ebook img

Lanthanides and Actinides in Molecular Magnetism PDF

358 Pages·2015·5.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lanthanides and Actinides in Molecular Magnetism

Editedby RichardA.LayfieldandMuraleeMurugesu LanthanidesandActinidesinMolecular Magnetism RelatedTitles deBettencourt-Dias,A.(ed.) Hilzinger,R.,Rodewald,W. LuminescenceofLanthanide MagneticMaterials IonsinCoordination Fundamentals,Products,Properties, Applications Compoundsand Nanomaterials 2013 PrintISBN:978-3-895-78352-4 2014 PrintISBN:978-1-119-95083-7 (Alsoavailableinavarietyofelectronicformats) Gatteschi,D.,Benelli,C. IntroductiontoMolecular Magnetism FromTransitionMetalstoLanthanides 2015 PrintISBN:978-3-527-33540-4 (Alsoavailableinavarietyofelectronicformats) Editedby RichardA.LayfieldandMuraleeMurugesu Lanthanides and Actinides in Molecular Magnetism TheEditors AllbookspublishedbyWiley-VCHare carefullyproduced.Nevertheless,authors, Dr.RichardA.Layfield editors,andpublisherdonotwarrantthe TheUniversityofManchester informationcontainedinthesebooks, SchoolofChemistry includingthisbook,tobefreeoferrors. OxfordRoad Readersareadvisedtokeepinmindthat M139PLManchester statements,data,illustrations,procedural UnitedKingdom detailsorotheritemsmayinadvertently beinaccurate. Prof.Dr.MuraleeMurugesu UniversityofOttawa LibraryofCongressCardNo.:appliedfor DepartmentofChemistry/D’IorioHall MarieCurie10 BritishLibraryCataloguing-in-Publication ONK1N6NNK Data Canada Acataloguerecordforthisbookis availablefromtheBritishLibrary. Cover Periodictable:iStockphoto©Tomacco Bibliographicinformationpublishedbythe Magnet:iStockphoto©jgroup DeutscheNationalbibliothek TheDeutscheNationalbibliothek liststhispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat<http://dnb.d-nb.de>. ©2015Wiley-VCHVerlag&Co.KGaA, Boschstr.12,69469Weinheim,Germany Allrightsreserved(includingthoseof translationintootherlanguages).Nopart ofthisbookmaybereproducedinany form–byphotoprinting,microfilm, oranyothermeans–nortransmitted ortranslatedintoamachinelanguage withoutwrittenpermissionfromthe publishers.Registerednames,trademarks, etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobe consideredunprotectedbylaw. PrintISBN:978-3-527-33526-8 ePDFISBN:978-3-527-67350-6 ePubISBN:978-3-527-67349-0 MobiISBN:978-3-527-67348-3 oBookISBN:978-3-527-67347-6 Typesetting LaserwordsPrivateLimited, Chennai,India PrintingandBinding MarkonoPrint MediaPteLtd,Singapore Printedonacid-freepaper V Contents Preface XIII ListofContributors XV 1 ElectronicStructureandMagneticPropertiesofLanthanideMolecular Complexes 1 LorenzoSoraceandDanteGatteschi 1.1 Introduction 1 1.2 FreeIonElectronicStructure 3 1.2.1 FreeIonMagnetism 6 1.3 ElectronicStructureofLanthanideIonsinaLigandField 7 1.3.1 Stevens’Formalism 9 1.3.2 Wybourne’sFormalism 9 1.3.3 Standardization 13 1.3.4 CalculationofCrystalFieldParameters 13 1.4 MagneticPropertiesofIsolatedLanthanideIons 16 1.4.1 EffectofaMagneticField 16 1.4.2 EPRSpectroscopyofLanthanideComplexes 17 1.5 ExchangeCouplinginSystemsContainingOrbitallyDegenerate Lanthanides 21 Acknowledgements 23 References 23 2 MononuclearLanthanideComplexes:UseoftheCrystalFieldTheory toDesignSingle-IonMagnetsandSpinQubits 27 JuanM.Clemente-Juan,EugenioCoronado,and AlejandroGaita-Ariño 2.1 Introduction 27 2.2 ModellingtheMagneticPropertiesofLanthanideSingle-Ion Magnets:TheUseoftheCrystalFieldModel 29 2.2.1 TheoreticalBackground 29 VI Contents 2.2.2 HowtoDeterminetheCrystal-FieldParameters:1.TheIshikawa Approach 30 2.2.3 HowtoDeterminetheCrystal-FieldParameters:2.ThePointCharge ElectrostaticModel 34 2.2.4 HowtoDeterminetheCrystal-FieldParameters:3.TheEffective PointChargeModel 36 2.3 Magneto-StructuralCorrelationsforSomeTypicalSymmetries 40 2.4 ImpactofLanthanideComplexesinQuantumComputing 44 2.4.1 QuantumComputingParadigmsandDesignCriteria 45 2.4.2 CombiningPhysicalQubitImplementationswithLanthanide Complexes 48 2.4.3 MolecularSpinQubits 50 2.5 Conclusions 53 Acknowledgements 54 References 55 3 PolynuclearLanthanideSingleMoleculeMagnets 61 JinkuiTangandPengZhang 3.1 Introduction 61 3.2 SyntheticStrategies 62 3.2.1 Dy TrianglesandTheirDerivatives 64 3 3.2.1.1 SeminalDy Triangle 64 3 3.2.1.2 OtherTriangularDy Systems 65 3 3.2.1.3 TheCouplingofDy Triangles 68 3 3.2.2 LinearPolynuclearLanthanideComplexesShowingRobustSMM Behaviour 71 3.2.2.1 LinearDy SMMs 72 3 3.2.2.2 LinearDy SMMs 73 4 3.2.3 PlanarDy SMMs 75 4 3.2.4 Dy SMMsHavingMultipleμ -O(n>4)Bridges 78 n n 3.2.4.1 TheDy GridsFixedbyμ -OAtom 78 4 4 3.2.4.2 TheDy TetrahedronFixedbyμ -OAtom 80 4 4 3.2.4.3 TheDy PyramidFixedbyμ -OAtom 80 5 5 3.2.5 Hydrazone-BasedLanthanideSMMs 82 3.2.5.1 TheAssemblyofDy TriangularPrismwithDy Units 83 6 2 3.2.5.2 ADy MolecularClusterPair(Dy ) 84 3 6 3.2.6 TheOrganometallicSynthesis—ANewApproach 85 3.3 Conclusion 86 References 86 4 LanthanidesinExtendedMolecularNetworks 89 RobertaSessoliandKevinBernot 4.1 Introduction 89 Contents VII 4.2 ExtendedNetworksBasedonGd3+ 91 4.2.1 Metal-OrganicFrameworks 91 4.2.1.1 Magneto-CaloricEffect 91 4.2.1.2 SlowMagneticRelaxationandPhononBottleneckEffects 94 4.2.2 MagneticChains 96 4.2.2.1 MagneticInteractionsInvolvingGd3+Ions 96 4.2.2.2 Gadolinium-RadicalChains 96 4.3 ExtendedNetworksBasedonAnisotropicIons 101 4.3.1 SCMinaNutshell 101 4.3.2 AnOverviewofMonodimensionalLanthanideChainsBasedon AnisotropicIons 104 4.3.2.1 ChainsBasedon4fIons 104 4.3.2.2 ChainsBasedon3d–4fIons 106 4.3.2.3 ChainsBasedonRadicalsand4fIons 111 4.3.3 TheKeyPointofNoncollinearityofMagneticAnisotropy 112 4.4 Conclusions 119 References 119 5 ExperimentalAspectsofLanthanideSingle-MoleculeMagnet Physics 125 KasperS.Pedersen,DanielN.Woodruff,JesperBendix,andRodolpheClérac 5.1 Introduction 125 5.2 ManifestationofSingle-MoleculeMagnetBehaviour 127 5.2.1 MagnetizationandacSusceptibilityMeasurements 127 5.2.2 NMRSpectroscopy 132 5.2.3 MuonSpinRotation 133 5.3 QuantifyingtheMagneticAnisotropy 135 5.4 SplittingoftheGroundMultiplet 139 5.4.1 MagneticResonanceSpectroscopies 139 5.4.2 LuminescenceSpectroscopy 140 5.4.3 InelasticNeutronScattering 141 5.5 ObservationoftheSignaturesofExchangeCoupling 146 5.5.1 ChemicalSubstitution 146 5.5.2 X-RayMagneticCircularDichroism 147 5.6 ConcludingRemarksandPerspectives 149 References 150 6 ComputationalModellingoftheMagneticPropertiesofLanthanide Compounds 153 LiviuUngurandLiviuF.Chibotaru 6.1 Introduction 153 6.2 AbInitioDescriptionofLanthanidesanditsRelationtoOther Methods 153 VIII Contents 6.2.1 AbInitioApproachfortheElectronicStructureofLanthanides 155 6.2.1.1 AccountingforStaticElectronCorrelationwithinCASSCF 155 6.2.1.2 AccountingforDynamicalElectronCorrelation:AnImportantStep TowardsAccuratePredictions 155 6.2.1.3 AccountingforRelativisticEffectswithintheDouglas–Kroll–Hess Theory 156 6.2.1.4 Spin–OrbitMultipletsofFreeLanthanideIons:Relativistic CASSCF/RASSIMethodinWork 157 6.2.2 AbInitioVersusTwo-ComponentDFT 159 6.2.3 AbInitioVersusPhenomenologicalCrystalFieldTheoryfor Lanthanides 159 6.3 AbInitioCalculationofAnisotropicMagneticProperties ofMononuclearComplexes 160 6.3.1 ImplementationofAbInitioMethodology:SINGLE_ANISO Program 161 6.3.2 Temperature-DependentMagneticSusceptibilityand Field-DependentMagnetization 163 6.3.3 MagneticAnisotropyinLow-LyingDoublets 164 6.3.4 AbInitioCrystalField 166 6.4 AbInitioCalculationofAnisotropicMagneticProperties ofPolynuclearComplexes 169 6.4.1 Two-StepApproachfortheCalculationofElectronicStructure ofPolynuclearLanthanideComplexes 170 6.4.2 KeyRulesforClusterFragmentation 170 6.4.3 ImplementationofAbInitioMethodology:POLY_ANISO Program 171 6.4.4 NoncollinearMagneticStructureofLn Complexes 172 n 6.4.5 MixedLanthanide-TransitionMetalCompounds 176 6.4.6 Lanthanide-ContainingMagneticChains 178 6.5 Conclusions 180 References 181 7 LanthanideComplexesasRealizationsofQubitsandQugates forQuantumComputing 185 GuillemAromı́,FernandoLuis,andOlivierRoubeau 7.1 IntroductiontoQuantumComputation 185 7.1.1 GeneralIntroduction 185 7.1.2 DefinitionofQubits,Qugates,TimescalesandEssential Requirements 186 7.1.3 CurrentProposalsfortheQCHardware 189 7.1.3.1 TrappedIons 189 7.1.3.2 NuclearSpins 190 7.1.3.3 SuperconductingQubits 191 Contents IX 7.1.3.4 SpinQubits 191 7.1.3.5 Photons 191 7.1.3.6 HybridProposalsandQuantumCircuits 192 7.2 QuantumComputingwithElectronSpinQubits 192 7.2.1 ElectronicSpinsinSemiconductors:QDsandDopants 192 7.2.1.1 QuantumDots 193 7.2.1.2 DopantsandDefects 193 7.2.2 ElectronicSpinsinMolecules:OrganicRadicalsandTransition MetalComplexes 194 7.2.2.1 OrganicRadicals 194 7.2.2.2 TransitionMetalComplexes 195 7.3 SingleLanthanideIonsasSpinQubits 197 7.3.1 QuantumCoherenceofLanthanideIonsDopedintoCrystalline Solids 198 7.3.2 ControloftheMagneticAnisotropyofLanthanideIons:Chemical DesignofSpinQubits 199 7.3.2.1 MononuclearSingleMoleculeMagnets 199 7.3.2.2 Gadolinium(III)POMsasSpinQubits 200 7.3.2.3 MononuclearSMMsofLn(III)IonswithNonzeroOrbital Moment 202 7.4 LanthanideMoleculesasPrototypesofTwo-QubitQuantum Gates 204 7.4.1 AFamilyofAsymmetric[Ln ]ComplexeswithWeakMagnetic 2 Coupling 204 7.4.2 Heterometallic[LnLn′]Complexes:AFabricofChemical AsymmetryandIndividualQubits 208 7.4.3 EvaluatingQubitProperties 209 7.4.4 WeakCoupling 211 7.4.5 AsymmetryandEnergyDiagrams 212 7.4.6 DecoherenceoftheMolecularQuantumProcessorPrototypes 215 7.5 ConclusionsandOutlook 215 References 216 8 Bis(phthalocyaninato)Lanthanide(III)Complexes–fromMolecular MagnetismtoSpintronicDevices 223 YanhuaLan,SvetlanaKlyatskaya,andMarioRuben 8.1 Introduction 223 8.1.1 MolecularMagnetism 223 8.1.2 MultinuclearVersusMononuclear:d-Versusf-MetalIons 224 8.1.3 MolecularVersusOrganicSpintronics 227 8.2 SynthesisandStructureofLnPc Complexes 229 2 8.2.1 SynthesisofBis(phthalocyaninato)Lanthanide(III)Complexes 229 X Contents 8.2.2 SynthesisofHeterolepticLanthanide(III)ComplexesContaining Porphyrin-BasedLigands 235 8.2.3 OxidationStatesofBis(phthalocyaninato)Lanthanide(III) Complexes 239 8.2.4 RotationAnglesandSkewAnglesinLnPc inRelationtothe 2 LanthanideContraction 243 8.3 BulkMagnetismofLnPc Complexes 246 2 8.3.1 MagnetismofBis(phthalocyaninato)Lanthanide(III) Complexes 246 8.3.2 ThreeSpinSystemsin[TbPc ]0Single-IonMolecularMagnets 2 (SIMMs) 246 8.3.2.1 TheOrganicRadical(S) 246 8.3.2.2 TheElectronicSpin(J) 248 8.3.2.3 TheNuclearSpin(I) 249 8.3.3 FurtherSIMsofLnPc withLn=Tb,DyandHo 249 2 8.3.4 InternalKondoinLnPc ComplexeswithLn=Ce,Yb 255 2 8.3.5 StableOrganicRadicalsS=1∕2inLnPc withLn=Y,Lu 257 2 8.3.6 ASpecialCase:Half-Fillingofthef-OrbitalsinGdPc andits 2 Consequences 258 8.4 SurfaceMagnetismofLnPc Complexes 259 2 8.4.1 Depositionof[TbPc ]0SIMMsonNonmagnetic 2 Substrates 261 8.4.1.1 HighlyOrientedPyroliticGraphite 261 8.4.1.2 Au(111) 262 8.4.1.3 Cu(111) 263 8.4.1.4 Cu(100) 265 8.4.2 Depositionof[TbPc ]0SIMsonMagneticSubstrates 267 2 8.4.2.1 NickelThinFilms 267 8.4.2.2 CobaltThinFilms 269 8.4.2.3 LSMO 269 8.4.2.4 ManganeseandCobaltOxideLayers 269 8.4.2.5 SpinPolarizedScanningTunnellingMicroscopy(SP-STM) onCo/Ir(111) 270 8.5 MolecularSpintronicDevicesontheBase of[TbPc ]0SIMs 272 2 8.5.1 GrapheneTransistor 274 8.5.2 SupramolecularSpinValve 276 8.5.3 MolecularSpinResonator 278 8.5.4 MolecularSpinTransistor 280 8.6 ConclusionandOutlook 281 Abbreviations 283 References 284

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.