ebook img

Laplacian eigenvectors of graphs: Perron-Frobenius and Faber-Krahn type theorems PDF

120 Pages·2007·0.901 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Laplacian eigenvectors of graphs: Perron-Frobenius and Faber-Krahn type theorems

Lecture Notes in Mathematics (cid:49)(cid:57)(cid:49)(cid:53) Editors: J.-M.Morel,Cachan F.Takens,Groningen B.Teissier,Paris Türker Bıyıkog˘lu · Josef Leydold Peter F. Stadler Laplacian Eigenvectors of Graphs Perron-Frobenius and Faber-Krahn Type Theorems (cid:65)(cid:66)(cid:67) Authors TürkerBıyıkog˘lu JosefLeydold DepartmentofMathematics DepartmentofStatisticsandMathematics FacultyofArtsandSciences ViennaUniversityofEconomics Is¸ıkUniversity andBusinessAdministration S¸ile34980,Istanbul Augasse2-6 Turkey 1090Wien e-mail:[email protected] Austria URL:http://math.isikun.edu.tr/turker e-mail:[email protected] URL:http://statmath.wu-wien.ac.at/˜leydold/ PeterF.Stadler BioinformaticsGroup DepartmentofComputerScience UniversityofLeipzig Härtelstrasse16-18 04107Leipzig Germany e-mail:[email protected] URL:http://www.bioinf.uni-leipzig.de LibraryofCongressControlNumber:(cid:50)(cid:48)(cid:48)(cid:55)(cid:57)(cid:50)(cid:57)(cid:56)(cid:53)(cid:50) MathematicsSubjectClassification((cid:50)(cid:48)(cid:48)(cid:48)(cid:41)(cid:58)(cid:48)(cid:53)(cid:67)(cid:53)(cid:48)(cid:44)(cid:48)(cid:53)(cid:67)(cid:48)(cid:53)(cid:44)(cid:48)(cid:53)(cid:67)(cid:51)(cid:53)(cid:44)(cid:48)(cid:53)(cid:67)(cid:55)(cid:53)(cid:44) (cid:49)(cid:53)(cid:65)(cid:49)(cid:56)(cid:44)(cid:48)(cid:53)(cid:67)(cid:50)(cid:50) ISSNprintedition:(cid:48)(cid:48)(cid:55)(cid:53)(cid:45)(cid:56)(cid:52)(cid:51)(cid:52) ISSNelectronicedition:(cid:49)(cid:54)(cid:49)(cid:55)(cid:45)(cid:57)(cid:54)(cid:57)(cid:50) ISBN(cid:57)(cid:55)(cid:56)(cid:45)(cid:51)(cid:45)(cid:53)(cid:52)(cid:48)(cid:45)(cid:55)(cid:51)(cid:53)(cid:48)(cid:57)(cid:45)(cid:48)SpringerBerlinHeidelbergNewYork DOI(cid:49)(cid:48)(cid:46)(cid:49)(cid:48)(cid:48)(cid:55)/(cid:57)(cid:55)(cid:56)(cid:45)(cid:51)(cid:45)(cid:53)(cid:52)(cid:48)(cid:45)(cid:55)(cid:51)(cid:53)(cid:49)(cid:48)(cid:45)(cid:54) Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember(cid:57), (cid:49)(cid:57)(cid:54)(cid:53),initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:176)c Springer-VerlagBerlinHeidelberg(cid:50)(cid:48)(cid:48)(cid:55) Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. TypesettingbytheauthorsandSPiusingaSpringerLATEXmacropackage Coverdesign:design&productionGmbH,Heidelberg Printedonacid-freepaper SPIN:(cid:49)(cid:50)(cid:48)(cid:56)(cid:55)(cid:57)(cid:55)(cid:54) (cid:52)(cid:49)/SPi (cid:53)(cid:52)(cid:51)(cid:50)(cid:49)(cid:48) Preface Eigenvectors of graph Laplacians are a rather esoteric topic for a book. In fact, we are not aware of even a single review or survey article dedicated to this topic. We have, however, two excuses: (1) There are fascinating subtle differences between the properties of solutions of Schro¨dinger equations on manifolds on the one hand, and their discrete analogs on graphs. (2) “Geo- metric” properties of (cost) functions defined on the vertex sets of graphs are of practical interest for heuristic optimization algorithms. Lov Grover’s observation that the cost functions of quite a few of the well-studied combi- natorialoptimizationproblemsareeigenvectorofassociatedgraphLaplacians prompted us to investigate such eigenvectors more systematically. The bookinessencecoverstwotopics:Nodaldomaintheoremswhichgive bounds on the number of connected subgraphs on which an eigenvector does notchangesign,andFaber-Krahn-typeinequalitieswhichareconcernedwith the shape of domains (i.e., graphs in our setting) with fixed volume that minimize the first Dirichlet eigenvalue. The connecting theme between these two topics is focus on local and global properties of the eigenvectors (rather than eigenvalues) and convenience of the Rayleigh quotient in the proofs. The mindful readerwillfind thatmore oftenthan nota simple star graph alreadyprovidesacounterexamplefor“obvious”conjectures.Infact,weused the Petersen graph just because it seems against tradition to write about graph theory without using the Petersen graph as a counterexample at least once. The simplicity of the counterexamples highlights how little we know aboutthe universe of graphLaplacianeigenvectors(and fitness landscapes in general), and how misguided an intuition trained on well-behaved manifolds canbeinthisrealm:evensmallmovesfrequentlycausesabrokennosecaused by some unexpected wall. The history of this monograph goes back more than a decade and has its rootsintheinterdisciplinaryresearchenvironmentattheDepartmentofThe- oreticalChemistry atthe UniversityofVienna,Austria.Acollaborationwith Brian Davies during his stay at the Erwin Schro¨dinger Institute in Vienna in 1995 stimulated our interest in Laplacian eigenvectors and eventually VI Preface resultedin a researchgrantfrom the AustrianFonds zur F¨orderung der Wis- senschaftlichenForschung (projectno.14094-MAT)toinvestigatethistopicin a more systematic way. Over the years, many colleagues contributed through helpful discussions, among them Wim Hordijk, Ju¨rgen Jost, Bojan Mohar, Tomaˇz Pisanski, Dan Rockmore, and Gerhard Wo¨ginger. We also thank the Max Planck Institute for Mathematics in the Sciences in Leipzig for their hospitality and for providing a fruitful scientific working for one of us (TB). Leipzig, Tu¨rker Bıyıko˘glu Wien, Josef Leydold May 2006 Peter F. Stadler Contents 1 Introduction............................................... 1 1.1 Matrix Representations of a Graph ........................ 2 1.2 Finite Differences........................................ 4 1.3 Landscapes on Graphs ................................... 4 1.4 Related Matrices ........................................ 7 1.5 Graphs with a Boundary: The Discrete Dirichlet Problem .... 8 1.6 Generalized Graph Laplacians............................. 10 1.7 Colin de Verdi`ere Matrices................................ 11 1.8 Practical Applications of Laplacians Eigenvectors............ 12 2 Graph Laplacians.......................................... 15 2.1 Basic Properties of Graph Laplacians ...................... 15 2.2 Weighted Graphs........................................ 17 2.3 The Rayleigh Quotient ................................... 18 2.4 Calculus on Graphs...................................... 19 2.5 Basic Properties of Eigenfunctions......................... 20 2.6 Graph Automorphisms and Eigenfunctions ................. 22 2.7 Quasi-Abelian Cayley Graphs ............................. 23 2.8 The Perron-Frobenius Theorem ........................... 26 3 Eigenfunctions and Nodal Domains ........................ 29 3.1 Courant’s Nodal Domain Theorem......................... 29 3.2 Proof of the Nodal Domain Theorem....................... 33 3.3 Algebraic Connectivity, Fiedler Vectors and Perron Branches.. 35 3.4 Some Results for Multiple Eigenvalues ..................... 39 3.5 The Courant-Herrmann Conjecture ........................ 41 3.6 Improvements for Special Cases ........................... 42 3.7 Faria Vectors and Minimum Number of Nodal Domains ...... 46 3.8 Sign Pattern and Nodal Domains.......................... 47 VIII Contents 4 Nodal Domain Theorems for Special Graph Classes........ 49 4.1 Trees .................................................. 49 4.2 Cographs and Threshold Graphs .......................... 54 4.3 Product Graphs and the Boolean Hypercube................ 58 5 Computational Experiments ............................... 67 5.1 Nodal Domains and Hyperplane Arrangements .............. 67 5.2 A Hillclimbing Algorithm................................. 69 5.3 Numerical Experiments for the Boolean Hypercube .......... 70 5.4 Local Optima ........................................... 73 6 Faber-Krahn Type Inequalities ............................ 77 6.1 Basic Properties of Dirichlet Operators..................... 78 6.2 The Faber-Krahn Property ............................... 79 6.3 Unweighted Trees ....................................... 81 6.4 Semiregular Trees ....................................... 84 6.5 Rearrangements and Dirichlet Operators ................... 86 6.6 Perturbations and Branches............................... 90 A Basic Notations............................................ 93 B Eigenfunctions Used in Figures ............................ 97 C List of Symbols ............................................ 99 References.....................................................101 Index..........................................................113 1 Introduction The foundations of spectral graph theory were laid in the fifties and sixties of the 20th century. The eigenvalues of graphs, most often defined as the eigenvalues of the adjacency matrix, have since then received much attention as a means of characterizing classes of graphs and for obtaining bounds on properties such as the diameter, girth, chromatic number, connectivity [14, 17, 45, 46, 83, 85]. The interest has since then shifted somewhat from the adjacency spectrum to the spectrum of the closely related graph Laplacian [14, 35, 41, 85,88, 137, 139]. In particular,Laplaciangraphspectra arebeing investigated as a means of characterizing large “small world networks” and random graphs, see e.g. [33, 34, 119] for a few examples. For the most part, the theory is still concerned with the eigenvalues. Theeigenvectors ofgraphs,ontheotherhand,havereceivedonlysporadic attention on their own, e.g. [134]. Even the book Eigenspaces of Graphs by Cvetkovi´cet al. [47] contains only a few pages on the geometric properties of the eigenvectors which are mostly used as a convenient proof technique. In this book we will focus on mostly geometric properties of the eigenvec- torsthemselves.Themotivationforthistopicistwofold.Asweshallseeinthis firstintroductorychapter,theseobjectsariseinverydiverseapplications,from mathematicalbiologytocombinatorialoptimization.TheLaplacianeigenvec- tors are used as tools in heuristics to solve combinatorial problems on given graphs, usually without a thorough understanding why they work so well. From a more formal point of view, Laplacian eigenvectors are the natural discretization of eigenfunctions of Laplace-Beltrami operators on manifolds. Surprisingly, some of their properties in the discrete case are reminiscent of corresponding results in the continuous setting, but often there are subtle differences which we found interesting enough to explore in some detail. We should, at this point, warn the reader: this book collects a number of interesting facets of our topic, enough as we hope to stimulate further research,butitcannotprovideacoherenttheoreticalframeworkorapowerful machinery to tackle the properties of Laplacian eigenfunctions in generality. 2 1 Introduction 1.1 Matrix Representations of a Graph Therearetwoobviouswaysofspecifyingasimple1 graphG(V,E)withvertex setV ={1,...,n}andedgesetE bymeansofamatrix:theadjacencymatrix and the incidence matrix. The adjacency matrix A has entries A = 1 if xy xy ∈ E and A = 0 otherwise: In order to specify the incidence matrix ∇ xy we need an arbitrary but fixed orientation (direction) for each edge e = xy. Then ∇ is a (|E|×|V|) matrix and has entries ∇ = −1 if x is the initial ex vertex of edge e, ∇ = 1 if x is the terminal vertex of edge e, and ∇ = 0 ex ex otherwise, i.e., if x is not in e. Let us now consider a real-valued function f over V, f: V → R. This is simply a vector indexed by the vertices of G. In this book we prefer to use a “functional”notationthatemphasizesthesimilaritiesbetweenthesituationof graphsandmanifolds.Obviouslythesetofsuchfunctionsformsavectorspace whichisisomorphictoRn (andthuswewill—byabuseofnotation—simply denote this vector space by Rn). Similarly there exists a set of real-valued functions over E. The mapf (cid:4)→∇f is known as the co-boundary mapping of thegraphG.Itsvalue(∇f)(e)atagivenedgeeisthedifferenceofthevalues of f at the two end-points of the edge e (considering orientation). Therefore theincidencematrix∇isakindofdifferenceor“discretedifferential”operator on G. Let us now consider an Eulerian graph G. Recall that G is Eulerian if and only if G is connected and all vertices have even degree. Let C be an (arbitrary) Eulerian cycle in G (i.e., a closed walk that traverses each edge exactly once) and fix an orientation of G such that C is properly oriented in thesensethatalledgepoint“forward”alongC.ThecycleC maypassthrough eachvertexxmultipletimes;theincomingedgeofthei-thpassise(cid:1) =(y(cid:1),x), i i the outgoing edge is e(cid:1)(cid:1) =(x,y(cid:1)(cid:1)). We can now define “2nd derivatives” along i i C: (∂2 f)(x):=(∇f)(e(cid:1)(cid:1))−(∇f)(e(cid:1)) C;i =[f(y(cid:1)(cid:1))−f(x)]−[f(x)−f(y(cid:1))] i i =f(y(cid:1))+f(y(cid:1)(cid:1))−2f(x). i i Notethat(∂2 f)(x)isindependentoftheorientationonG.Interpretingeach C;i pass of C through x as a different “dimension” it seems natural to consider the sum over these “2nd derivatives” as a “Laplace-Beltramioperator” (cid:1) (∆f)(x)= (∂2 f)(x) C;i passesiofC throughx d((cid:1)x)/2 (cid:1) = [f(y(cid:1))+f(y(cid:1)(cid:1))−2f(x)]= [f(y)−f(x)] i i i=1 y∼x 1 For basic definitions and results thereader is referred to AppendixA. 1.1 Matrix Representations of a Graph 3 whichisindependentofthechoiceoftheEuleriancycleC andtheorientation on G. Naturally, one generalizes this definition of ∆ to arbitrary graphs. Inthegraphtheoryliterature,however,itiscustomarytodefinetheLapla- cian operator (map) L: R|V| →R|V| with the opposite sign: (cid:1) (Lf)(x)=(−∆f)(x)= [f(x)−f(y)]. (1.1) y∼x From an algebraic point of view it appears more natural to define L=∇T∇ (1.2) which is known as the Laplacian (matrix) of G. We have ⎧ (cid:1) ⎪⎨−1 if xy ∈E, L = ∇ ∇ = d(x) if x=y, (1.3) xy ex ey ⎪⎩ e∈E 0 otherwise, where d(x)=|{e∈E|x∈e}| is the degree of the vertex x. It is important to note that L in (1.3) is independent of the orientation of the edges. Clearly, xy we have the identity (Lf)(x)=(Lf)(x). Defining the diagonal matrix D with entries D = d(x), called the de- xx gree matrix, we obtain a simple connection between the Laplacian and the adjacency matrix of a graph, L=D−A. (1.4) The Laplacian L therefore uniquely determines its graph through its off- diagonal entries. Thecloserelationbetween∇andLontheonehand,andtheirdifferential operator counterparts on the other hand, is exemplified by the following dis- creteversionofGreen’sformula,whichiseasilyverifiedbydirectcomputation [159]: Proposition 1.1.Let f: V → R and g : V → R be two arbitrary functions. Then (cid:1) (cid:1) (cid:1) f(x)(Lg)(x)= g(x)(Lf)(x)= (∇f)(e)(∇g)(e). x∈V x∈V e∈E Using angularbrackets(cid:5)·,·(cid:6) to denote the usualscalarproductoftwo vectors in Rn and the symbol −∆ for L we can formulate Green’s formula in a more familiar form as −(cid:5)f,∆g(cid:6)=−(cid:5)∆f,g(cid:6)=(cid:5)∇f,∇g(cid:6). The Laplacian L can thus be viewed as a proper discretization of the usual Laplace-Beltramidifferential operator.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.