ebook img

Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago PDF

37 Pages·2010·3.57 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago

Vol466|1July2010|doi:10.1038/nature09166 LETTERS Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago AbderrazakElAlbani1,StefanBengtson2,DonaldE.Canfield3,AndreyBekker4,RobertoMacchiarelli5,6, ArnaudMazurier7,EmmaU.Hammarlund2,3,8,PhilippeBoulvais9,Jean-JacquesDupuy10,ClaudeFontaine1, FranzT.Fu¨rsich11,Franc¸oisGauthier-Lafaye12,PhilippeJanvier13,EmmanuelleJavaux14,FrantzOssaOssa1, Anne-CatherinePierson-Wickmann9,ArmelleRiboulleau15,PaulSardini1,DanielVachard15,MartinWhitehouse16 &AlainMeunier1 The evidence for macroscopic life during the Palaeoproterozoic intercalatedvolcanicandcontinentalsedimentsaccumulatedduring era (2.5–1.6Gyr ago) is controversial1–5. Except for the nearly theultimatefillingphaseofthebasin(SupplementaryFig.1). 2-Gyr–oldcoil-shapedfossilGrypaniaspiralis6,7,whichmayhave beeneukaryotic,evidenceformorphologicalandtaxonomicbio- diversificationofmacroorganismsonlyoccurstowardsthebegin- ningoftheMesoproterozoicera(1.6–1.0Gyr)8.Herewereportthe discovery of centimetre-sized structures from the 2.1-Gyr-old blackshalesofthePalaeoproterozoicFrancevillian BFormation Gabon in Gabon, which we interpret as highly organized and spatially discrete populations of colonial organisms. The structures are upto12cminsizeandhavecharacteristicshapes,withasimple butdistinctgroundpatternofflexiblesheetsand,usually,aper- meatingradialfabric.Geochemicalanalysessuggestthatthesedi- Volcanic complex of N’Goutou mentsweredepositedunderanoxygenatedwatercolumn.Carbon andsulphurisotopicdataindicatethatthestructuresweredistinct Okondja biogenicobjects,fossilizedbypyritizationearlyintheformation Basin oftherock.Thegrowthpatternsdeducedfromthefossilmorpho- Plateau des logies suggest that the organisms showed cell-to-cell signalling Abeilles andcoordinatedresponses,asiscommonlyassociatedwithmulti- cellular organization9. The Gabon fossils, occurring after the Lastoursville Basin 2.45–2.32-Gyr increase in atmospheric oxygen concentration10, maybeseenasancientrepresentativesofmulticellularlife,which Ondili shoal expandedsorapidly1.5Gyrlater,intheCambrianexplosion. Francevillian Basin OursamplescomefromtheFrancevillianGroup,whichbelongsto Archean basement a well-recognized lithostratigraphic succession, outcropping across 35,000km2insoutheasternGabon11,12.Thisgroupisexposedinthe intracratonic basins of Plateau des Abeilles, Lastoursville and Franceville 0 50 km Franceville (Fig. 1), and reaches a maximum thickness of about 2,000m. The group consists of five unmetamorphosed and undeformed sedimentary formations, FA to FE, bounded by conformable sur- faces11,12.Thelowerpartofthesequence(FAFormation)comprises Volcanic rocks of N’Goutou Gneiss of Okanja fluvialdepositsofalow-standsystemtractdominatedbyonshore-to- Phanaerozoic deposit Gneiss of Ogoue coastalsandstones.IntheFBFormation,marinedeltaicdepositionis indicatedbyfaciesdevelopmentandsedimentarystructuressuchas Francevillian group Gneiss and granite (Archaean) load casts, water escape structures, cross-stratification and hum- Figure1|SimplifiedgeologicalmapofGabon. ShowingtheFrancevillian mockycross-stratification.Shallowerwaterconditionsareobserved basin(inset)andthelocationofthefossiliferoussite(star)nearthetownof intheFCFormation,whereassubsequentdeposits(FDandFE)show Franceville. 1LaboratoireHYDRASA,UMR6269CNRS-INSU,Universite´dePoitiers,86022Poitiers,France.2DepartmentofPalaeozoology,SwedishMuseumofNaturalHistory,Box50007,SE- 10405Stockholm,Sweden.3NordicCenterforEarthEvolution,DK-5230OdenseM,Denmark.4DepartmentofGeologicalSciences,UniversityofManitoba,Manitoba,R3T2N2 Canada.5De´partementGe´osciences,CentredeMicrotomographie,Universite´dePoitiers,86022Poitiers,France.6De´partementdePre´histoire,UMR7194CNRS,Muse´umNational d’HistoireNaturelle,Paris,75005,France.7Socie´te´EtudesRecherchesMate´riaux,CRIBiopole,86000Poitiers,France.8DepartmentofGeologicalSciences,StockholmUniversity,SE- 10691Stockholm,Sweden.9De´partementGe´osciences,UMR6118,Universite´deRennes,35042Rennes,France.10BureaudeRecherchesGe´ologiquesetMinie`res,45060Orle´ans, France.11GeoZentrumNordbayern,Universita¨tErlangen,FachgruppePala¨oumwelt,D91054Erlangen,Germany.12Laboratoired’HydrologieetdeGe´ochimiedeStrasbourg,UMR7517 CNRS,67084Strasbourg,France.13De´partementHistoiredelaTerre,UMR7207CNRS,Muse´umNationald’HistoireNaturelle,Paris,75005,France.14De´partementdeGe´ologie, Unite´deRecherchePale´obotanique-Pale´opalynologie-Micropale´ontologie,Universite´deLie`ge,Sart-TilmanLie`ge4000,Belgium.15LaboratoireGe´osyste`mes,FRE3298CNRS, Universite´Lille1,59655Villeneuved’Ascq,France.16LaboratoryforIsotopeGeology,SwedishMuseumofNaturalHistory,Box50007,SE-10405Stockholm,Sweden. 100 ©2010Macmillan Publishers Limited. All rights reserved NATURE|Vol466|1July2010 LETTERS ThelowerpartoftheinvestigatedFB2section,whereFB2isthe a upperpartofFB,outcroppingnearFranceville,consistsofsandstone beds deposited in channels near the fair-weather wave base in the low-energyenvironmentofaprogradingdelta.Thetopmostpartof this section consists of an oxidized and stromatolitic hardground surface. This is sharply overlain by a 5-m-thick deposit of finely laminated horizontal black shales, interbedded with thin siltstone layers, deposited by waning storm surge without any evidence for subaerialexposure(SupplementaryFig.1).TheageoftheFBdeposits is well constrained to 2,100630Myr (refs 13–15), roughly con- temporaneouswiththe,2.22–2.10GyrLomagundimarinepositive carbon-isotope excursion16 (see Supplementary Information and SupplementaryFig.1)andabout200–250Myrafterthefirstsignifi- cantriseinatmosphericoxygenconcentration10. Morethan250pyritizedspecimensembeddedwithintheirsedi- mentarymatrixwerecollectedinsitufromatleast18thinhorizons, identified within the FB2 black shale lithofacies (Supplementary b Fig. 2). In some cases, the layers containing the specimens were locallycoatedwithironoxides,owingtooxidationofpyritecrystals. Thespecimensrangeinshapefromelongatedtonearlyisodiametric forms,withoccasionalfinger-likeprotrusions(Fig.2,Supplementary Fig.3).Theirlengthandwidthrangefrom7to120mmandfrom,5 to70mmrespectively,andtheirthicknessvariesfrom,1to10mm. Weestimateadensityofupto40specimensperm2,withformsof different sizes and shapes and disparate orientations occurring c together(SupplementaryFigs3,4). Weusedmicro-computedtomography(micro-CT)-basedthree- dimensional (3D) imaging to characterize the outer and inner morphologies of the structures (see Supplementary Information). Mostspecimensshowapatternofradialfabricattheouteredgeof Figure3|InsitumacrofossilspecimenfromtheFB2Formation. a,Lower their undulate or lobate periphery (Figs 2, 3, 4a–c, Supplementary sideofthefossil(top)withitsimpressionleftintheblackshales(bottom), Figs5–8);thisisoftencurved,soastomeettheouterrimataroughly showingperipheralradialfabricandwrinkledappearance.b,Micro-CT- perpendicularangle.Insomecases,theradialfabricdoesnotreach basedvirtualreconstruction(volumerenderedinsemi-transparency), theouterrim(Fig.4d),whereasinothersitissimplylacking.The showingradialfabricandtwoinnerpyriteconcretions.c,Longitudinal centralpartsofthelargerformsarecommonlythrownintosmooth, virtualsectionrunningclosetotheestimatedcentralpartofthespecimen, transverse folds, which do not reach the outer edge and which are evidencingthefoldpattern.Scalebars,1.0cm. externally expressed as wrinkling of the structure (Figs 3, 4b–c, SupplementaryFig.6–8,11).Laminaeofthehostshalearedraped aroundthefolds(SupplementaryFig.13),showingthatthefolding a occurred before compaction. X-ray diffraction analyses show no mineralogicaldifferencebetweentheclaymatricesinthespecimens andthehostshale(SupplementaryFig.14,SupplementaryTable1). Thelargerspecimensoftenalsocontainacentralpyritebody(Figs3, 4c, d, Supplementary Figs 8, 11), which is developed differently. Sometimes it forms a median layer within the folded sheet (Sup- plementary Figs 6–8), but it is more often nodular (Figs 3b, 4c–d, Supplementary Figs 8, 11), sometimes deflecting the transverse folds (Fig. 4c, Supplementary Fig. 11). We measured topographic thickness along geometrically homologous virtual sections, which indicated progressive thinning towards the periphery (Supplemen- taryFigs9,10). b DifferencesinX-rayattenuationwithin the specimensare largely duetothedifferentialdistributionofoctahedralpyritecrystals.The peripheralradialfabricischaracterizedbypyrite-freeregionsexpressed in the microfabric as canals or slits (Supplementary Figs 12, 15). Secondary-ionizationmass-spectrometricanalysisofthepyritereveals verylightd34Svaluesofabout225%to230%inthefossilizedsheets, withthecentralpyritenoduletendingtowardsheaviervaluesof5%to 15%,particularlyintheoutermargins(Fig.5,SupplementaryTable2). Thesheet,whichrepresentsthemainbodyofthefossilizedstructure, wasthereforepyritizedduringearlydiagenesis,whensulphatereducers wereindirectcontactwiththeeffectivelyunlimitedsulphatepoolof theoverlyingwatercolumn.Thehighfractionationssuggestsulphate concentrationsinexcessof200mM(ref.17)(SupplementaryFig.17). Figure2|Examplesofblackshalebeddingsurfaces. a,b,Bearing Thepyritizednodulesapparentlyformedlater,fromporefluidsmore macrofossilsincolonyformfromtheFB2level.Scalebars,1.0cm. depletedinsulphate,andthepatternofsulphurisotopessuggeststhat 101 ©2010Macmillan Publishers Limited. All rights reserved LETTERS NATURE|Vol466|1July2010 a b c d a b c d 15 a b c d δ34S a b c d 1 mm –30 Figure4|Micro-CT-basedreconstructionsandvirtualsectionsoffour Figure5|SectionthroughspecimenG-FB2-f-mst4.3. d34Svalues specimensfromtheFB2macrofossilrecordofGabon. Samplesshowa (colouredspots,seescale)aremeasuredinthecentralpyritenodule(centre) disparityofformsbasedon:externalsizeandshapecharacteristics; andsurroundingsheetmaterial(topandbottom)bysecondary-ionization peripheralradialmicrofabric(missinginviewd);patternsoftopographic massspectrometry.SeeSupplementaryInformation. thicknessdistribution;generalinnerstructuralorganization,including occurrenceoffolds(seeninviewsbandc)andofanodularpyriteconcretion patternoftheGabonfossils,andthereisnostructuralevidenceof inthecentralpartofthefossil(absentinviewsaandb).a,Original sedimentinjectioninassociationwiththefossils.TheGabonfossils specimen.b,Volumerenderinginsemi-transparency.c,Transverse(axial) alsoresembleradiallygrowingpyriteormarcasitecrystals,or‘pyrite two-dimensionalsection.d,Longitudinalsectionrunningclosetothe suns’,whichareoccasionallyfoundinPhanaerozoicshales.However, estimatedcentralpartofthespecimen.Scalebars,5mm.Specimensfrom amicro-CT-basedcomparisonoftheinnerstructuresclearlyshows toptobottom:G-FB2-f-mst1.1,G-FB2-f-mst2.1,G-FB2-f-mst3.1,G-FB2-f- that the ‘pyrite suns’ have a much more regular and linear radial mst4.1. fabric than the Gabon specimens, and that this fabric extends all pyritizationbeganatthecentreandcontinuedtowardstheoutermar- thewaytothecentreofthestructure,withoutanyevidenceofflexible gins, duringwhichprocesstheremainingsulphate became progres- folding (Supplementary Fig. 16). Indeed, we are unaware of any sivelymore depletedinlight isotopes.The sulphur isotopepatterns inorganic processes that can generate the style of flexible folding thussupporttheinterpretationthatthepyritizedsheetsrepresentearly andirregularradialfabricthatweobserveintheGabonfossils(Fig.4). diagenesisoforiginalbiologicalfabric,whereastheoccasionalcentral Theaccumulatedevidencesuggeststhatthestructuresarebiogenic. lumpofpyriteisalater,post-burial,diageneticfeaturethatisnotlikely Thefoldpatternseeninthecentreofmostofthespecimensindicates toreflectoriginalmorphology. deformationofaflexiblesheet,implyinganoriginallycohesivestruc- The differences in the organic carbon d13C content recorded tureoforganiccomposition.Theradialfabriciscommonlydeflected betweenfivespecimensandtheirassociatedhostshalesedimentalso tomeettherimofthespecimen,suggestingthattheoriginalmaterial supportthefossilizedstructuresrepresentingadistinctorganicentity wasgrowing byperipheralaccretionofflexible organic matter. We (SupplementaryTable3).Plantsandbiomineralizedanimaltissues concludethattheGabonstructuresfulfilthegeneralcriteriaofbio- ofthePhanaerozoiceonarecommonlypyritized;pyritizationofsoft genicity applied to fossil-like forms in the early rock record20 tissuesisrarebuttypicallyresultsinfaithfulreplication.Thispreser- (SupplementaryTable4).Thepresenceofabundantorganicmatter vationisthoughttobefavouredbyalowcontentoforganicmole- intheFBFormation21,22(SupplementaryTable5),includingsteranes culesandhighcontentofreactiveironinthepore-waters18. ofeukaryoticorigin23,isconsistentwiththisinterpretation. Wefindnoevidencetosupportaninorganicoriginofthestruc- Weconsideritmostlikelythatthesestructuresrepresentfossilized turesfromtheFB2blackshalelevel,whetherconcretionsresulting colonialorganisms.Bacterialcoloniesgrowingonsurfacesareknown from epitaxic/crystal growth processes, or features of diagenetic, tocoordinatetheirbehaviour,resultinginregularshapesanddistinct sedimentary,hydrothermal,ortectonicorigin.Thereisasuperficial fabrics9; radial fabrics are common, and are thought to be due to resemblancebetweentheGabonstructuresandtheEdiacarandubio- repulsivechemotaxis24.Moststudiesofbacterialcolonygrowthhave fossilMawsonitesspriggi,whichhasbeeninterpretedasasandvol- beendoneonmonocultures inPetridishes,wherecoloniesexceed cano interacting with biomats19; however, this interpretation centimetre size9. In nature, ‘fairy-ring’ colonies, formed by cyano- accountsforneitherthefineinternalradialfabricnortheinnerfold bacteriaanddiatomsandreachingadiameter of15cm,havebeen 102 ©2010Macmillan Publishers Limited. All rights reserved NATURE|Vol466|1July2010 LETTERS reported25.Nonetheless,structuressimilartothosefromGabonare 4. Lamb,D.M.,Awramik,S.M.&Zhu,S.Paleoproterozoiccompression-like structuresfromtheChangzhougouFormation,China:eukaryotesorclasts? unknownintheavailablefossilrecordand,becauseoftheircomplex Precambr.Res.154,236–247(2007). inner structural morphology and the sterane signature in the FB 5. Rasmussen,B.,Fletcher,I.R.,Brocks,J.J.&Kilburn,M.R.Reassessingthefirst rocks,itisalsopossiblethattheyrepresentcolonialeukaryotes. appearanceofeukaryotesandcyanobacteria.Nature455,1101–1105(2008). Microbialmat-formingcommunities,includingorganismswhose 6. Han,T.-M.&Runnegar,B.Megascopiceukaryoticalgaefromthe2.1-billion-year- phototacticbehaviourmodifiesthematshape,areinferredtohave oldNegauneeIron-Formation,Michigan.Science257,232–235(1992). 7. Schneider,D.A.,Bickford,M.E.,Cannon,W.F.,Schulz,K.J.&Hamilton,M.A.Age beenprevalentinmarineandlacustrineenvironmentsfromtheearly ofvolcanicrocksandsyndepositionalironformations,MarquetteRange Archaeaneon26.Becauseoftheirsediment-bindingproperties,such Supergroup:implicationsforthetectonicsettingofPaleoproterozoiciron matsoftenleavecharacteristicstructuresincarbonatesandsiliciclas- formationsoftheLakeSuperiorregion.Can.J.EarthSci.39,999–1012(2002). ticrocks.Suchstructures,however,includingthoseformedinshales 8. Bengtson,S.,Belivanova,V.,Rasmussen,B.&Whitehouse,M.Thecontroversial ‘‘Cambrian’’fossilsoftheVindhyanarerealbutmorethanabillionyearsolder. andmudstones,donotresembletheGabonfossils27.Colonieswith Proc.NatlAcad.Sci.USA106,7729–7734(2009). regular fabric resulting from coordinated-growth behaviour, as we 9. Shapiro,J.A.&Dworkin,M.(eds)BacteriaasMulticellularOrganisms(Oxford inferfortheGabonfossils,representadegreeoforganizationdiffer- Univ.Press,1997). enttothatofsuchmat-formingcommunities.Theyrequirecell-to- 10. Bekker,A.etal.Datingtheriseofatmosphericoxygen.Nature427,117–120(2004). 11. Gauthier-Lafaye,F.&Weber,F.TheFrancevillian(Palaeoproterozoic)uranium cellsignallingandcoordinatedresponses,akintothatrequiredfor oredepositsofGabon.Chem.Geol.84,2267–2285(1989). multicellularorganization9.TheGabonfossilsrepresenttheearliest 12. Gauthier-Lafaye,F.&Weber,F.Naturalnuclearfissionreactors:timeconstraints evidenceforsuchsignallingandcoordinated-growthbehaviouron foroccurrence,andtheirrelationtouraniumandmanganesedepositsandtothe thescaleofmacroorganisms. evolutionoftheatmosphere.Precambr.Res.120,81–100(2003). 13. Bros,R.,Stille,P.,Gauthier-Lafaye,F.,Weber,F.&Clauer,N.Sm-Ndisotopic One fundamental selective advantage of multicellularity is large datingofProterozoicclaymaterial:anexamplefromtheFrancevillian size28,butambientoxygenlevelsmustbehighenoughtoallowaerobic sedimentaryseries,Gabon.EarthPlanet.Sci.Lett.113,207–218(1992). organisms to grow large. Our iron-speciation analyses reveal low 14. Hoori,K.,Hidaka,H.&Gauthier-Lafaye,F.U-Pbgeochronologyandgeochemistry ratiosofhighlyreactiveirontototaliron(Fe /Fe )29,consistentwith ofzirconfromtheFrancevilleseriesatBidoudouma,Gabon.The15thAnnual HR T sediment deposition under an oxygenated water column (Sup- GoldschmidtConference.(2005). 15. Gancarz,A.J.inTheNaturalFissionReactors:AnnualInternationalAtomicEnergy plementary Fig. 18). This impliesthat thesefossilorganisms,living AgencyConference513–520(TC-119/40,IAEA,1978). onthesedimentsurface,werelikelytoengageinaerobicrespiration. 16. Bekker,A.etal.Fractionationbetweeninorganicandorganiccarbonduringthe Thisisconsistentwiththetimingofdeposition,some200to250Myr Lomagundi(2.22–2.1Ga)carbonisotopeexcursion.EarthPlanet.Sci.Lett.271, afterthefirstaccumulationofoxygenintotheatmosphere10,30. 278–291(2008). 17. Habicht,K.S.,Gade,M.,Thamdrup,B.,Berg,P.&Canfield,D.E.Calibrationof Althoughwecannotdeterminetheprecisenatureandaffinitiesof sulfatelevelsintheArcheanocean.Science298,2372–2374(2002). the2.1-GyrmacroorganismsfromtheFrancevillianBFormationof 18. Farrell,U´.C.,Martin,M.J.,Hagadorn,J.W.,Whiteley,T.&Briggs,D.E.G.Beyond Gabon,weinterpretthesefossilsasancientrepresentativesofmulti- Beecher’sTrilobiteBed:widespreadpyritizationofsofttissuesintheLate cellularlife,whichexpandedsorapidly1.5Gyrlater. OrdovicianTaconicforelandbasin.Geology37,907–910(2009). 19. Seilacher,A.,Buatois,L.&Ma´ngano,M.G.Tracefossilsinthe Ediacaran–Cambriantransition:behavioraldiversification,ecologicalturnover METHODSSUMMARY andenvironmentalshift.Palaeogeogr.Palaeoclimatol.Palaeoecol.227,323–356 Weassessedtexturalrelationsbetweenthepyritizedsheetandtheshalematrix (2005). embeddingthemacrofossilsonsections,usingaNikonEclipseE600.Wecarried 20. Wacey,D.EarlyLifeonEarth:APracticalGuide(Springer,2009). outscanningelectronmicroscopyonaJEOL5600LV,equippedwithanOxford 21. Cortial,F.,Gauthier-Lafaye,F.&Lacrampe-Couloume,G.Oberlin,A.&Weber,F. Characterizationoforganicmatterassociatedwithuraniumdepositsinthe EDXformineralogicalanalyses.WeobtainedX-raydiffractionpatternsfrom FrancevillianformationofGabon(lowerproterozoic).Org.Geochem.15,73–85 randomly-oriented powders and oriented preparations using a PANalytical (1990). X’Pertdiffractometer(Ni-filteredCu-Karadiation),equippedwithanaccelerator 22. Mossman,D.J.,Gauthier-Lafaye,F.&Jackson,S.Carbonaceoussubstances detector(2u2hanalysisangle). associatedwiththePaleoproterozoicnaturalnuclearfissionreactorsofOklo, Weranhigh-resolutionmicro-CTonX8050-16ViscomAGequipment.We Gabon:paragenesis,thermalmaturationandcarbonisotopicandtraceelement madereconstructionsusingDigiCTv.2.3(Digisens),64-bitversion,runningon composition.Precambr.Res.106,135–148(2001). a2.5GHzDellT7400PrecisionWindowsXP64workstationwith32GBofDDR 23. Dutkiewicz,A.,George,S.C.,Mossman,D.J.,Ridley,J.&Volk,H.Oilandits RAMandtwoNVIDIAgraphiccards(QuadroFX5600andTelsaC870).We biomarkersassociatedwiththePalaeoproterozoicOklonaturalfissionreactors, Gabon.Chem.Geol.244,130–154(2007). carriedoutvirtualsectionsand3DrenderingonAVIZOv.5(MercuryComputer 24. Ben-Jacob,E.Bacterialself-organization:co-enhancementofcomplexification Systems). We carried out SRXTM tomographic microscopy at the X02DA andadaptabilityinadynamicenvironment.Philos.Transact.Ser.A361,1283–1312 TOMCAT beamline of the Swiss Light Source at the Paul Scherrer Institute (2003). (http://www.psi.ch/). 25. Grazhdankin,D.&Gerdes,G.Ediacaranmicrobialcolonies.Lethaia40,201–210 We studied organic matter using Rock-Eval III pyrolysis (‘Oil Show (2007). Analyzer’).Wetookisotopicmeasurements(d13C )onaVGSira10triple 26. Allwood,A.C.,Walter,M.R.,Kamber,B.S.,Marshall,C.P.&Burch,I.W. carb collectormassspectrometer.Weinvestigatedironspeciationusingthesequen- StromatolitereeffromtheEarlyArchaeaneraofAustralia.Nature441,714–718 tialextractionprotocol,anddeterminedsulphideconcentrationsbythechro- (2006). miumreductionmethod(CRM).Wemeasuredtheconcentrationofironinall 27. Schieber,J.inAtlasofMicrobialMatFeaturesPreservedwithintheClasticRock Record(edsSchieber,J.etal.)117–134(Elsevier,2007). ironfractions,exceptforpyrite,byatomicabsorptionspectrometry.Wemea- 28. Bonner,J.T.FirstSignals:TheEvolutionofDevelopment(PrincetonUniv.Press, suredthed34ScompositionofbulkrockonAgSprecipitatesfromsamplesofthe 2 2000). sulphidethatwasliberatedbyCRM.Weaddedabout200mgtoatincupwith 29. Canfield,D.E.etal.FerruginousconditionsdominatedlaterNeoproterozoicdeep- V2O5 and combusted it using a Thermo elemental analyser coupled via a waterchemistry.Science321,949–952(2008). ConflowIIIinterfacetoaThermoDeltaVPlusmassspectrometer.Weanalysed 30. Frei,R.,Gaucher,C.,Poulton,S.W.&Canfield,D.E.FluctuationsinPrecambrian Sisotopes(32S,33Sand34S)bysecondary-ionizationmassspectrometryusinga atmosphericoxygenationrecordedbychromiumisotopes.Nature461,250–254 CamecaIMS1270e7. (2009). For further details of sample treatment and analytical procedures, see SupplementaryInformationislinkedtotheonlineversionofthepaperat SupplementaryInformation. www.nature.com/nature. Received29March;accepted4May2010. AcknowledgementsWethanktheMinistryofMines,Oil,EnergyandHydraulic ResourcesandtheGeneralDirectionofMinesandGeologyofGabonfor 1. Seilacher,A.,Bose,P.K.&Pflu¨ger,F.Triploblasticanimalsmorethan1billionyears collaborationandassistance,andtheFrenchEmbassyatLibrevilleandtheFrench ago:tracefossilevidencefromIndia.Science282,80–83(1998). MinistryforForeignAffairsforsupport.WethankF.Mayaga-Mikolo,D.Beaufort, 2. Knoll,A.H.,Javaux,E.J.,Hewitt,D.&Cohen,P.Eukaryoticorganismsin B.Cost,D.Thieblemont,F.PamboandH.Sigmundfordiscussions.Forassistancein Proterozoicoceans.Philos.Trans.R.Soc.LondonB361,1023–1038(2006). GabonandFrance,weacknowledgeS.Accolas,T.Bonifait,B.Braconnier, 3. Bengtson,S.,Rasmussen,B.&Krapezˇ,B.ThePaleoproterozoicmegascopic N.Dauger,F.Duru,D.Fabry,F.Haessler,M.Jouve,G.Letort,D.Paquet,J.-C. Stirlingbiota.Paleobiology33,351–381(2007). Parneix,D.Proust,M.StampanoniandX.Valentin.Wealsoacknowledgethe 103 ©2010Macmillan Publishers Limited. All rights reserved LETTERS NATURE|Vol466|1July2010 InstitutFranc¸aisduPe´trole,theSwissLightSource(TOMCATbeamline)atthe A.E.A.,C.F.,F.O.O.andA.Meunieranalysedmineralogy.S.B.,D.E.C.,A.B.,E.H.,P.B., PaulScherrerInstitute,andtheCentredeMicrotomographieattheUniversityof A.-C.P.-W.,A.R.andM.W.carriedoutisotopeandgeochemicalanalyses.F.G.-L. Poitiers(CdMT).NordsimisoperatedunderanagreementoftheJointCommittee providedgeologicalsamples.A.E.A.,S.B.,D.E.C.,A.B.,R.M.,A.Mazurier,E.H.,P.B., oftheNordicResearchCouncilsforNaturalSciences(NOS-N),withfurther C.F.,F.T.F.,F.G.-L.,P.J.,E.J.,F.O.O.,A.-C.P.-W.,A.R.,D.V.,M.W.andA.Meunier fundingfromtheKnutandAliceWallenbergFoundation;thisisNordsim analyseddata.A.E.A.,S.B.,D.E.C.,R.M.andE.H.wrotethemainpartofthe contribution256.ResearchwassupportedbytheFrenchCNRS-INSU,theBureau manuscript.A.B.,A.Mazurier,P.B.,J.-J.D.,C.F.,F.T.F.,F.G.-L.,P.J.,E.J.,A.-C.P.-W., deRecherchesGe´ologiquesetMinie`res(BRGM),theDanishNationalResearch A.R.,D.V.,M.W.andA.Meunierprovidedcriticalinputtothemanuscript. FoundationandtheSwedishResearchCouncil. AuthorInformationTherepositoryofthefossilsistheDepartmentof AuthorContributionsA.E.A.conceivedandheadedtheproject.A.E.A.,S.B.,D.E.C., Geosciences,UniversityofPoitiers,France.Reprintsandpermissionsinformation E.H.,A.B.,R.M.,J.-J.D.,P.J.andA.Meunierdesignedresearch.A.E.A.,A.Mazurier, isavailableatwww.nature.com/reprints.Theauthorsdeclarenocompeting E.H.,F.O.O.andP.S.didfieldresearch.A.E.A.andF.O.O.analysedsedimentology. financialinterests.Readersarewelcometocommentontheonlineversionofthis A.E.A.,S.B.,F.T.F.,P.S.andD.V.analysedmorphology.A.E.A.,S.B.,R.M.and articleatwww.nature.com/nature.Correspondenceandrequestsformaterials A.Mazuriercarriedoutmicrotomographicanalyses.E.J.analysedpalynology. shouldbeaddressedtoA.E.A.([email protected]). 104 ©2010Macmillan Publishers Limited. All rights reserved doi: 10.1038/nature09166 SUPPLEMENTARY INFORMATION 1 - The Francevillian Group and the FB2 section Figure S1 | a, Lithostratigraphy of the Palaeoproterozoic Francevillian group with the five Formations (FA to FE) and age constraints shown. b, Detailed stratigraphy of the FB2 section outcropping near the town of Franceville, showing the macrofossil-bearing levels (black shales). c, Stratigraphic evolution of δ13C values and of total organic carbon (TOC, wt. %) carb contents (see Tab. S5). www.nature.com/nature 1 doi: 10.1038/nature09166 SUPPLEMENTARY INFORMATION Two Sm-Nd isochrons on clay minerals formed during the very early diagenesis give the FB Formation an age of 2099 ± 115 million years (Ma) (Bros et al., 1992). Zircons from the tuff in the overlying FD Formation provided a 2083 ± 5 Ma SHRIMP U-Pb syndepositional age (Hoori et al., 2005). The Oklo diagenetic uranium deposit at the FA-FB boundary has been dated at 2050 ± 30 Ma by using U-Pb method (Gancarz, 1978). Taken together, these data indicate the depositional age for the Francevillian B Formation near 2100 ± 30 Ma. This is supported by the highly positive δ13C values of the carbonate fraction of the FB2 black shales (Fig. S1), the range of which (+5.5‰ to +9.6‰) is consistent with deposition during the ~2.22-2.10 Ga Lomagundi seawater positive carbon isotope excursion (Bekker et al., 2008). www.nature.com/nature 2 doi: 10.1038/nature09166 SUPPLEMENTARY INFORMATION 2 - The site and the macrofossils Figure S2 | a, The Francevillian B2 site outcropping near the town of Franceville, Gabon. b, The transition between the cemented sandstone beds and the black shales. c, The 5 m-thick finely-laminated fossiliferous black shales. Scale bar, 50 cm. www.nature.com/nature 3 doi: 10.1038/nature09166 SUPPLEMENTARY INFORMATION Figure S3 | Black shale bedding surface bearing macrofossils from the FB2 level photographed in situ. The disparity of spatially close and serially repeated forms is evident. Scale bar, 10 cm. www.nature.com/nature 4 doi: 10.1038/nature09166 SUPPLEMENTARY INFORMATION Figure S4 | a, Black shale surface from the FB2 level bearing macrofossils. In this case, density approximates 40 specimens/m2. b, c, d, Details showing the disparate orientation of differently sized and shaped structures (as indicated by arrows). The surface is locally coated with iron oxides. Contact deformation of the surrounding black shale sediment with the structures is occasionally seen. Scale bar, 10 cm. www.nature.com/nature 5

Description:
Most studies of bacterial colony growth have been done on TOMCAT beamline of the Swiss Light Source at the Paul Scherrer Institute . Characterization of organic matter associated with uranium deposits in the . In this case,.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.