ebook img

Land use and cover classification using airborne MASTER and spaceborne GeoEye-1 sensors PDF

106 Pages·2011·3.91 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Land use and cover classification using airborne MASTER and spaceborne GeoEye-1 sensors

Land use and cover classification using airborne MASTER and spaceborne GeoEye-1 sensors: Focus on coffee-banana agroforestry systems near Turrialba, Costa Rica. by Marina Martignoni A thesis submitted in partial fulfillment for the degree of Master of Science in Sustainable forest and Nature management at the Fakultät für Forstwissenschaften und Waldökologie Chair of Forest inventory and Remote sensing Georg-August Universität Göettingen, Germany ~ September 2011~ Supervisor: Prof. Dr. Christoph Kleinn ________________________ Co-supervisor: Prof. Dr. Martin Worbes ________________________ Acknowledgments None of the achievements would have been possible without the constant, supportive and inspiring guidance of my supervisor, Dr. Hans Fuchs. His attention, hard work, prompt replies and proactive nature have set an example I hope to match some day. I am deeply indebted for what I could learn and appreciate during this experience and I shall never forget his contribution for my development. For the completion of this thesis special thanks to: Prof. Dr. Christoph Kleinn, for the opportunity, enlightened expertise and inspiring advice Prof. Dr. Martin Worbes, for having being an excellent teacher and correcting this thesis Dr. Charles Staver, for the granted financial contribution and chance to work for Bioversity GIZ, for the funding Dr. Lutz Fehrmann and Dr. Yang Haijun, for the statistical support and guidance MSc. Henning Aberle, for kindly translating the abstract and sincere aid MSc. Paul Magdon, for the inspiring discussion on sampling and classification the whole AWF department, in particular Basanti Bharad, Beckschäfer Philip, Buschmann Axel, Dockter Ulrike, Fischer Christoph, Heydecke Hendrik, Kywe Tin Zar, Malla Rajesh, Schlote Reinhard, Vega-Araya Mauricio, for the amazing availability, kindness and good advice Sabine Schreiner, for having being a wonderful mentor and example Prof. Dr. Niels Stange and the whole SUFONAMA team, for allowing this great experience the truly inspiring teachers I had in the last year, especially Dr. Stergios Adamopoulos, Dr. Gehrard Büttner, Prof. Dr. Hanns Höfle, Dr. Ronald Kühne, Prof. Dr. Bo Larsen, Prof. Dr. Ralph Mitlöhner, Dr. Carsten Schröder. Among the Costa Rican partners: Dr. Miguel Dita, por el apoyo excepcional y disponibilidad Dr. Pablo Siles and Dr. Oscar Bustamante, para las observaciones siempre constructivas y la ayuda incondicional en el trabajo de campo Dr. Ana Tapia, por las ideas MSc Nancy Chaves, por hacerme sentir como en casa y por la experiencia inolvidable! Dr. Christian Brennez and MSc. David Brown, por la gentil ayuda y cooperativas Ligia Quezada and Karol Araya, para la inmensa disponibilidad y asistencia And last but not least: mamma e Serena, per avermi insegnato la cura e l'amore رفظم اي د ھتاس اريم ےن سج ںوه ىتهاچ اننب ڒتھب ںۑم ےۑڶ ےک سج all the friends met in Italy, Copenhagen, Göttingen and Costa Rica, for being just so great. I am very thankful to you all! Table of content List of Figures.....................................................................................................................i List of Tables......................................................................................................................ii List of Abbreviations.........................................................................................................iii Physical constants...............................................................................................................v File formats........................................................................................................................vi Abstract.............................................................................................................................vii Zusammenfassung...........................................................................................................viii 1 Introduction.....................................................................................................................1 2 Study site.........................................................................................................................5 2.1 Location..................................................................................................................5 2.2 Climate...................................................................................................................5 2.3 Geomorphology......................................................................................................5 2.4 Land use..................................................................................................................6 3 Material...........................................................................................................................7 3.1 MASTER images...................................................................................................7 3.1.1 Instrument and data description.....................................................................7 3.1.2 CARTA mission.............................................................................................9 3.2 GeoEye-1 images..................................................................................................11 3.3 OpenStreetMap....................................................................................................12 3.4 Digital elevation model.........................................................................................12 3.5 Software programs................................................................................................12 4 Land use and cover (LUC) classes................................................................................13 5 Methodology.................................................................................................................19 5.1 Sampling design....................................................................................................19 5.1.1 Population.....................................................................................................19 5.1.2 Sampling frame.............................................................................................20 5.1.3 Sampling plot and unit.................................................................................23 5.2 Data collection......................................................................................................24 5.3 Image processing...................................................................................................25 5.3.1 Georeferencing and subsetting the image.....................................................25 5.3.2 Atmospheric correction.................................................................................26 5.3.3 Feature selection............................................................................................27 Orthogonal transformations with PCA and MNF............................................28 Feature selection in R.........................................................................................28 Feature selection with EnMAP Toolbox............................................................29 5.4 Image analysis.......................................................................................................29 5.4.1 Unsupervised classification...........................................................................29 Gaussian Mixture...............................................................................................30 5.4.2 Supervised classification................................................................................30 Maximum Likelihood........................................................................................30 Support Vector Machine....................................................................................31 SVM with EnMAP Toolbox..............................................................................32 ML and SVM by Canty.....................................................................................32 5.4.3 Accuracy assessment.....................................................................................33 5.5 Post-classification processing................................................................................34 6 Results...........................................................................................................................35 6.1 Sampling design....................................................................................................35 6.2 Data collection......................................................................................................35 6.3 Image processing...................................................................................................35 6.3.1 Georeferencing..............................................................................................35 6.3.2 Atmospheric correction.................................................................................36 6.3.3 Feature selection............................................................................................37 6.4 Image analysis.......................................................................................................39 6.4.1 Results of unsupervised classification...........................................................39 6.4.2 Supervised classification................................................................................40 6.5 Post-classification processing................................................................................43 7 Discussion......................................................................................................................47 7.1 Sampling design....................................................................................................47 7.2 Data collection......................................................................................................49 7.3 Image processing...................................................................................................50 7.4 Image analysis.......................................................................................................53 8 Conclusion.....................................................................................................................57 9 Outlooks........................................................................................................................58 10 Appendices.................................................................................................................60 10.1 Appendix A: FRA legend..................................................................................60 10.2 Appendix B: Raunkiaer's life form classification................................................62 10.3 Appendix C: Sampling plot digitization............................................................63 10.4 Appendix D: Field form.....................................................................................66 10.5 Appendix E: Georeferencing MASTER tiles....................................................67 10.6 Appendix F: FLAASH atmospheric correction.................................................71 10.7 Appendix G: Feature selection with R...............................................................74 10.8 Appendix H: Feature selection with EnMAP Toolbox......................................77 10.9 Appendix I: Field manual...................................................................................79 11 References....................................................................................................................82 List of Figures Fig. 1: MASTER camera..................................................................................................7 Fig. 2: Channels and wavelength regions of MODIS, ASTER and MASTER..............8 Fig. 3: Study site over georectified MASTER tile..........................................................10 Fig. 4: LCCS used by the FAO.......................................................................................14 Fig. 5: Legend used in the IGBP LCCS........................................................................14 Fig. 6: LUC classification scheme applied in this study..................................................16 Fig. 7: Digitized sampling polygons................................................................................23 Fig. 8: Example of confusion matrix...............................................................................33 Fig. 9: MASTER and GeoEye-1 images overlaid with OSM.......................................36 Fig. 10: Radiance and reflectance MASTER images......................................................36 Fig. 11: Feature selection using R randomForest package..............................................37 Fig. 12: Feature selection using EnMAP Toolbox..........................................................38 Fig. 13: ML and SVM classification maps......................................................................40 Fig. 14: LUC class spectra of MASTER radiance-at-sensor image...............................42 Fig. 15: LUC class spectra of MASTER reflectance image...........................................42 Fig. 16: Confusion matrix of sieved & clumped MASTER...........................................44 Fig. 17: Examples of rule images resulting from ML classification................................45 Fig. 18: Confusion matrix of combined class MASTER................................................46 Fig. 19: Sampling grid.....................................................................................................80 i List of Tables Table 1: Agroforestry extend estimates.............................................................................2 Table 2: Spectral characteristics of MASTER channels..................................................8 Table 3: MASTER sensor characteristics.........................................................................9 Table 4: Legend of land use and cover (LUC) classes applied in this study...................17 Table 5: Overall accuracies and Kappa coefficients obtained from Gaussian Mixture classification.....................................................................................................................39 Table 6: Overall accuracies and Kappa coefficients from ML and SVM classification..41 Table 7: Overall accuracies and Kappa coefficients of 3 post-classification processed images..............................................................................................................................43 ii List of Abbreviations 6S : Second Simulation of a Satellite Signal in the Solar Spectrum ACORN : Atmospheric CORrection Now ASTER : Advanced Spaceborne Thermal Emission and Reflection Radiometer ATREM : ATmospheric REMoval CARTA : Costa Rican Airborne Research and Technology Application CATIE : Centro Agronómico Tropical de Investigación y Enseñanza. CENAT : Centro Nacional de Alta Tecnología DEM : Digital Elevation Model DLR : Deutsches Zentrum für Luft- und Raumfahrt DN : Digital Number ERSDAC : Earth Remote Sensing Data Analysis Center FAO : Food and Agriculture Organization FLAASH : Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes FOC : Fusarium oxysporum formae specialis (f.sp) cubense GDEM : Global Digital Elevation Model GIS : Geographic Information System GIZ : Gesellschaft für Internationale Zusammenarbeit GSD : Ground Sample Distance ICRAF : International Centre for Research in Agroforestry IDL : Interface Description Language IGM : Input GeoMetry LCCS : Land Cover Classification Scheme LP DAAC : Land Processes Distributed Active Archive Center LUC : Land use / cover MASTER : MODIS / ASTER airborne simulator MDA : Mean Decrease Accuracy MDG : Mean Decrease Gini iii ML : Maximum Likelihood MNF : Minimum Noise Fraction MODIS : Moderate Resolution Imaging Spectroradiometer MODTRAN : MODerate resolution atmospheric TRANsmission NASA : National Aeronautics and Space Administration OSM : OpenSteetMap PCA : Principal Component Analysis RGB : Red Green Blue ROI : Region Of Interest SGL : Super Geometry Lookup SVM : Support Vector Machine SWIR : Short Wave InfraRed TIR : Thermal InfraRed ToA : Top Of Atmosphere VNIR : Visible Near InfraRed iv

Description:
agroforestry systems near Turrialba, Costa Rica. by profiling an applicable classification scheme and legend;. • evaluate the accuracy and . unpublished works without concession through the GoogleEarth™ platform, as long as.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.