ebook img

Language, Cognition, and Computational Models PDF

339 Pages·2018·6.911 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Language, Cognition, and Computational Models

Language,Cognition, andComputational Models Howdoinfantslearnalanguage?Whyandhowdolanguagesevolve?Howdoweunder- standasentence?Thisbookexploresthesequestionsusingrecentcomputationalmod- els that shed new light on issues related to language and cognition. The chapters in this collection propose original analyses of specific problems and develop computa- tionalmodelsthathavebeentestedandevaluatedonrealdata.Featuringcontributions from a diverse group of experts, this interdisciplinary book bridges the gap between natural language processing and cognitive sciences. It is divided into three sections, focusingrespectivelyonmodelsofneuralandcognitiveprocessing,data-drivenmeth- ods,andsocialissuesinlanguageevolution.Thisbookwillbeusefultoanyresearcher andadvancedstudentinterestedintheanalysisofthelinksbetweenthebrainandthe languagefaculty. THIERRY POIBEAUisDirectorofResearchatCNRSandheadoftheLaTTiCElabora- toryinParis,France.HeisalsoanaffiliatedlecturerattheDepartmentofTheoretical andAppliedLinguistics(DTAL)oftheUniversityofCambridge.Heworksonnatural languageprocessing(NLP),inparticularoninformationextraction,questionanswering, semanticzoning,knowledgeacquisitionfromtext,andnamedentitytagging. ALINE VILLAVICENCIO isaffiliatedwiththeInstituteofInformatics,FederalUniver- sity of Rio Grande do Sul in Brazil, and with the School of Computer Science and ElectronicEngineering,EssexUniversity,UK.SheisafellowofCNPq(Brazil).Her researchinterestsinnaturallanguageprocessingareincomputationalmodelsofacqui- sition of linguistic information from data, distributional semantic models, multiword expression,andapplicationsliketextsimplificationandquestionanswering. StudiesinNaturalLanguageProcessing VolumesintheSNLPseriesprovidecomprehensivesurveysofcurrentresearch topicsandapplicationsinthefieldofnaturallanguageprocessing(NLP)that shed light on language technology, language cognition, language and soci- ety,andlinguistics.Theincreasedavailabilityoflanguagecorporaanddigital media,aswellasadvancesincomputertechnologyanddatasciences,hasled toimportantnewfindingsinthefield.Widespreadapplicationsincludevoice- activatedinterfaces,translation,searchengineoptimization,andaffectivecom- puting. NLP also has applications in areas such as knowledge engineering, languagelearning,digitalhumanities,corpuslinguistics,andtextualanalysis. Thesevolumeswillbeofinteresttoresearchersandgraduatestudentsworking inNLPandotherfieldsrelatedtotheprocessingoflanguageandknowledge. ChiefEditor: Chu-RenHuang–TheHongKongPolytechnicUniversity, DepartmentofChineseandBilingualStudies AssociateEditor: QiSu–PekingUniversity,SchoolofForeignLanguages EditorialBoard: StevenBird–UniversityofMelbourne,DepartmentofComputing andInformationSystems FrancisBond–NanyangTechnologicalUniversity, DivisionofLinguisticandMultilingualStudies AlessandroLenci–UniversitàdiPisa,Dipart.diFilologia, LetteraturaeLinguistica LoriLevin–CarnegieMellonUniversity,Language TechnologiesInstitute MaartendeRijke–UniversityofAmsterdam,InformaticsInstitute NianwenXue–BrandeisUniversity,ComputerScienceDepartment Language, Cognition, and Computational Models Editedby ThierryPoibeau CNRS,Paris,France AlineVillavicencio UniversidadeFederaldoRioGrandedoSul,BrazilandUniversityofEssex,UK UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi-110025,India 79AnsonRoad,#06-04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107162228 DOI:10.1017/9781316676974 ©CambridgeUniversityPress2017 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2017 PrintedintheUnitedStatesofAmericabySheridanBooks,Inc. AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-16222-8Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyInternetWebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchWebsitesis,orwillremain, accurateorappropriate. Contents Figures pageix Tables xi Contributors xv PartI AboutThisBook 1 Introduction:CognitiveIssuesinNaturalLanguage Processing 3 thierry poibeauandalinevillavicencio 1.1 OntheRelationshipsbetweenNaturalLanguageProcessingand CognitiveSciences 3 1.2 RecentIssuesinCognitiveAspectsofLanguageModeling 8 1.3 ContentandStructureoftheBook 14 PartII ModelsofNeuralandCognitiveProcessing 2 LightandDeepParsing:ACognitiveModelofSentence Processing 27 philippe blache 2.1 Introduction 27 2.2 AnInterdisciplinaryViewofLanguageProcessing 28 2.3 TheTheoreticalFramework:PropertyGrammars 39 2.4 Chunks,Constructions,andProperties 42 2.5 TheHybridArchitecture 46 2.6 Conclusion 49 3 DecodingLanguagefromtheBrain 53 brianmurphy,leilawehbe,andalonafyshe 3.1 Introduction 53 3.2 GroundingLanguageArchitectureintheBrain 55 3.3 DecodingWordsintheBrain 62 3.4 PhrasesintheBrain 66 3.5 StoriesintheBrain 68 3.6 Summary 72 v vi Contents 4 GraphTheoryAppliedtoSpeech:InsightsonCognitive DeficitDiagnosisandDreamResearch 81 natália bezerramota,maurocopelli,and sidarta ribeiro 4.1 Introduction 82 4.2 SemanticAnalysisfortheDiagnosisofPsychosis 84 4.3 WhatIsaSpeechGraph? 85 4.4 SpeechGraphsasaStrategytoQuantifySymptomson Psychosis 88 4.5 DifferencesinSpeechGraphsduetoContent(waking×dream reports) 92 4.6 SpeechGraphsAppliedtoDementia 94 4.7 FuturePerspectives 96 PartIII DataDrivenModels 5 PuttingLinguisticsBackintoComputationalLinguistics 101 martinkay 5.1 ExplicitandImplicitInformation 101 5.2 Features 108 5.3 LinguisticComputationandComputationalLinguistics 114 5.4 Conclusion 116 6 ADistributionalModelofVerb-SpecificSemanticRoles Inferences 118 gianlucae.lebaniandalessandro lenci 6.1 RepresentingandAcquiringThematicRoles 119 6.2 CharacterizingtheSemanticContentofVerbProto-roles 122 6.3 ADistributionalModelofThematicRoles 130 6.4 ExperimentswithOurNeo-DavidsonianModel 139 6.5 Conclusion 148 7 NativeLanguageIdentificationonEFCAMDAT 159 xiaojiang,yanhuang,yufanguo,jeroen geertzen,theodoraalexopoulou, linsun,and annakorhonen 7.1 Introduction 159 7.2 Data 165 7.3 Methods 168 7.4 Results 172 7.5 Conclusion 181 8 EvaluatingLanguageAcquisitionModels:AUtility-Based LookatBayesianSegmentation 185 lisapearlandlawrence phillips 8.1 Introduction 185 8.2 EarlySpeechSegmentation 187 Contents vii 8.3 ABayesianSegmentationStrategy 190 8.4 HowWellDoesThisWorkCross-Linguistically? 196 8.5 HowUsefulAretheUnits? 207 8.6 ClosingThoughts 219 PartIV SocialandLanguageEvolution 9 SocialEvolutionofPublicLanguages:BetweenRousseau’s EdenandHobbes’Leviathan 227 annereboul 9.1 Introduction 227 9.2 IsLanguageaCommunicationSystemintheStrongSense? 228 9.3 WhatistheProperSocialAccountfortheExaptationofLanguage forCommunication? 233 9.4 Conclusion 250 10 GeneticBiasesinLanguage:ComputerModelsand ExperimentalApproaches 256 rickjanssen anddandediu 10.1 Introduction 256 10.2 ComputerModelsofCulturalEvolution 262 10.3 CulturalFeedback 278 10.4 Conclusion 281 11 TransparencyversusProcessingEfficiency:ACaseStudy onGermanDeclension 289 remivantrijp 11.1 Introduction 289 11.2 GermanDeclension:NotasAwfulasItSeems 290 11.3 EvaluatingtheEfficiencyofSyncretism 300 11.4 DiscussionandConclusions 314 Index 319 Figures 2.1 Aclassicalgenerativearchitectureoflanguageprocessing page29 2.2 OutputoftheStanfordparser 30 2.3 ThemainERPcomponentsinlanguageprocessing 31 2.4 Generalorganizationofthethree-phasesmodel[Friederici, 2011] 32 2.5 Thedifferencesbetweenconditionsinidiomaticcontext(COR, correctsentence;REL,softviolation;UNREL,hardviolation) 35 2.6 Parafovealvision.Extractingfeaturesfromthesurrounding words 36 2.7 EarlyEEGeffectsofsyntacticviolation(mismatchnegativity) 37 3.1 Anoverviewofthelocationandtimingoflanguageprocessing (forsentences)inthebrain 56 3.2 AnexampleMEGrecordingaveragedovertwentyrepetitions ofapersonreadingthewordbear 58 3.3 AnfMRIimageaveragedoversixrepetitionofaperson readingthewordbear 59 3.4 SeveralslicesfromfMRIimagesshowingthelearned proportionofbrainactivationthatcanbeassociatedwitha particularverbfromthesetoftwenty-fiveverbsusedin Mitchelletal.(2008) 64 3.5 Thepredicted(toprow)andobserved(bottomrow)brain activationforaparticularpersonwhilereadingtheword “celery”or“airplane”(leftandrightcolumns,respectively) 65 3.6 Storyreadingbrainmap,adaptedfromWehbeetal.(2014b) 70 3.7 Time-lineofwordintegrationacrosstheMEGhelmet 71 4.1 Examplesofspeechgraphsfromdreamreportsof schizophrenic,bipolar,andcontrolsubjects 86 4.2 ExamplesofSpeechGraphAttributes 87 4.3 LinearcorrelationbetweenSGAandwordcount(WC) 89 4.4 Representativespeechgraphsextractedfromdreamreports fromaschizophrenic,abipolarandacontrolsubject 91 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.