ebook img

LArGe - Active background suppression using argon scintillation for the GERDA $0\nu\beta\beta$-experiment PDF

0.58 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview LArGe - Active background suppression using argon scintillation for the GERDA $0\nu\beta\beta$-experiment

Eur.Phys.J.CmanuscriptNo. (willbeinsertedbytheeditor) LArGe – Active background suppression using argon scintillation for the nbb GERDA 0 -experiment MAgostini1,MBarnabé-Heider1,2,DBudjáš1,CCattadori3,AGangapshev2,4,K Gusev1,5,6,MHeisel2,a,MJunker7,AKlimenko2,5,ALubashevskiy2,5,KPelczar8,S Schönert1,ASmolnikov2,GZuzel2,8 5 1 1TechnischeUniversitätMünchen,Germany 0 2Max-Planck-InstitutfürKernphysik,Heidelberg,Germany 2 3UniversitàdegliStudidiMilanoeINFN,Milano,Italy n 4InstitutforNuclearResearch,Moscow,Russia u 5JointInstitutforNuclearResearch,Dubna,Russia J 6NationalResearchCenterKurchatovInstitut,Moscow,Russia 7LaboratoriNazionalidelGranSasso,Assergi,Italy 1 8JagellonianUniversity,Cracow,Poland 1 Received:date/Revisedversion:27/05/15 ] t e d Abstract LArGe is a GERDA low-backgroundtest facility 1 Introduction - to study novel background suppression methods in a low- s n backgroundenvironment,forfutureapplicationintheGERDA GERDAisanexperimenttosearchfortheneutrinolessdou- i experiment.SimilartoGERDA,LArGeoperatesbaregerma- ble beta (0nbb ) decay of 76Ge. Bare high-purity germa- . s niumdetectorssubmersedintoliquidargon(1m3,1.4tons), nium(HPGe)detectorsenrichedin76Ge,whichserveboth c which in addition is instrumented with photomultipliersto assourceanddetectorforthe0nbb -decays,aresubmersed i s detectargonscintillation light. Thescintillation signalsare inliquidargon(LAr).TheLArservesasahighpurityshield y h usedinanti-coincidencewiththegermaniumdetectorstoef- againstexternalradiationandasacoolantfortheHPGede- p fectivelysuppressbackgroundeventsthatdepositenergyin tectors.The0nbb -signalisasharppeakintheenergyspec- [ theliquidargon.Thebackgroundsuppressionefficiencywas trum at Qbb = 2039keV from the sum energy of the two 3 studied in combination with a pulse shape discrimination beta particles in a single HPGe detector. Details of the ex- v (PSD)techniqueusingaBEGedetectorforvarioussources, perimental setup and performance are summarized in [1]. 2 whichrepresentcharacteristicbackgroundstoGERDA.Sup- TheGERDA experimentfollowsastagedapproach:PhaseI 6 pressionfactorsofafewtimes103havebeenachieved.First hasbeenrecentlycompletedafteracquiringanexposureof 7 5 background data of LArGe with a coaxial HPGe detector 21.6kg·yr and a background count rate at Qbb of 1·10−2 0 (withoutPSD)yieldabackgroundindexof(0.12−4.6)·10−2 cts/(keV·kg·yr)after pulse shape analysis [2, 3]. No signal 1. cts/(keV·kg·y)(90%C.L.),whichisatthelevelof GERDA was observed and a limit for the half-life of T0n > 2.1· 1/2 0 PhaseI.Furthermore,forthefirsttimewe monitorthenat- 1025yr (90% C.L.) was achieved [4]. PhaseII is currently 5 ural42Arabundance(parallelto GERDA), andhaveindica- underpreparation:the goalis to explorehalf-livevaluesin 1 : tion for the 2nbb -decay in natural germanium. These re- therangeof1026yrbyfurtherreducingthebackgroundby v sultsshowtheeffectivityofanactiveliquidargonvetoinan one order of magnitude to ≤10−3 cts/(keV·kg·yr), and by i X ultra-low background environment. As a consequence, the collectinganexposureofupto100kg·yrquasibackground r implementationofaliquidargonvetoinGERDAPhaseIIis free. a pursued. 1.1 BackgroundsuppressioninGERDAPhaseII PACS 23.40.-sb decay; double b decay; electron and muoncapture·27.50.+emass59≤A≤89·29.30.KvX- Toreachthisdemandingbackgroundcountrate,severalex- andg -rayspectroscopy·29.40.McScintillationdetectors perimental modifications with respect to PhaseI are being implemented:the mostimportantare (1)the additionalde- ploymentofapproximately20kgnovelthick-windowBroad- EnergyGermanium(BEGe) detectors with highly efficient ae-mail:[email protected] pulse shape discrimination (PSD) performance [5, 6], and 2 (2)theimplementationofasensorsystemtodetecttheliq- uidargonscintillationlightinanti-coincidencewiththeger- maniumdetectorsforbackgroundsuppression,firstdemon- stratedinreferences[7,8]. lock LArGe, the Liquid Argon Germanium test facility of forGe-detectordeployment ✲ GERDA, was constructed to study these novelactive back- coppercryostat groundsuppressionmethodsin a low-backgroundenviron- withWLSmirrorfoil ment[9, 10]. Similar to GERDA, bare Ge-detectorsare op- LArvolume1m3(1.4t) ✲ eratedinLArGein1m3 (1.4tons)ofliquidargon,whichin PMTs additionisinstrumentedwithphotomultipliertubes(PMT). 9×8"ETL9357 ✏✏✶ ✏ Thesetupislocatedundergroundat3800mw.e.attheLab- coatedwithWLS ✏✏ oratoriNazionalidelGranSasso(LNGS),andhasbeentak- detectorstrings ✏✏✏✶ ✏ ing data since May 2010. The data presented in this pa- upto9Ge-detectors ✏✏ perdemonstratesthattheargonscintillationvetotechnique gradedshield works very efficiently both alone and in combination with 15cmcopper,10cmlead, PSDappliedtoBEGedetectorsignals. 23cmsteel,20cmpolyethylene ✏✏✏✶ 1.2 Conceptofliquidargonscintillationveto Fig.1:CutawayviewoftheLArGesetup. Itiswellknownthatliquidargonemitsscintillationlightin response to ionizing radiation.Up to approximately40000 photons,peakedatawavelengthof128nm(XUVphotons), 2.1.1 Shielding areemittedper1MeVbeta/gammaenergydeposition[11]. The graded shield of increasing radiopurity is designed to Backgroundeventsoftenhaveenergydepositionoutsidethe have the gamma background dominated by the innermost Ge-detectorinthesurroundingmedium,inourcasethescin- tillating LAr. Conversely,0nbb -eventsare confined to the layerof15cmelectrolyticcopper.Thisisfollowedby10cm oflow-activityleadand23cmofsteel.Theoutermostlayer Ge-detector, so that no scintillation light is triggered. An consists of 20cm polyethylene to attenuate neutrons. To- observation of the light is therefore a good indicator for a gether,allthreelayersattenuateanexternalgamma-rayfrom background event, and can be used to veto the coincident Ge-signal.For thatpurpose,the LAr mustbe instrumented the2615keVlineof208Tlto5·10−8 oftheinitialflux.The to detect the light. In case of LArGe the light is shifted in purestshieldingisprovidedby>40cmLArinsidethecryo- stat. At the inside of the cryostat, the PMT glass and the itswavelengthtomatchthesensitiverangeofthePMTsand VM2000 mirror foil yield the highest radioimpurities. To isguidedtothePMTswithmirrorfoilontheinnercryostat maintainsufficientshielding,thedistanceofthePMTstothe wall. Ge-detectorsischosenaslargeas90cm.Forthemirrorfoil, thelowareadensityleadstoasurfaceactivitybelowthatof 2 Experimental thecopper.TheradiopurityscreeningresultsoftheseLArGe componentsaregiveninTable1.Throughoutthemeasure- 2.1 Detectordesign ments presented here, a part of the steel and polyethylene shield was not completed yet. Only a small impact on the AnillustrationoftheLArGesetupisshowninFig.1.Avac- backgroundrunisexpectedthereof. uuminsulatedcoppercryostatatthecentercanhold1000l (1.4t)ofLAr.Nine8"ETL9357photomultipliertubesare 2.1.2 Cryostat&cryogenics immersedintotheLArfromthetop.Theinnercryostatwalls arelinedwithVM2000radiantmirrorfoil1.PMTsandmir- The main body of the double-wall cryostat is made from rorfoilarecoatedwithTPB/polysterenewavelengthshifter. electrolyticcopper.Ithasaninnerdiameterof90cmanda Thecryostatissurroundedbyapassiveshieldagainstexter- height of 210cm. Heat loss is primarily prevented by the nalbackground.A doublechamberlock system on the top insulation vacuum of 10−5 to 10−6mbar. The uppermost servesasanaccessportforthedeploymentofGe-detectors 40cm collar and bellow are made from stainless steel to and internal radioactive sources for calibration. The cryo- minimizethethermalconductivitytothetop.Thecryostatis genicinfrastructure,aslowcontrolsystem,andtheDAQare closedbya38mmthickflangefromelectrolyticcopper.In- locatedadjacenttothissetup. fraredshieldsfromthincopperfoilaremountedbothinside 1productofthecompany3M the insulation vacuum, and below the top flange. A PMT 3 Table 1:Gamma-spectrometrymeasurementsofradioimpuritiesin LArGematerials. Givenisthe specific activityin units [mBq/kg].Theoriginofthematerialsis;CopperLENS:NOSVcopperfromNAAHamburg.LeadLENS:‘DoeRun’-quality fromJLGoslar.Steel(shield):carbonsteelfromDillingerHütteGTS.PE(shield):polyethylenefromSimonaAG.VM2000: radiantmirrorfoilfrom3M(measuredwithglue,mountedwithglueremoved).PMTglass(bulb):ultra-lowbackgroundglass fromETL(nowETEnterpriseLtd.). material specificactivity 226Ra 228Ra 228Th 40K 60Co others copperLENSa,1 <0.016 <0.019 <0.088 <0.01 leadLENSa,1 <0.029 <0.022 0.44(14) 0.18(2) 27(4)·103210Pb steel(shield)b,2 2.04(33) 1.63(41) 5.34(69) <4.2 <0.3 PE(shield)b,2 <2.5 11.2(32) <3.4 10.8(67) VM2000a,2 <1.6 <2.2 <1.2 140(10) <0.44 <0.45137Cs PMTglass(bulb)b,2 2010(190) 2010(480) 210(60) 1750(430) <370137Cs ameasuredwiththeGEMPIspectrometeratLNGS.[12] 1upperlimitsgivenfork=2,97.7%C.L. bmeasuredintheLow-LevelLabatMPIKHeidelberg.[13] 2upperlimitsgivenfork=1.645,95%C.L. supportstructure of copperand PTFE rests on a rim at the copper-steel transition. The filling level of the LAr is ad- justed slightly abovethe PMTs’ equator,leaving the upper partofthecryostatinthegasphaseofargon.Astrongtem- peraturegradientbuildsupfromthecopperatLArtempera- ture,acrossthestainlesssteeltothetopflange,whichitself staysabovethefreezingpoint.Thetotalheatloadis∼90W. Anactivecoolingsystemcoolsthecryostatbyevaporat- ing liquid nitrogen(LN ) in an integratedcoolingspiralin Fig.2:Left:CryostatbeeinglinedwithVM2000mirrorfoil. 2 thesteelcollar.Theinnermostinfraredshield(3mmthick) Right:BottomviewofthePMTsinsidethecryostat. is thermallycoupledto this heat exchangerto preventheat lostthroughradiation.Allrelevantcryogenicparametersare compiledinaslowcontrolsystem,whichregulatesthecool- ing power via the flow of LN . During normaloperationa 2 LN flowof 2.5kg/his sufficienttoreducetheLAr lossto 2 zero, which allows a continuous operation of LArGe. The masscopperholdersinaseparatecleanbench.Theyaretrans- workingpressureofthecryostatiskeptat30−70mbarover- ferredtothemainlockusingatransportationcontainer,keep- pressure, to preventgaseousimpuritiesfrom the outside to ing them in gaseous nitrogen atmosphere at all times. The entertheLAr. mainlockandtheopenvolumebetweencryostatandshield The filling procedure for the cryostat requires special are permanentlyflushed with gaseousargonat slight over- precaution to prevent contamination of the LAr. The mea- pressure. The pressure gradient from the cryostat, via lock surements presented in this article were performed in LAr andshield,totheoutsideactsasasafeguardagainstair-trace 5.5 (purity 99.9995%). Against traces of humidity several contaminationoftheLArandavoidsbackgroundfromair- pumping-flushing cycles were performed with gaseous ar- borne222Rn. gon,whilethecryostatwasheatedto>40◦C.Topreventra- dioactivebackgroundfromradon,theargonwasfilledthrough an active-charcoaltrap (602g of CarboAct), followedby a TheGe-detectorsaredeployedintothecryostatapprox- PTFEparticlefilter. imately equally spaced between the bottom and side walls (distance d≈45cm), leaving 90cm of LAr on top towards 2.1.3 Lock&sourceinsertionsystem the PMTs. Internal‘close-by’wire sourcesare inserted di- rectlyadjacenttotheGe-diodesintheargon(d≈7cm).Ex- The lock on top of the LArGe setup servesfor the deploy- ternalsourcesaredeployedthroughaccessportsintheshield ment of Ge-detector strings and internal radioactive wire directlyadjacenttotheouterwallofthecryostat(d≈50cm). sourcesintothecryostat.Sofar,onlyonedetectorhasbeen Theverticalpositionofallsourcesmatchesthecenterofthe inserted at a time. The Ge-detectors are mounted to low- Ge-detector. 4 for this low Y are: (1) only 5 out of 9 PMTs were opera- tional at low temperature4, (2) trace contaminationsof the argoncanstronglyquenchthescintillationandsignificantly Fig.3:Schematicviewof shortentheattenuationlengthofthe128nmphotons.Anin- the BEGe detector (grey dicatorforthelightquenchingisthelifetimet ofthetriplet colour) in a low-mass states of the argon excimers, which can be measured from copper-holder. The CC2 recordedscintillationwaveforms.Duringdatatakingt was preamplifier is placed in monitoredintherangebetween450to550ns,comparedto a grounded copper box t =1590ns[14]incleanargon. mountedabovethedetec- tor (top right). No elec- tronic cabling is shown. 2.3 Germaniumdetectors A close-by wire source with copper weight is Amodifiedthick-windowbroad-energygermanium(BEGe) hangingontherightside. detectorhasbeenusedtocarryoutthesuppression-efficien- cymeasurementsdescribedinsection3.Itisap-typediode of878g byCanberraSemiconductors,N.V.Olen/Belgium. 2.2 Lightinstrumentation The depletion voltage is +4kV [15]. A small p+ contact leadsto a strongweightingfield close tothe read-outelec- Thelightread-outisdoneusingnineETL29357photomul- trode,whichallowsgoodpulseshapediscrimination.Apro- tiplier tubes. The 8" (200mm) diameter end window with totypeoftheGERDAPhaseImulti-channelcharge-sensitive alowresistancebialkaliphotocathodeissensitivetowave- preamplifier (CC2) with integrated FET and RC feedback lengthsfrom275−630nm3.Thepeakquantumefficiencyof component[16] is used and mountedclose-by the detector thePMTsis18%at370nm.Sincetheglassoftheendwin- – see Fig. 3. A low-mass copper-holderis used to support dow is not transparent for the 128nm scintillation light, it thediodeandsubmerseit‘naked’intoLAr.SignalandHV mustbe coveredwith wavelengthshifter(WLS). A picture areconnectedvia pressurecontactsto the detectorsurface. ofthePMTsandmirrorfoilinthesetupisshowninFig.2. A detector resolution of 1.99keV FWHM at 1332keV is ThePMTsareequippedwithacustommadevoltagedi- achieved in this setup, compared to 1.63keV in a vacuum vider with a wide linear dynamic range from 2mV to 4V. cryostatwiththesamedetector[5]. Cleanpulseshapesareobtainedbyoperatingwithnegative Forthebackgroundmeasurementsdescribedinsection4 HV on the photocathode. The voltage divider is based on theBEGedetectorisreplacedbythecoaxialp-typeHPGe- a 0.5mm thin CuFlon(cid:13)R printed circuit board with compo- diode GTF44. In contrast to BEGe it has a low intrinsic nentsselectedforlowmassandradiopurity. background(60Co,68Ge)andahighmass(2465g),whereas ThewavelengthshifterusedtocoatMirrorfoilandPMTs pulseshapediscriminationis inferiorandnotappliedhere. consistsof10%fluorescentdye(tetraphenylbutadiene)em- The detector has been modified by the manufacturer Can- beddedintoapolymermatrixofpurifiedpolystyrene.Both berraforthebareoperationinLAr[17].Itisequippedwitha substancesaredissolvedintolueneanddehumidifiedusing low-backgroundversionoftheCC2chargesensitivepream- gaseous nitrogen. A homogeneous coating is achieved by plifier.Withinaninvestigationprogramof42Arbackground pullingthe Mirrorfoilthrougha bathin 45◦ angle.Incase thediodehasbeenencapsuledin a groundedFaradaycage ofPMTs,thephotocathodesaresimplybrushedwiththeso- madefromthinlayersofPTFEandcopper. lution in several thin layers. The coating thickness is esti- matedfromtheconsumptionofthesolution.Athicknessof 1−4m m is choosen as a compromise between shifting ef- 2.4 Dataaquisitionandanalysismethods ficiency and mechanical stability in cryogenic liquid. The coated foil has a specular reflectivity of ∼95%at the peak 2.4.1 CombinedGe-detectorandPMTreadout& fluorescencewavelengtharound420nm. waveformprocessing A characteristic quantity of the setup is the photoelec- AblockdiagramofDAQandfront-endelectronicsisshown tron(pe)yieldY. For the measurementsdiscussed herewe in Fig. 4. The Ge-detector is supplied with bias HV (Iseg hadY≈0.05pe/keV,whichcorrespondstoanenergythresh- oldof1/Y≈20keVforasinglephotoelectron.Tworeasons 4Some PMTs exhibit light production due to discharges within the glassbodyatcryogenictemperatures andwereeitheroperated atre- 2now:ETEnterpriseLtd. ducedgainornotatall.ThesefindingsledtoanR&Dprogramtosolve 3wavelengthrangeoverwhichquantumefficiencyexceeds1%,accord- this issue for next generation PMTs being implemented in GERDA ingtothedatasheet. PhaseII. 5 Table 2: Summary table of source activities and measure- ment time with corresponding signal rates of Ge-detector, PMTs,andthepulseracceptance. source pos. activity meas. n BEGe n PMT e trig trig acc [kBq] time[d] [Hz] [kHz] [%] 60Co int 0.314 13.06 26.9 5.8 96.6 ext 94.9 2.49 6.9 39.2 78.7 226Ra int 0.934 1.54 65.4 8.1 94.2 ext 38.9 8.30 4.5 43.3 78.3 228Th int 0.63 1.96 47.5 8.6 95.7 thebaselinespread,correspondingto∼20%oftheaverage Fig. 4: Block diagram of the DAQ with Ge-detector and singlephotoelectronamplitude. PMTreadout.VD=voltagedivider;PA=preamplifier. The veto acceptance is the complementary probability for an event being vetoed by random coincidences (p ), rc NHQ 225M NIM).A pulsersignal(Ortec Mod. 448NIM) eacc=1−prc. It is measured by applying the veto cut on can be fed into a test inputof the preamplifier. The output pulsersignalsorsinglefullenergypeaks.Therandomcoin- signal is amplified without shaping by a custom-made lin- cidenceprobabilitycanalsobeestimatedviaprc≈n tPriMgT·D t, earamplifier,andfedintoaFADC(StruckSIS3301VME; usingthePMTtriggerrateandthevetowindowsize.Itturns 8channels,14-bit,105MS/s).ThePMTHVissuppliedby outthatallmethodsyieldconsistentresults.Vetoacceptance IsegNHQ204M/225M.Thesignalsareamplifiedbyafac- valuesin measurementswith differentsourcesare listed in torten(PhillipsScientificMod.776NIM)andmergedina Table2. linearfan-in(LeCroyMod.428FNIM).Theresultinganalog- Thesuppressionfactoristheratioofeventsintheunsup- sumisamplifiedinanothercustom-madeanalogshaper(NIM) pressed(N )versusthesuppressed(N )spectrum.Tomake 0 S with a shaping constant of a few 10ns, to match the dy- SF independentof the source strength in the measurement namicrangeandsamplingrateofthesubsequentFADC.The it is weighted by e , hence SF=e ·N /N . Suppres- acc acc 0 S FADC is internally triggered on the Ge-signal, and simul- sionfactorsfortheROIaredeterminedina70keVwindow taneouslyrecordsGe- andPMT waveformsof40m strace- aroundQbb .UncertaintiesarecalculatedaccordingtoPois- lengthwith100MHzsamplingrate.TheFADCaquisitionis soncountingstatistics. controlledbyacustom-madesoftwarebyMIZZIComputer SoftwareGmbH[18]. The offline analysis of the digitized Ge-waveforms is performedwiththesoftwareframeworkGELATIO[19]and 2.4.3 Pulseshapediscrimination followingtheproceduredescribedinreference[20].Theen- ergy deposited in the Ge-detectors is reconstructed by ap- TheobjectiveofPSDistodistinguishthesinglesiteevents plyinganapproximatedGaussiandigitalfilter.Non-physical (SSE)ofthebb -decayfrommultisiteevents(MSE)ofcom- signalsduetoinstabilitiesoftheread-outelectronicsorelec- mon gamma-backgroundwith multiple interaction vertices tromagneticpick-upnoiseare rejectedduringthedata pro- withintheGe-diode.SSEandMSEcanbedistinguishedby cessingbyapplyingasequenceofqualitycuts;includingthe themaximumamplitude(A)oftheircurrentpulse,normal- flatnessandnoise-levelofthebaseline,thepositionandrise ized by the energy (E). The so-called cut parameter ’A/E’ time of the leading edge,and the fall time of the exponen- hasbeenestablishedforthispurpose[5].ThePSDcutiscal- tialdecaytailofthechargesignal.ThePMTwaveformsare ibratedto90%acceptanceonthedoubleescapepeak(DEP) analysedwithoutfilteringor quality cuts. Merelythe base- ofthe2615keV208Tlline,whichbyitsnatureisdominantly lineandvetoconditionaredetermined. ofSSEcharacter.Asdiscussedin[2],inaBEGedetectorthe DEPisagoodproxyfor0nbb andtheiracceptancesagree withinabout1%. UncertaintiesofPSD suppressionfactors 2.4.2 LArscintillationvetocut includebothstatisticalandsystematicuncertainties. Thevetoconditionisfulfilledwhenoneormorephotoelec- In addition,the combinedsuppressionof LAr veto and trons are detected in a 5m s window aroundthe Ge-trigger. PSDisdeterminedfromthespectra.Duetothestrongsup- Thresholdand windowsize are optimizedto maximizethe pression of close-by 60Co and 228Th the analysis window product of suppression factor SF at Qbb and the veto ac- forthesesourcesisextendedfrom70keVwidthto200keV, ceptancee .Thethresholdisslightlyabovenoiseat5s of excludingthesingleescapepeakof208Tlat2104keV. acc 6 106 105 104 103 102 eV] 101 k 5 100 #/ s[ 106 nt ou 105 c 104 103 102 101 100 0 500 1000 1500 2000 2500 3000 3500 energy[keV] (a)228Thsourceclose-by(top)&external(bottom) 106 105 104 103 102 eV] 101 k 5 100 #/ s[ 106 nt ou 105 c 104 103 102 101 100 0 500 1000 1500 2000 2500 3000 3500 energy[keV] (b)226Rasourceclose-by(top)&external(bottom) 106 withoutveto V] 105 withLArveto ke 104 withPSDcut 5 withveto&PSD [#/ 103 s nt 102 u co 101 100 0 500 1000 1500 2000 2500 3000 3500 energy[keV] (c)60Cosourceclose-by Fig.5:Fullenergyspectraofthesourcemeasurementsin5keVbinning.The228Thand226Raspectrafeatureapulsersignal at3MeV.Incaseof60Co,asmallbackgroundpeakof208Tlisvisibleat2615keV.Thecolourcodeisshownincanvas(c). 7 3 Measurementofsuppressionfactors 104 Energyspectra of various sources in close-by and external 103 position(see 2.1.3) were recordedwith the BEGe detector. 102 The sources represent characteristic background contribu- tionsinGERDA.Whilefromexternalsourcesonlygammas V] 101 canenterthecryostat,close-bysourcesareencapsuledince- e 1k 100 ramics(D=1mm)andthinsteel(R=0.25−0.5mm),thus #/ allow some high-energy beta particles to enter the LAr as s[ 104 nt well.Thesourceactivitiesarechosentobalancehighsignal u co 103 rates in the Ge-detector with random coincidences (2.4.2) – see Table 2. Without a source the pulser acceptance is 102 97.3%,andthePMTtriggerrate(∼5kHz)isdominatedby 101 darknoiseandthedecayof39Ar(1.4kBq). TheLArvetoandPSDcutsareappliedtoeachmeasure- 100 ment in the whole energy range. While the achieved sup- 1900 1950 2000 2050 2100 2150 pressionfactorintheROIistheultimatelyrelevantnumber, energy[keV] other energy regions of distinct gamma lines illustrate the (a)228Thsourceclose-by(top)&external(bottom) differentandcomplementarysuppressionmechanismunder- lyingPSDandLArveto. 103 3.1 Th-228suppression 102 Even after careful material screening and selection, 228Th 101 anditsprogeniesfromthenaturaldecaychainarepresentat V] tracelevelsin the constructionmaterialsof GERDA. Back- e 1k 100 groundfromsourcesclose-bythegermaniumoriginatesfrom [#/ detectorholders,cablesandfront-endelectronics[3].These nts 103 components are immersed in the liquid argon and are re- u o c ferredtoas‘close-bysources’.Conversely,‘externalsources’ 102 arelocatedinthecryostat,itsneckandthephotomultipliers oftheLArinstrumentationitself.Thecorrespondingenergy 101 spectraofaclose-byandexternal228Thsourceareshownin Fig.5a. 100 Bothspectraaredominatedbythe2615keVgammaline 1900 1950 2000 2050 2100 2150 of 208Tl and it’s single- and double escape peak (SEP at energy[keV] 2104keV,DEPat1593keV).Sincethedoubleescapepeak (b)226Rasourceclose-by(top)&external(bottom) isdominantelyofSSEnature,andassuchusedtocalibrate thePSDacceptance,itremainspracticallyunsuppressedby PSD(Fig.7).Ontheotherhand,thetwo511keVannihila- 103 tiongammastriggertheLArvetoreliablysuchthatthepeak V] vanishes.IncontrasttotheDEP,theneighbouring1621keV e k 102 1 fullenergypeakfromthe212Bidecayisaffectednearlyop- #/ [ posite by both cuts: all the energyof this line is deposited nts 101 u inthegermaniumdetector,leavingnoneforthesurrounding o c LAr to create scintillation. Moreover, the transition is not 100 part of a gamma cascade, thus no additional energy depo- 1900 1950 2000 2050 2100 2150 sitionintheLArisoccuring.Hence,theLArvetodoesnot energy[keV] comein.ThesuppressionfactorofPSDisabouttenforboth (c)60Cosourceclose-by source positions. The situation is the same for PSD on the 2615keVgammaline.However,theLArvetocanalsosup- Fig.6:Close-upview ofthe ROI atQbb (2039keV)ofthe pressthispeak,becausethegammaisemittedinacascade sourcespectrain1keVbinning.ForcolourcodeseeFig.5. precededbyothergammas(coincidentgammas),whichcan 8 The predominant isotope in this chain that contributes to the regionat Qbb is 214Bi, with severalgammalines up 104 V] to 3184keV. The suppression of gamma peaks follows the ke 103 same logicas showcasedfor228Th:single lines notbeeing 1 [#/ 102 affectedbytheLArveto(e.g.1764keV,2204keV,2448keV), nts asopposedtolinesemittedaspartofagammacascadeand ou 101 thereforeincoincidence(e.g.609keV,1120keV).TheLAr c 100 suppressionfactorsin the ROI are 4.6±0.2(close-by)and 3.2±0.2 (external), and about four for PSD (see Table 3, 1575 1600 1625 1650 2575 2600 2625 2650 Fig. 6b). The LAr suppression is much inferior compared energy[keV] to 228Th for mainly two reasons: (1) all gamma lines with Fig. 7: Left: the double escape peak of 208Tl at 1593keV sufficientenergyto create Compton eventsat Qbb are sin- and the 1621keV single gamma line of 212Bi. Right: the gle,hencedeprivingtheLArvetoofapossibilitytovetoon 2615keV coincident gamma line of 208Tl. Both examples a coincident gamma. The lack of coincident gammas also fromtheclose-bysource.SamecolourcodeasinFig.5. makesthe vetoless dependenton the source position.And (2)thegammashaveonlylittleenergyexceedingQbb ,thus onlylittlelightiscreatedtotriggertheveto.Despitethein- themselves trigger the LAr veto. The suppression is much dividualsuppressionofLArvetoandPSDbeingmoderate, strongerfortheclose-bysource(SF=47)thanfortheexter- theircombinationagainprovidesasuppressionwellbeyond nal(SF =1.3),becauseintheformercasecoincidentgam- oneorderofmagnitude. mashavelittlechancetoescapefromtheactiveLArvolume. This instance can be exploited to identifythe location of a 228ThbackgroundsourceviatheLArsuppressionfactors. TheROIofthe0nbb -decayisdominatedbyaflatComp- 3.3 Co-60suppression tonregionof208Tlbeforeandafterthecutsinbothspectra (Fig. 6a). The suppression factors of the LAr veto cleary Cosmogenic60Co is formedin Ge-detectorsandtheir cop- differ for the close-by (1180±250) and external (25±1) perholdersduringproductionaboveground.While60Coin sources, while beingquasi-independentof the source loca- the detectors can create background directly via their beta tionforPSD(2.4±0.1and2.8±0.1respectively–seeTable decay, 60Co background from the holders relies on gam- 3).TheLArsuppressionisstronglyenhancedintheComp- mas: only two gamma lines with significant branching ra- ton region of the 2615keV line, as compared to the full tioareemittedafterthedecayof60Co.Sincetheirenergies energy peak itself: since a fraction of about 2MeV is de- of 1173keV and 1332keV are below Qbb , they can cre- positedin the Ge-detectors,an excess energyof ∼600keV ate backgroundeventsonly via summation. As summation isdepositedinthe liquidargonin its vicinity,providingan strongly dependson the solid angle and the angular corre- additional handle for the LAr veto to act upon. The sup- lation of the gammas, only 60Co sources close-by the Ge- pressionfactorsofthecombinedLArvetoandPSDcutsare detectors are of concern for the GERDA background. The 5200±1300(close-by)and129±15(external),thusprovid- energyspectrumofclose-by60CoasmeasuredinLArGeis ing a strong suppression on all 228Th backgroundsources. showninFig.5c. Since only 5 counts survive the combined suppression of The energy regionabove the two gamma lines is dom- theclose-bysource,theanalysiswindowwasextendedfrom inated by the summation spectrum, which expands up to 70keV to 200keV width aroundQbb . Still, the numberof the summation peak at 2505keV5. Similar to 214Bi, LAr counts after the cut (=15) dominate the uncertainty of the suppressionfactor. suppression in the ROI (Fig. 6c) happens mainly via the gammaenergyexceedingQbb ,whichincaseof60Coisal- most 500keV. This higher energy and multiplicity reduces 3.2 Ra-226suppression thechanceforitbeeingdepositedindeadvolumeratherthan activeargon,henceleadingtoasuperiorsuppressionfactor 226Ra is a long lived progeny of 238U in the natural decay of27±2comparedto226Ra(Table3).ThePSDcutworks chain. Similar to 228Th, it is present at trace levels in all veryefficientlywithasuppressionof76±9,asbyconstruc- constructionmaterials.226Radecaysto222Rn,whichisara- tion summation events are MSE. Again, the combined cut dioactivenoblegasthatdiffusesintotheLAroftheGERDA canrejectbackgroundbythreeordersofmagnitude. cryostat and is a potential source of background. Energy spectra were recorded with LArGe for a close-by and ex- 5Thepeakabove2505keVisthe2615keVlineof208Tlbackground ternal226Rasource,bothofwhichareshowninFig.5b. fromthefront-endelectronicsusedwiththeBEGedetector. 9 Table 3: Summary table of suppression factors for differ- Table4: Summarytableofthebackgroundindexfordiffer- ent sources in the ROI around Qbb at 2039keV. The com- entchoicesoftheROI.AllROIarecenteredaroundQbb and binedsuppression(‘total’)rangesfromafew101 toseveral excludethe2204keVlineof214Bi.Confidenceintervalsare 103 andgivestheorderofmagnitudebywhichbackground givenwith90%. sourcescanbesuppressed. region counts[#] BI[cts/(keV·kg·yr)] source position suppressionfactor ofinterest noveto veto noveto veto LArveto PSD total 100keV 14 0 0.44(12) <7.2·10−2 60Co int 27±2 76±9 3900±1300 200keV 30 1 0.47(9) 0.17−6.8·10−2 ext 3.2±0.2 4.4±0.4 18±3 300keV 40 1 0.43(7) 0.12−4.6·10−2 226Ra int 4.6±0.2 4.1±0.2 45±5 perimentaldataofLArGeandwillbereportedinapublica- ext 25±1 2.8±0.1 129±15 228Th tiondedicatedtotheLArvetoinGERDA. int 1180±250 2.4±0.1 5200±1300 3.4 Conclusiononsuppressionfactors 4 Backgroundmeasurementsinnaturalgermanium The suppressionfactorsof the differentsourcesin the ROI of the 0nbb -decay are summarized in Table 3. The large LArGe has been designed to demonstrate the applicability variation of the suppression factors is consistent with our of the LAr veto in an ultra low-background environment. understandingoftheunderlyingphysics,asdescribedinthe Forthatpurposeameasurementwithasemi-coaxialdetector previoussections. withnaturalisotopiccomposition(GTF44,see2.3)andim- ThecombinationofLArvetoandPSDprovestobemore provedradiopurefront-endelectronicswasconducted.The powerfulthanwouldbeexpectedfromindependentcuts:the LArvetowasoperatedunderthesameconditionsasprevi- mean average of the combined suppression in the ROI is ouslydescribed,exceptforanexchangeoftheLArbyhigh enhancedbya factor1.84±0.17,comparedto the product purityargon6.0.Thevetoacceptanceof91%isdetermined oftheindividualsuppressionfactorsofPSDandLArveto. bythepulser.Thedetectorresolutionis3.5keVat1332keV, This means that event classes leading to rejection by one noPSDwasapplied. or the other cut are anti-correlated. For example, a Comp- ton event at Qbb from close-by 208Tl leaves the 2.6MeV gammatodeposit∼600keVoutsidetheGe-detector,along- 4.1 Backgroundcomponents sideits583keVcoincidentpartner.However,iftheeventat Qbb resultsfromthesummationofthetwogammas(amul- Thefullenergyspectrumwithanexposureof116kg·d(life tisite event likely to be rejected by PSD), a single gamma time 47.05 days) is shown in Fig. 8. The dominant back- of higher energy ∼1.2MeV can leave the detector, and is groundsourceabove1.5MeVisthe2615keVlineof208Tl more likely to escape the active LAr volume than two en- and its Compton continuum.The suppression factor of the ergetically lower gammas. Hence, this event class is anti- fullenergypeakis1.52±0.62,whichisinagreementwith correlatedinLArvetoandPSD.Ananalogueanalysisoffull thecorrespondingvalue1.28±0.01obtainedintheexternal energypeaksoftheinvestigatedsourcesreturnsanaverage source measurement. Hence, the suppression factor points ‘enhancement’of1.007±0.015.Thisisconsistent,sinceno towardsadistantoriginofthisbackground,presumablythe (anti-)correlatedeventtopologiesareexpectedhere. PMTs.Otherprominentbackgroundsourcesare40K(1461keV) The suppression factors measured here sketch the or- and214Bi(1764keVand2204keV).Theirlinesappearonly der of magnitude by which active background rejection in inthevetoedspectrum:whilethecontinuousComptonback- GERDAmaybeachievable,indicatingthatthegoalforPhaseII, groundisvetoedeffectively,singlefullenergypeaksarere- namely to reduce the background by one order of magni- jected only by random coincidences. Cosmogenic 58Co is tude,isinreach.Duetoahigherargonpurityweanticipate found at 811keV, likely sitting in the activated copper of to achievea betterphotoelectronyieldin GERDA, support- thedetectorencapsulation.Atlowenergiesthespectrumis ingthesuppressionof226Raandotherbackgroundsources dominated by the 39Ar beta spectrum (Qb -value 565keV) that create little light per event at Qbb . Other determining andaccompanyingBremsstrahlungphotons. factors for photoelectronyield are the geometry of the ac- tiveLArvolume,theGe-detectorstringswithin,andtheef- 4.1.1 2nbb contribution ficiency of light detectors and wavelength shifters. A full MC campaign using photon tracking has been carried out Thestrongsuppressionin thevetoedbackgroundspectrum to study and optimize a veto design for GERDA PhaseII. makesitpossibletoobservethe2nbb spectrumeventhough Thesesimulationsareinreasonableagreementwiththeex- thedetectorismadefromnon-enrichednaturalgermanium. 10 103 4 withoutveto 3 withLArveto 2 V] 102 e 1 k 5 0 #/ [ 1800 1900 2000 2100 2200 2300 nts 101 u o c 100 0 500 1000 1500 2000 2500 3000 energy[keV] Fig.8:BackgroundspectrumofGTF44withanexposureof116kg·d(lifetime47.05days).Theinlayshowsaclose-upview oftheregionofinterestaroundQbb at2039keV. Thepredictionofthe2nbb spectrumbasedon[21,22]for aPoissonvariableintheabsenceofbackground’usingfre- thisdetectorinfersthat69outof135observedcountsinthe quentistsstatisticsaccordingto[23].Theratioofcountsbe- continuum from 500keV (above dominant bremsstrahlung foreandaftertheLArvetoyieldabackgroundsuppression from39Ar)to2100keV(abovethe2nbb endpoint)areex- byoneorderofmagnitudeormore. pectedtostemfrom2nbb decays. 4.1.2 42Kabundance 5 Conclusion AuniquebackgroundtoGERDA andLArGeisthatof42K, identified through its gamma line at 1525keV. 42K (Qb = TheLArGetestfacilityhasdemonstratedthegreatpotential 3525keV, T1/2 = 12.6h) is a b -emitting progeny of 42Ar of an active liquid argonveto for the suppression of resid- (Qb =599keV,T1/2=32.9yr)withtracesexpectedinnat- ual background signals which deposit part of their energy ural argon. In LArGe we observe 7 counts in the interval inLAr.ItisthefirsttimebareGe-detectorsareoperatedin (1523−1527)keVaroundthepeak,outofwhich(1.35±0.27) a low-background environment with 1m3 of instrumented countsareexpectedfromComptonbackground.Theproba- LAr.Thebackgroundsuppressionefficiencyhasbeenstud- bility6toobserve≥7eventsfromthisbackgroundis0.08%. ied in combination with pulse shape discrimination (PSD) Neglectingpossibleinhomogeneitiesofthe42K spatialdis- of a BEGe detector. Suppression factors have been mea- tribution, the number of counts observed in the 1525keV suredfor severalsources(60Co, 226Ra, 228Th)representing peak corresponds to an abundance 42Ar/natAr of about characteristicbackgroundsourcestoGERDAindifferentlo- 2·10−21g/g[10].AlongwithGERDA[3],thedatapresented cations (close-by and external). The strongest suppression hereisthefirstpositivedetectionofnatural42Ar. factorswere obtainedfor combinedLAr veto and PSD for close-by 228Th (SF ≈ 5200) and 60Co (SF ≈ 3900). The combinedsuppressionofLArvetoandPSDismutuallyen- 4.2 BackgroundIndex hanced.Theparticularresponseofthedifferentsuppression methods is a useful tool to understand the location of dif- TheinlayofFig.8showsthe ROI ofthe0nbb -decay.Ina ferentbackgroundsevenin thecase oflowcountingstatis- largeenergywindowof300keVcenteredaroundQbb only tics. In a low background measurement without PSD, the oneeventsurvivestheLArvetocut.Dependingonthecho- LArvetohelpedtoachieveanexcellentbackgroundindexof sen width for that region, the achieved background index (0.12−4.6)·10−2cts/(keV·kg·y)(90%C.L.).Theconfidence after vetois about10−2 cts/(keV·kg·yr)– see Table 4. The intervalcoincideswiththebackgroundlevelofGERDAPhaseI lowerlimitscoverabackgroundindexof10−2cts/(keV·kg·yr), <10−2 cts/(keV·kg·y), despite LArGe being a much more whichisthedesigngoalofLArGeandGERDAPhaseI.The compactsetup.LArGehasthesensitivitytomeasurethenat- 90% confidence intervals are determined for ‘the mean of uralabundanceof42Arandthe2nbb -decayinnon-enriched germanium.Asaconsequenceoftheseresults,anactiveliq- 6Theprobabilityiscalculatedfromagaussiandistributedbackground g(l |m ,s )andpoissondistributedcountsp(n|l ),usingprob(n≥7)= uid argonveto has been developedfor GERDA and will be (cid:229) ¥n=7R0¥ g(l |m ,s )p(n|l )dl . usedinPhaseIIoftheexperiment.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.