ebook img

Large Deviations for Performance Analysis Queues, Communication and Computing PDF

564 Pages·6.402 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Large Deviations for Performance Analysis Queues, Communication and Computing

Routledge Revivals Large Deviations for Performance Analysis Originally published in 1995, Large Deviations for Performance Analysis consists of two synergistic parts. The first half develops the theory of large deviations from the beginning, through recent results on the theory for processes with boundaries, keeping to a very narrow path: continuous-time, discrete-state processes. By developing only what is needed for the applications, the theory is kept to a manageable level, both in terms of length and in terms of diffi- culty. Within its scope, the treatment is detailed, comprehensive and self- contained. As the book shows, there are sufficiently many interesting appli- cations of jump Markov processes to warrant a special treatment. The second half is a collection of applications developed at Bell Laboratories. The appli- cations cover large areas of the theory of communication networks: circuit switched transmission, packet transmission, multiple access channels, and the M/M/1 queue. Aspects of parallel computation are covered as well including, basics of job allocation, rollback-based parallel simulation, assorted priority queueing models that might be used in performance models of various com- puter architectures, and asymptotic coupling of processors. These applications are thoroughly analysed using the tools developed in the first half of the book. Large Deviations for Performance Analysis Queues, Communication and Computing Adam Shwartz Technion — Israel Institute of Technology Alan Weiss Nokia Bell Labs Appendix by Robert J. Vanderbei Princeton University Firstpublishedin1995 byCRCPress Thiseditionfirstpublishedin2018byRoutledge 2ParkSquare,MiltonPark,Abingdon,Oxon,OX144RN andbyRoutledge 711ThirdAvenue,NewYork,NY10017 RoutledgeisanimprintoftheTaylor&FrancisGroup,aninformabusiness ©2018AT&TandNokiaofAmericaCorporation All rightsreserved.No part ofthis bookmaybe reprintedor reproducedor utilisedin any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrievalsystem,withoutpermissioninwritingfromthepublishers. Publisher’sNote Thepublisherhasgonetogreatlengthstoensurethequalityofthisreprintbutpoints outthatsomeimperfectionsintheoriginalcopiesmaybeapparent. Disclaimer The publisher has made every effort to trace copyright holders and welcomes correspondencefromthosetheyhavebeenunabletocontact. ALibraryofCongressrecordexistsunderLCCN:94040138 ISBN13:978-1-138-31577-8(hbk) ISBN13:978-0-429-45482-0(ebk) v Tableofcontents 0. WhatthisBookIs,andWhatItIsNot .............................1 0.1. WhattoDowiththisBook ...................................5 0.2. AbouttheFormatoftheBook ................................5 0.3. Acknowledgments ..........................................6 1. LargeDeviationsofRandomVariables ............................9 1.1. HeuristicsandMotivation ................................... 9 1.2. I.I.D.RandomVariables ....................................14 1.3. Examples—I.I.D.RandomVariables .........................19 1.4. I.I.D.RandomVectors ..................................... 23 1.5. EndNotes ................................................ 25 2. GeneralPrinciples ...............................................29 2.1. TheLargeDeviationsPrinciple ............................. 29 2.2. Varadhan’sIntegralLemma .................................33 2.3. TheContractionPrinciple .................................. 36 2.4. EmpiricalMeasures: Sanov’sTheorem ...................... 37 3. RandomWalks,BranchingProcesses .............................45 3.1. TheBallotTheorem ........................................46 3.2. BranchingRandomWalks ..................................48 4. PoissonandRelatedProcesses ................................... 53 4.1. TheOne-DimensionalCase .................................53 4.2. JumpMarkovProcesses ....................................56 4.3. MartingalesandMarkovProcesses ..........................61 5. LargeDeviationsforProcesses ...................................69 5.1. Kurtz’sTheorem .......................................... 75 5.2. PropertiesoftheRateFunction ..............................85 5.3. TheLowerBound ........................................105 5.4. TheUpperBound: Orientation .............................114 5.5. ProofoftheUpperBound .................................117 6. Freidlin-WentzellTheory .......................................129 6.1. TheExitProblem .........................................132 6.2. BeyondtheExitProblem ..................................157 6.3. Discontinuities ...........................................160 6.4. ConvergenceofInvariantMeasures ........................ 164 vi 7. ApplicationsandExtensions ....................................169 7.1. EmpiricalDistributionsofFiniteMarkovProcesses ..........169 7.2. SimpleJumpProcesses ................................... 175 7.3. TheFreeM/M/1Process ..................................179 7.4. MeaningoftheTwistedDistribution ........................183 7.5. EndNotes ...............................................189 8. BoundaryTheory ..............................................191 8.1. TheRateFunctions .......................................195 8.2. PropertiesoftheRateFunction ............................ 201 8.3. ProofoftheUpperBound .................................215 8.4. ConstantCoefficientProcesses .............................220 8.5. TheLowerBound ........................................230 8.6. EndNotes ...............................................242 Applications ........................................................243 9. AllocatingIndependentSubtasks ................................245 9.1. UsefulNotions ...........................................246 9.2. Analysis .................................................249 9.3. EndNotes ...............................................253 10. ParallelAlgorithms: Rollback ..................................255 10.1. RollbackAlgorithms ......................................255 10.2. AnalysisofaRollbackTree ............................... 258 11. TheM/M/1Queue ..............................................261 11.1. TheModel ...............................................261 11.2. HeuristicCalculations .....................................262 11.3. MostProbableBehavior ...................................267 11.4. ReflectionMap ...........................................272 11.5. TheExitProblemandSteadyState .........................274 11.6. TheProbabilityofHittingaPoint ..........................277 11.7. TransientBehavior ....................................... 279 11.8. ApproachtoSteadyState ..................................281 11.9. FurtherExtensions ........................................283 11.10. EndNotes ...............................................286 vii 12. Erlang’sModel .................................................289 12.1. ScalingandPreliminaryCalculations .......................290 12.2. StartingwithanEmptySystem ............................ 292 12.3. StartingwithaFullSysteminLightTraffic ..................300 12.4. Justification ..............................................302 12.5. Erlang’sModel: GeneralStartingPoint .....................305 12.6. LargeDeviationsTheory ..................................308 12.7. ExtensionstoErlang’sModel ..............................313 12.8. TransientBehaviorofTrunkReservation ....................318 12.9. EndNotes ...............................................323 13. TheAnick-Mitra-SondhiModel .................................325 13.1. TheSimpleSourceModel .................................328 13.2. BufferStatistics ..........................................330 13.3. SmallBuffer .............................................341 13.4. LargeBuffer .............................................345 13.5. ConsequencesoftheSolution ..............................348 13.6. Justification ..............................................350 13.7. ControlSchemes .........................................361 13.8. MultipleClasses ..........................................378 13.9. EndNotes ...............................................386 14. Aloha ..........................................................387 14.1. TheI.D.ModelandHeuristics .............................387 14.2. RelatedModels .......................................... 394 14.3. BasicAnalysis ...........................................397 14.4. LargeDeviationsofAloha .................................398 14.5. Justification ..............................................400 14.6. AParadox—Resolved .................................... 405 14.7. SlottedAlohaModels .....................................409 14.8. EndNotes ...............................................417 15. PriorityQueues ................................................419 15.1. PreemptivePriorityQueue ................................ 421 15.2. MostProbableBehavior—PP ..............................422 15.3. TheVariationalProblem—PP ..............................423 15.4. ProbabilisticQuestions—PP ...............................436 15.5. Justification—PP .........................................438 15.6. ServetheLongestQueue ..................................443 viii 15.7. MostProbableBehavior—SL ..............................444 15.8. TheMainResult—SL .....................................445 15.9. Justification—SL .........................................446 15.10. JointheShortestQueue ...................................454 15.11. EndNotes ...............................................458 16. TheFlatto-Hahn-Wrightmodel .................................459 16.1. MostProbableBehavior ...................................462 16.2. FormalLargeDeviationsCalculations ......................463 16.3. JustificationoftheCalculation .............................467 16.4. EndNotes ...............................................470 A. AnalysisandProbability ........................................471 A.1. Topology,MetricSpaces,andFunctions ....................471 A.2. OrdinaryDifferentialEquations ............................482 A.3. ProbabilityandIntegration ................................ 483 A.4. Radon-NikodymDerivatives ...............................493 A.5. StochasticProcesses ......................................495 B. Discrete-SpaceMarkovProcesses ...............................499 B.1. GeneratorsandTransitionSemigroups ......................499 B.2. TheMarkovProcess ......................................501 B.3. Birth-DeathProcesses .....................................503 B.4. Martingales ..............................................505 C. CalculusofVariations ..........................................515 C.1. HeuristicsoftheCalculusofVariations .....................515 C.2. CalculusofVariationsandLargeDeviations .................518 C.3. One-DimensionalTricks .................................. 520 C.4. ResultsfromtheCalculusofVariations .....................525 D. LargeDeviationsTechniques ....................................527 D.1. TheGa¨rtner-EllisTheorem ................................527 D.2. SubadditivityArguments ..................................533 D.3. ExponentialApproximations ...............................533 D.4. LevelII ..................................................534 References ..........................................................539 Index ...............................................................551 Chapter 0 What this Book Is, and What It Is Not Thefieldofcommunicationandcomputernetworksisbustlingwithactivity. One oftheactiveareasfallsundertherubric“performance.” Researchersanddevel- opment engineers tackle systems that are huge, complex and fast; think of the telephone network in the United States. The resulting models are, for the most part, discrete-event, continuous time stochastic processes, technically known as jump Markov processes. The objective is to analyze the behavior of these sys- tems,withthegoalofdesigningsystemsthatprovidebetterservice. “Better”may mean faster, less prone to error and breakdown, more efficient, or improved by manyothercriteria. Until quite recently, the tools brought to bear on these problems were appro- priate for small, simplesystems. Some of these methods take into account only averagebehavior(orperhapsvariances). Butthisisoftennotenough,astheper- formanceofmanysystemsislimitedbyeventswithasmallprobabilityofoccur- ring,butwithconsequencesthataresevere. Clearly,newtoolsareneeded. Com- putersimulationisonerelativelynewtool. Butthismethod,forallitspower,is limitedinthatitusuallydoesnotproviderulesofthumbfordesign,maynotgive estimatesonthesensitivityofresultstovariousparameters,andcanbeextremely costly in terms of both computer time and programming (especially debugging) time. Analyticmethodsclearlyretainsomeadvantages. Thisbookisaboutafairly newanalyticmethodcalledlargedeviations. Large deviations is a mathematical theory that is very active at present. The theorydealswithrareevents,andisasymptoticinnature;itisthusanaturalcan- didateforanalyzingrareeventsinlargesystems. Thetheoryoflarge deviations includesasetoftechniquesforturninghardprobabilityproblemsthatconcerna class of rare events into analytic problems in the calculus of variations. It also provides a nice qualitative theory for understanding rare events. As an asymp- totictechnique,itseffectivenessresidesintherelativesimplicitywithwhichone mayanalyzesystemswhosesizemaybegrowingwiththeasymptoticparameter, or whose “conditioning” may be getting worse. The theory is often useful even when simulation or other numerical techniques become increasingly difficult as theparametertendstoitslimit. However, the theory is noted for being technically (mathematically) very de- manding,andsolvingaprobleminthecalculusofvariationsisnottypicallyanen- gineer’sdream. Althoughthetheoryisbeingincreasinglyusedforanalyzingrare eventsinlargesystems,thisisdonebyarelativelysmallnumberofresearchers. Webelievethatthereasonforthisstateofaffairsisthatthetheoryisnoteasilyac- cessibletonon-mathematicians,andthefinalresultsseemtorequireanadditional 1 2 Chapter0. WHATTHISBOOKIS,ANDWHATITISNOT translationtoengineeringlingo. Hence Largedeviationsisuseful. Largedeviationsisformidablytechnical. What’sastudenttodo? Hereiniscontainedonepointofviewonwhat’stodo. Wedevelopthetheory oflargedeviationsfromthebeginning(independent,identicallydistributed(i.i.d.) randomvariables)throughrecentresultsonthetheoryforprocesseswithbound- aries, keeping to a very narrow path: continuous-time, discrete-state processes. Bydevelopingonlywhatweneedfortheapplicationswepresent,wetrytokeep thetheorytoamanageablelevel,bothintermsoflengthandintermsofdifficulty. Wemakenoparticularclaimtooriginalityofthetheorypresentedherein,except forthematerialconcerningboundaries,whichisthesubjectofChapter8. Mostof thetrailblazingworkofFreidlinandWentzell[FW],andofDonskerandVaradhan [DV1–DV4]goesfurtherthanwedo. Also,othershavesubsequentlytreatedthe generaltheorymuchmorethoroughly;e.g.Ellis[Ell],Wentzell[Wen],Deuschel andStroock[DeS],DemboandZeitouni[DZ],andtherecentworkofDupuisand Ellis[DE2]. Wehave,however,formulatedacomplete,self-containedsetoftheo- remsandproofsforjumpMarkovprocesses. Sinceourscopeislimitedtoaclass of relatively simple processes, the theory is much more accessible, and less de- mandingmathematically. Toenhancethepedagogicalvalueofthiswork,wehave attemptedtoconveyasmuchintuitionaswecould,andtokeepthestylefriendly. In addition, we present for the first time a complete theory for processes with a flatboundary,andforsomeprocessesinarandomenvironment. Thelevelofthe bookissomewhatuneven,asindicatedinthedependencechartFigure0.1. Thisis purposeful—webelievethataneophytewouldnotwanttoreadthedifficultchap- ters,andthatanexpertdoesn’twantasmuchhandholdingasabeginner. Webelievethatourapplicationsareimportantenoughtorequirenoapologies. AsMark Kacsaid, “Theoremscomeand go,but anapplication isforever.” Our applicationscoverlargeareasofthetheoryofcommunicationnetworks: circuit- switchedtransmission(Chapter12),packettransmission(Chapter13),multiple- accesschannels(Chapter14),andthe M/M/1queue(Chapter11). Wecoveras- pects of parallel computationin a much more spottyfashion: basicsof job allo- cation(Chapter9),rollback-basedsimulation(Chapter10),andassortedpriority queuingmodels(Chapters15and16)thatmaybeusedinperformancemodelsof variouscomputerarchitectures. The key word in the phrase “our applications” is “our.” We present only our ownresultsconcerningtheapplications. Wedonotsynthesizeexistingtheoryex- ceptinournarrowfashionforjumpprocesses. Weignorepossibleimprovements inordertoremainwithintherealmofthoselargedeviationsboundsthatweactu- allyuse. Forexample,Anantharam’sbeautifulresultsontheG/G/1queue[An] arecertainlyrelevanttothesubjectsweaddress,buthistechniquesaredifferent. WedonotobtainthebestresultsknownforjumpMarkovprocesses. Itiscertainly arguablewhetherthisisawisechoice. However,wewantedtopresentaconsis-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.