbon W h h-B N back gate Figure2. Proposeddevice. Upperelectron-dopedandlowerhole-dopedarmchair-edgeterminatedgraphenenanoribbonsof widthsW separatedbyh-BNinsulatorofthicknessd. Topandbackgatescontrolelectronandholedensities. Gatesare separatedfromnanoribbonsbyh-BNlayers. Nanoribbonsareindependentlycontacted. Inadditiontoreducingtheeffectofscreening, electron-holepairingstrengthswillbefurtherboostedinourproposed systembytheenhanceddensityofstatesneartheminimumofeachsubbandthatarisesfromthevanHovesingularitiesofthe quasi-one-dimensionalnanoribbons,andalsobythequantumconfinementofthecarriersinthenanoribbons. Enhancementof superconductinggapsandcriticaltemperatureinstripedsystemsduetoshaperesonancesandquantumconfinementatthe nanoscalewaspredictedinRefs.19–21. Superconductivityhasbeenobservedinquasi-one-dimensionalsystemsincludingSn andAlmetallicnanowiresandcarbonnanotubes,withenhancedtransitiontemperaturesascomparedwiththeirbulkvalues.22 Methods Wetakethey-directionparalleltothenanoribbons,withthecarriersconfinedinthetransversex-direction.Figure1(b)showsthe √ (cid:113) single-particleenergysubbandsobtainedinthecontinuummodel,ε (k )=( 3ta /2) k2+k2, j=1,2,... foranarmchair j y 0 y j graphene nanoribbon of widthW =2 nm. The intralayer hopping energyt =2.7 eV 23 and the graphene lattice constant 2/8 1.6 1.4 d=2nm 1.2 1 V) d=3nm e ( 0.8 x a m ∆ 0.6 d=4nm 0.4 d=5nm 0.2 2 3 4 5 6 0 0 0.5 1 1.5 2 2.5 3 14 -2 n (10 cm ) Figure3. Maximumsuperfluidgap∆maxaveragedoverthesubbands. d isthicknessoftheinsulatingbarrierseparatingthe nanoribbons. NanoribbonwidthisW =2nm. DensitiesatwhichE entersthebottomofanewsubbandε areindicatedby F j theverticallines. √ (cid:2) (cid:3) a =0.24nm. k =[jπ/W]− 4π/(3 3a ) isthequantizedwave-numberforthe j-subbandinthex-direction. Figure1(b) 0 j 0 showsthecorrespondingdensityofstatesDOS(E). ThevanHovesingularitiescoincidewiththebottomofeachsubband. Notonlythefinitewidthofthenanoribbonsbutalsotheirmultipleoccupiedsubbandsmakethesystemonlyquasi-one- dimensional. Inaddition,inthesuperfluidstatetheenergygapmixesclose-bysubbands. Thequasi-one-dimensionalitytogether withthesubbandmixingwillsuppressorderparameterfluctuationsthatareresponsiblefordestroyingsuperfluidityinapure one-dimensionalsystem. Forthesereasonswecancalculatepropertiesofthesuperfluidgroundstateusingmeanfieldtheory. Recently Ref. 24 discussed a quasi-condensate of excitons in coupled electron-hole one-dimensional wires using the weak-coupledBCSgapequationinthelowdensitylimitwithonlythelowestsubbandcontributingtothepairing,andwith screeningneglected. Sinceonlyonechannelwasconsidered,therearenoshaperesonanceeffectsatfinitedensities. Also, becauseoftheonedimensionality,fluctuationsoftheorderparametershouldbesevereandwouldstronglysuppresssuperfluidity. Interestingly,Ref.24arguesthatevenintheone-channelcase,thefinitesizeofthenanoribbonswouldallowforshortrange superfluidcorrelations. Inourcasethemanyavailablechannelsduetothemultiplesubbandsinvolvedinthepairingallowfora suppressionofthecriticalfluctuationsanditshouldbestraightforwardtoobserveconventionallongrangesuperfluidity. Ourcalculationsareforcoupledelectron-holearmchairgraphenenanoribbonsofequalwidthW andequal(two-dimensional) electronandholedensitiesn=(r W)−1,wherer istheaverageinter-particlespacingalongthenanoribbon. Thesubbands 0 0 ε (k ), j=1,2,... areidenticalfortheelectronsandholes. j y Becauseofthemultiplesubbandstructure,thezerotemperaturemeanfieldequationsforthesuperfluidstateacquirean additionalindexforthesubband j. Theequationsforthewave-vectordependentsuperfluidenergygaps∆ (k )forsubbands j j y become, ∆j(ky)=−L1y∑jjc(cid:48) ∑kkcy(cid:48) Fky,j,ky(cid:48),j(cid:48)Ve-h(ky−ky(cid:48))2∆Ej(cid:48)j(cid:48)((kky(cid:48)y(cid:48))) , (1) where Ly is the nanoribbon length, Fky,j,ky(cid:48),j(cid:48) =[1+cos(θky,j−θky(cid:48),j(cid:48))]/2 is the form factor coming from the overlap of the single-particlenanoribbonwavefunctions,withθ =tan−1(k /k ),V (q)istheeffectiveelectron-holepairinginteraction, ky,j y j e-h andE (k )=[(ε (k )−µ)2+∆ (k )2]1/2 isthesingle-particleenergydispersioninthesuperfluidstateforsubband j. The j y j y j y wave-vectork(cid:48) isboundedbytheBrillouinzoneboundary±k . Wetruncatethesumoverthesubbandindexat j(cid:48)= j ,where y c c j isthelowestsubbandwithaminimumabovethegraphenenanoribbonworkfunctionenergy,takentobe∼4.5eV.The c 3/8 0.4 (a) 2.5 (b) 9 8 V) 0.2 d 5 7 6 e 0.35 140 2 ∆(k) (jy 0.1 m=e2 3 0 0.3 2 c (c) 0.3 (eV) 0.25 j=1 1.5eV) k) (eV)y 0.2 m=e3 max∆j E(F ∆(j 0.1 1 0.2 b 0 (d) 0.3 V) e m=e 0.15 0.5 k) (y0.2 4 ∆(j0.1 2 3 4 5 6 0.1 0 0 0.5 1 1.5 2 2.5 3 0 0.2 0.4 0.6 0.8 1 n (1014cm-2) ky(kF) Figure4. (a)Maximumsuperfluidgap∆maxforsubbands j=1,2... asfunctionofdensityn. Thedottedlineshowsthetotal j FermienergyE . NanoribbonwidthsW =2nmandbarrierthicknessd=5nm. ThedensitiesatwhichE entersthebottom F F ofanewsubbandareindicatedbytheverticallines. Notethatthe∆maxarealloforderE . Rightpanels(b)-(d): j F momentum-dependentgaps∆ (k )forsubbands jatdensitiesmarkedbythearrowsinpanel(a)(atwhichµ =ε ,ε ,ε ). j y 2 3 4 chemicalpotentialµ isfixedbythedensityequation, 2 jc kc n = ∑∑v (k )2; (2) j y WL y j ky (cid:20) (cid:21) 1 ε (k )−µ v (k )2 = 1− j y . (3) j y 2 E (k ) j y Thefactor2inEq.(2)isduetothespindegeneracy. Inthecalculationsweneglectscreening,anapproximationthatisjustifiedaposterioriasfollows. Thescreeningisexpected tobeweakwhenthesuperfluidityliesinthestrongly-coupledBECorBCS-BECcrossoverregimesbecausethesuperfluidgap intheseregimesofpairingiscomparabletotheFermienergy,resultinginalargesmearingoftheFermisurface,andcompact electron-holepairscomparedwiththeiraveragespacing. Thismakestheirmutualinteractionsdipolarandweak. IntheBECor BCS-BECcrossoverregimeswecanthusexpectscreeningtobeweak,andsoweneglectit. Howeverforweak-coupledBCS superfluidity,screeningisknowntobeastrongeffect,whichwouldmakeourunscreenedapproximationapooroneinthe BCSregime. Theseeffectshavebeendocumentedintherelatedsystemofsuperfluidityincoupledelectron-holesheetswith parabolicenergybanddispersion.9,25 ThusinEq.(1)weapproximatetheelectron-holepairingattractionV (q)bythebareCoulombinteraction. Forelectrons e-h andholesconfinedinnanoribbonsofwidthW,separatedbyaninsulatingh-BNbarrierofthicknessdanddielectricconstant κ =3,weobtain,26 −2e2(cid:90) W(cid:90) W (cid:113) V (q)= dx(cid:48)dxK (|q| (x−x(cid:48))2+d2). (4) e-h κW2 0 0 0 FollowingFig.1ofRef.26,weexpectthatinterbandmatrixelementswillbesmallcomparedwithintrabandmatrixelements. ThusinEq.(1)weneglectthecrosspairingterms,whereCooperpairswouldformwithcarriersfromdifferentsubbands. Results Figure3showsthemaximumsuperfluidgap∆maxasafunctionofthedensityn,averagedoverthemultiplesubbandsofthe nanoribbons,calculatedusingEqs.1to4. ∆max isthemaximumvalueofthewave-vectordependent∆(k )averagedwith y 4/8 respecttothesubbandindex j. ThenanoribbonwidthisW =2nm,anddisthethicknessoftheinsulatingbarrier. Thedensities atwhichtheFermienergyentersthebottomofanewsubbandε , j=1,2,...,areindicatedbytheverticallines. j InFig.3wenoticealocalboostin∆max neartheminimumofeachsubbandforbarrierthicknessd=5nm. Thisboost arisesfromshaperesonanceeffectsassociatedwiththevanHovesingularities(Fig.1(b))andthequantumsizeeffectsinthe pairinginteraction. However,forthinnerbarriersd∼<4nm,wheretheelectron-holepairingbecomesprogressivelystronger,the shaperesonanceeffectsaremaskedbyamixingofthesubbandscausedbythelargesuperfluidgap. As∆maxgrowslargerthan thetypicalspacingbetweensubbands,thesystembecomesdecreasinglessone-dimensionalincharacter,thankstothemany channelsavailablebothforCooperpairingandforformingthesuperfluidcondensate. 0.8 d=5nm d=4nm 0.6 d=3nm d=2nm F E 0.4 /m 0.2 0 0 0.5 1 1.5 2 2.5 3 n (1014cm-2) Figure5. Ratioofchemicalpotentialµ toFermienergyE asfunctionofdensityn. d isthicknessoftheinsulatingbarrier F separatingthenanoribbons. NanoribbonwidthW =2nm. TheverticallinesshowthedensitiesatwhichE entersthebottom F ofasubband. Figure4(a)showsthemaximumsuperfluidgap∆maxfortheseparatesubbands jasafunctionofnfornanoribbonwidth j W =2nmandbarrierthicknessd=5nm. Forcomparison,thetotalFermienergyE ofthenon-interactingnanoribbonsystem F atdensitynisalsoshown. TheverticallinesmarkthedensitiesatwhichE entersanewsubband. Forthelowestconduction F subbands,thereisanotablelocalboostin∆maxasE entersanewsubband. Thisboosttakestheformofashaperesonancein j F thesuperfluidgapsassociatedwithaparticularsubband. Howeverevenforthelowestsubbands,welosesomefinestructureof theshaperesonancesbecauseofmixingbythegapofcloselyingsubbands. Overthedensityrangeshown,the∆maxremain j alwaysoforderE ,andhencetheylieinthestronglycoupledregime. F Figures4(b)-(d),showthemomentum-dependenceofthesubbandgaps∆ (k )fordensitiesatwhichthechemicalpotential j y µ entersanewlow-lyingsubband(markedinFig.4(a)bytheverticalarrows). Thepeaksin∆ (k )arebroadonthescaleof j y k =π/(2r ),theinverseoftheaverageinterparticlespacing,whichconfirmsthatweareintheBCS-BECcrossoverregimeof F 0 compactelectron-holepairs. Inpanels(c)and(d)ofFig.4,themultiplepeaksof∆ (k )areassociatedwiththedifferentFermi j y energiesofthesubbands(k ) ,displayingaremainingfermioniccharacteroftheCooperpairingintheBCS-BECcrossover F j regime. Figure5showsthechemicalpotentialµ asafunctionofdensitynfornanoribbonwidthW =2nmandbarrierthickness d. µ isnormalizedtothecorrespondingFermienergyofthenon-interactingnanoribbonsystematdensityn. Thechemical potentialisstronglyrenormalizedwithrespecttotheFermienergyoverthefullrangeofnandd shown. WhenE entersa F subband,µ hasadip. Thisisincontrasttothepeakseeninthesuperfluidgap,anditisashapeantiresonancecausedbythe shape-resonance-generatedpeakinthegap. Asd isdecreasedandthepairingstrengthweakens,µ increasestowardsE and F theshape(anti)resonancesbecomesizeable,indicatingthatthesystemhasenteredtheBCS-BECcrossoverregime. Inthecase ofd=2nm,µ (cid:28)E andtheshape(anti)resonancesarecompletelysmoothedout. Thisisaresultoflargesuperfluidgapsand F itsignalsthatthesystemisinthestrongpairingBECregime. Whenthedensityincreases,thesystemalwaysevolvestowards theweakerpairingBCSregimeforallvaluesofd,withµ eventuallyarrivingatE . F TheaveragepairsizeoftheCooperpairsξ insubband jisdefinedastheexpectationvalueofthesquareoftherelative j coordinateoftheCooperpairswithrespecttothesquareoftheBCSwavefunctionprojectedinthesubband. Thisdefinition 5/8 6 d=5nm 5 BCS d=4nm 4 Crossover ) 0 r 3 ( d=3nm ξ d=2nm 2 1 BEC 0 0 0.5 1 1.5 2 2.5 3 14 -2 n (10 cm ) Figure6. Paircorrelationlengthξ/r averagedoversubbandsasfunctionofn,thecarrierdensity. d isthicknessofthe 0 insulatingbarrierseparatingthenanoribbons. NanoribbonwidthW =2nm. wasoriginallyintroducedinRef.27toinvestigatethedifferentregimesofpairinginhigh-T superconductivityincupratesasa c functionofdensity. IthasbeenextendedtoamultigapsuperconductorthroughouttheBCS-BECcrossoverinRef.28andtoa multigapquasi-one-dimensionalsuperfluidofultracoldfermionsconfinedincigar-shapedtraps.29 Inwave-vectorspace, (cid:34) (cid:35)1 ξ = ∑ky|∇ky(uj(ky)vj(ky))|2 2 , (5) j ∑ky(uj(ky)vi(ky))2 whereu (k )2=1−v (k )2. j y j y Figure6showsthepaircorrelationlengthξ/r asafunctionofdensity.ξ/r isthepartialaveragepairsizeforeachsubband 0 0 averagedoverthesubbands. ThenanoribbonwidthW =2nm. Wedesignateξ/r <0.25astheBECregime,0.25<ξ/r <4 0 0 theBCS-BECcrossoverregime,andξ/r >4theBCSregime. Asdiscussed,ourapproximationofneglectingscreeningis 0 expectedtobeagoodonefordensitieslyingintheBCS-BECcrossoverandBECregimes. Asexpected,thedensityrangefor thestrongly-coupledregimecontractswithincreasingbarrierthicknessd becausethepairingbecomesweaker. Wehaveneglectedeffectsfromimpuritiesanddisorder. Weexpecttheseeffectstobesmallsincewhilethereisnodirect informationonimpurityanddisordereffectsingraphenenanoribbons,butbasedonpropertiesofanalogouscoupledelectron- holegraphenemonolayers,chargeimpuritiesconcentrationsupton <k /(πd)arenotexpectedtodestroysuperfluidity.30 At i F graphene-hBNinterfaces,thechargeimpuritydensityni∼>1010cm−2,31soford∼<5nm,theinequalityissatisfiedprovided n∼>3×106cm−2. Thisdensityisordersofmagnitudelessthancurrentexperimentaldensities. Conclusions Thesuperfluidgapsinourcoupledelectron-holenanoribbonsystemsarelargeinabsolutevalueandcomparabletotheFermi energy. Thequasi-one-dimensionalconfinementandthesuperfluidshaperesonancesduetoquantumsizeeffectsbothplay an important role here. The van Hove singularities in the densities of states act non-linearly through the gap equation to significantly enhance the magnitude of the superfluid gaps. In the range of nanoribbon densities and barrier separations considered,wefindthattheelectron-holesuperfluidisforthemostpartinthestronglycoupledpairingregime,andsoCoulomb screeningeffectsareexpectedtobeweak. Whenthesuperfluidgapsarecomparabletothesubbandenergyseparations,thegapsmixthesubbandsandthisresultsina roundingoftheshaperesonances. Thiseffectismostpronouncedforsmallseparationsbetweenthenanoribbonswherethe 6/8 electron-holecouplingisparticularlystrong. Forlargerseparations,theelectron-holecouplingisweakerandthesuperfluidgaps aresmaller. Thisresultsinweakersubbandmixing. Whenthisisthecase,theshaperesonancesaresharperwhichstrengthens thelocalamplificationofthegaps. Inourquasi-one-dimensionalsystemthereisnodirectlinkbetweenthesuperfluidtransitiontemperatureandthesizeofthe superfluidgapscalculatedwithinmeanfield. Inourproposeddevicethezerotemperaturesuperfluidgapsarecomparabletothe Fermienergy,andcanbeoforderofhundredsofmeV.Thushightransitiontemperatureelectron-holesuperfluiditycouldbe expected,withpropertiesthataretuneablebychangingthedensity. Thedeviceconfigurationsweproposeareexperimentally realizablewithcurrentlyavailabletechnologies. Asuperlatticeformedofsuchnanoribbondevicescouldfurtherstabilizethe electron-holesuperfluidphaseoverlargeareas. References 1. Lozovik, Yu. E. & Yudson, V. I. Feasibility of superfluidity of paired spacially separated electrons and holes: a new superconductivitymechanism.Pis(cid:48)maZh.Eksp.Teor.Fiz.22,556-559(1975)[JETPLett.22,274-276(1975)]. 2. Cartlidge,E.Graphenesuperconductivityseen.PhysicsWorld28,10(2015). 3. Gorbachev,R.V.etal.StrongCoulombdragandbrokensymmetryindouble-layergraphene.NaturePhys.8,896-901 (2012). 4. Geim,A.K.&Grigorieva,I.V.VanderWaalsheterostructures.Nature499,419-425(2013). 5. Mink,M.P.,Stoof,H.T.C.,Duine,R.A.,&MacDonald,A.H.Influenceofremotebandsonexcitoncondensationin double-layergraphene.Phys.Rev.B84,155409(2011). 6. Min,H.,Bistritzer,R.,Su,J.,&MacDonald,A.H.Room-temperaturesuperfluidityingraphenebilayers.Phys.Rev.B78, 121401(R)(2008). 7. Bistritzer,R.,Min,H.,Su,J.-J.,&MacDonald,A.H.,Commenton“Electronscreeningandexcitoniccondensationin double-layergraphenesystems.”.http://arxiv.org/abs/0810.0331v1(2008). 8. Lozovik,Yu.E.,Ogarkov,S.L.,&Sokolik,A.A.Condensationofelectron-holepairsinatwo-layergraphenesystem: Correlationeffects.Phys.Rev.B86,045429(2012). 9. Perali,A.,Neilson,D.,&Hamilton,A.R.,High-TemperatureSuperfluidityinDouble-BilayerGraphene.Phys.Rev.Lett. 110,146803(2013). 10. Zarenia,M.,Perali,A.,Neilson,D.,&Peeters,F.M.Enhancementofelectron-holesuperfluidityindoublefew-layer graphene.ScientificReports4,7319(2014). 11. McCann,E.&Fal´ko,V.I.Landau-LevelDegeneracyandQuantumHallEffectinaGraphiteBilayer.Phys.Rev.Lett.96, 086805(2006). 12. Min,H.&MacDonald,A.H.Chiraldecompositionintheelectronicstructureofgraphenemultilayers.Phys.Rev.B77, 155416(2008). 13. Lin,Y.etal.100-GHzTransistorsfromWafer-ScaleEpitaxialGraphene.Science327,662(2010). 14. Dimiev,A.etal.LowLoss,HighPermittivityCompositesMadefromGrapheneNanoribbons.ACSAppl.Mater.Interfaces 3,4657-4661(2011). 15. Dimiev, A. M. et al. Permittivity of dielectric composite materials comprising graphene nanoribbons, The effect of nanostructure.ACSAppl.Mater.Interfaces5,7567-7573(2013). 16. Li, L., Raji, A-R. O., & Tour, J. M. Graphene-Wrapped MnO -Graphene Nanoribbons as Anode Materials for high 2 performancelithiumbatteries.Adv.Mater.256298-6302(2013). 17. Han,M.Y.,O¨zyilmaz,B.,Zhang,Y.,&Kim,Ph.EnergyBand-GapEngineeringofGrapheneNanoribbons.Phys.Rev. Lett.98,206805(2007). 18. Cai,J.etal.Atomicallyprecisebottom-upfabricationofgraphenenanoribbons.Nature466,470-473(2010). 19. Perali,A.,Bianconi,A.,Lanzara,A.,&Saini,N.L.Thegapamplificationatashaperesonanceinasuperlatticeofquantum stripes: AmechanismforhighT .SolidStateCommun.100,181-186(1996). c 20. Bianconi,A.,Valletta,A.,Perali,A.,Saini,N.L.HighT superconductivityinasuperlatticeofquantumstripes.Solid c StateCommun.102,369-374(1997). 21. Bianconi,A.,Valletta,A.,Perali,A.,Saini,N.L.Superconductivityofastripedphaseattheatomiclimit.PhysicaC296, 269-280(1998). 7/8 22. Shanenko,A.A.,Croitoru,M.D.,Zgirski,M.,Peeters,F.M.,&Arutyunov,K.Size-dependentenhancementofsupercon- ductivityinAlandSnnanowires: Shape-resonanceeffect.Phys.Rev.B74,052502(2006). 23. Brey,L.&Fertig,H.A.ElectronicstatesofgraphenenanoribbonsstudiedwiththeDiracequationPhys.Rev.B73,235411 (2006). 24. Abergel,D.S.L.Excitoniccondensationinspatiallyseparatedone-dimensionalsystems.Appl.Phys.Lett.106,213103 (2015). 25. Maezono,R.,R´ıos,P.L.,Ogawa,T.andNeeds,R.J.Excitonsandbiexcitonsinsymmetricelectron-holebilayers.Phys. Rev.Lett.110,216407(2013). 26. Brey,L.&Fertig,H.A.Elementaryelectronicexcitationsingraphenenanoribbons.Phys.Rev.B75,125434(2007). 27. Pistolesi,F.,&Strinati,G.C.EvolutionfromBCSsuperconductivitytoBosecondensation: roleoftheparameterk ξ. F Phys.Rev.B49,6356(1994). 28. GuidiniA.,&Perali,A.Band-edgeBCS-BECcrossoverinatwo-bandsuperconductor: physicalpropertiesanddetection parameters.Supercond.Sci.Technol.27,124002(2014). 29. Shanenko,A.A.etal.AtypicalBCS-BECcrossoverinducedbyquantum-sizeeffects.Phys.Rev.A86,033612(2012). 30. Bistritzer,R.&MacDonald,A.H.InfluenceofDisorderonElectron-HolePairCondensationinGrapheneBilayers.Phys. Rev.Lett.101,256406(2008). 31. Martin,J.etal.Observationofelectron-holepuddlesingrapheneusingascanningsingle-electrontransistor.NaturePhys. 4,144-148(2008). Acknowledgements M.Z.acknowledgessupportbytheFlemishScienceFoundation(FWO-Vl),theUniversityResearchFund(BOF),andthe EuropeanScienceFoundation(POLATOM).A.P.andD.N.acknowledgesupportbytheUniversityofCamerinoFARproject CESEMN.TheauthorsthankthecolleaguesinvolvedintheMultiSuperInternationalNetwork(http://www.multisuper.org)for exchangeofideasandsuggestionsforthiswork. 8/8