ebook img

LAMOST Spectroscopic Survey of the Galactic Anticentre (LSS-GAC): the second release of value-added catalogues PDF

2.8 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview LAMOST Spectroscopic Survey of the Galactic Anticentre (LSS-GAC): the second release of value-added catalogues

Mon.Not.R.Astron.Soc.000,1–22(2015) Printed20January2017 (MNLATEXstylefilev2.2) LAMOST Spectroscopic Survey of the Galactic Anticentre (LSS-GAC): the second release of value-added catalogues 7 1 M.-S. Xiang1⋆, X.-W. Liu2,3†, H.-B. Yuan4, Z.-Y. Huo1, Y. Huang2⋆, C. Wang2, 0 2 B.-Q. Chen2⋆, J.-J. Ren2⋆, H.-W. Zhang2, Z.-J. Tian2⋆, Y. Yang2,4, J.-R. Shi1, n J.-K. Zhao1, J. Li5, Y.-H. Zhao1, X.-Q. Cui6, G.-P. Li6, Y.-H. Hou6, Y. Zhang6, a 1 1 1 1 1 1 1 J W. Zhang , J.-L. Wang , Y.-Z. Wu , Z.-H. Cao , H.-L. Yan , T.-S. Yan , A.-L. Luo , 9 1 1 1 1 1 1 H.-T. Zhang , Z.-R. Bai , H.-L. Yuan , Y.-Q. Dong , Y.-J. Lei , G.-W. Li 1 ] 1KeyLaboratoryofOpticalAstronomy,NationalAstronomicalObservatories,ChineseAcademyofSciences,Beijing100012,P.R.China A 2DepartmentofAstronomy,PekingUniversity,Beijing100871,P.R.China G 3KavliInstituteforAstronomyandAstrophysics,PekingUniversity,Beijing100871,P.R.China 4DepartmentofAstronomy,BeijingNormalUniversity,Beijing100875,P.R.China . h 5DepartmentofSpaceScienceandAstronomy,HebeiNormalUniversity,Shijiazhuang050024,China p 6NanjingInstituteofAstronomicalOptics&Technology,NationalAstronomicalObservatories,ChineseAcademyofSciences,Nanjing210042,P.R.China - o r t s Received: a [ 1 ABSTRACT v Wepresentthesecondreleaseofvalue-addedcataloguesoftheLAMOSTSpectroscopicSur- 9 veyoftheGalacticAnticentre(LSS-GACDR2).Thecataloguespresentvaluesofradialve- 0 locityVr,atmosphericparameters—effectivetemperatureTeff,surfacegravitylogg,metal- 4 licity[Fe/H],α-elementtoiron(metal)abundanceratio[α/Fe]([α/M]),elementalabundances 05 [C/H] and [N/H], and absolute magnitudesMV and MKs deducedfrom 1.8 million spectra of1.4millionuniquestarstargetedbytheLSS-GACsinceSeptember2011untilJune2014. . 1 Thecataloguesalsogivevaluesofinterstellarreddening,distanceandorbitalparametersde- 0 terminedwithavarietyoftechniques,aswellaspropermotionsandmulti-bandphotometry 7 fromthefar-UVtothemid-IRcollectedfromtheliteratureandvarioussurveys.Accuraciesof 1 radialvelocitiesreach5kms−1 forlate-typestars,andthoseofdistanceestimatesrangebe- : v tween10–30percent,dependingonthespectralsignal-to-noiseratios.Precisionsof[Fe/H], i [C/H]and[N/H]estimatesreach0.1dex,andthoseof[α/Fe]and[α/M]reach0.05dex.The X large number of stars, the contiguous sky coverage, the simple yet non-trivial target selec- r tionfunctionandtherobustestimatesofstellarradialvelocitiesandatmosphericparameters, a distances and elemental abundances, make the catalogues a valuable data set to study the structureandevolutionoftheGalaxy,especiallythesolar-neighbourhoodandtheouterdisk. Keywords: Galaxy:abundance– Galaxy:disk– Galaxy:evolution– Galaxy:formation– techniques:spectroscopic 1 INTRODUCTION hundredsofbillionsofGalacticstarsaredistributedoverthewhole sky,andourviewsintheGalacticdiskareseriouslylimitedbythe Better understanding the structure, stellar populations, and the interstellar dust extinction. Obtaining the full dimensional distri- chemicalanddynamicevolutionoftheMilkyWayisbothachal- butionofacompletestellarsampleisthusagreatchallenge.Itis lengeandanopportunityofmoderngalacticastronomy.TheMilky onlyrecentlythatcomprehensivesurveysofGalacticstarsbecome Wayistheonlygalaxywhosedistributionofstellarpopulationscan feasible,thanks totheimplementationof anumber of large-scale bemappedoutinfulldimensionality—three-dimensionalposition photometric and spectroscopic surveys, such as the Sloan Digital and velocity, age, as well as photospheric elemental abundances. SkySurvey(SDSS;Yorketal.2000),theTwoMicronAllSkySur- However, owing to our location inside the Milky Way disk, the vey(2MASS;Skrutskieetal.2006),theApachePointObservatory GalacticEvolutionExperiment(APOGEE;Majewskietal.2010), ⋆ LAMOSTFellow theLAMOSTExperimentforGalacticUnderstandingandExplo- † E-mail:[email protected] 2 Xianget al. ration(LEGUE;Dengetal.2012;Zhaoetal.2012)andtheGaia very bright stars, making the sample a golden mine to study the astrometricsurvey(Perrymanetal.2001). solar-neighbourhood. Radialvelocitiesandatmosphericparameters(effectivetem- As a major component of the LEGUE project, the LAM- peratureT , surfacegravitylogg,metallicity[Fe/H])havebeen OSTSpectroscopicSurveyoftheGalacticAnticentre(LSS-GAC; eff deduced from the LSS-GAC spectra for A/F/G/K-type stars us- Liuetal.2014;Yuanetal.2015)isbeingcarriedoutwiththeaim ingboththeofficialLAMOSTStellarparameterPipeline(LASP; to obtain a statistically complete stellar spectroscopic sample in Wuetal.2011,2014)andtheLAMOSTStellarParameterPipeline a contiguous sky area around the Galactic anticentre, taking full atPekingUniversity(LSP3;Xiangetal.2015a).Typicalprecisions advantage of thelargenumber of fibers(4,000) andfieldof view oftheresults,dependingonthespectralsignal-to-noiseratio(SNR) (20sq.deg.)offeredbyLAMOST(Cuietal.2012).Thesurveywill andthespectraltype,areafew(5–10)kms−1 forradialveloc- allowustoacquireadeeperandmorecomprehensiveunderstand- ingofthestructure,originandevolutionoftheGalacticdiskand ityVr,100–200KforTeff,0.1–0.3dexforlogg,0.1–0.2dex for [Fe/H] (Xiangetal. 2015a; Luoetal. 2015; Gaoetal. 2015; halo,aswellasthetransitionregionbetweenthem.Themainsci- Renetal. 2016; Wangetal. 2016b). Values of α-element to iron entific goals of LSS-GAC include: (a) to characterize the stellar abundance ratio [α/Fe], as well as abundances of individual ele- populations,chemicalcomposition,kinematicsandstructureofthe ments (e.g. [C/H] and [N/H]) have also been derived with LSP3 thin and thick disks and their interface with the halo; (b) to un- (Lietal.2016;Xiangetal.2017),withprecisionssimilartothose derstand the temporal and secular evolution of the disk(s); (c) to achievedbytheAPOGEEsurveyforgiantstars(Xiangetal.2017). probethegravitationalpotentialanddarkmatterdistribution;(d)to Efforts have also been made to derive stellar parameters from identifystaraggregatesandsubstructuresinthemulti-dimensional LAMOSTspectrawithotherpipelines,suchastheSSPP(Leeetal. phasespace;(e)tomaptheinterstellarextinctionasafunctionof 2015) and the Cannon (Hoetal. 2016). Liuetal. (2015) refine distance;(f)tosearchforandstudyrareobjects(e.g.starsofpecu- the LASP estimates of log g using a support vector regression liarchemicalcompositionorhypervelocities);(g)tostudyvariable (SVR)modelbasedonKepler asteroseismicmeasurementsofgi- starsandbinarieswithmulti-epochspectroscopy. ant stars. Stellar extinction and distances have been deduced for LSS-GACplans tocollect low-resolution (R ∼ 1800) opti- LSS-GAC sample stars using a variety of methods (Chenetal. calspectra(λλ3700–9000Å) ofmorethan3millionstarsdown 2014;Yuanetal.2015;Carlinetal.2015;Wangetal.2016a),with toalimitingmagnitudeofr ∼17.8mag(to18.5magforselected typicaluncertaintiesofEB−V ofabout0.04mag,andofdistance fields)inacontiguousskyareaofover3400sq.deg.centredonthe between 10 – 30 per cent, depending on the stellar spectral type Galactic anticentre (|b| 6 30◦, 150 6 l 6 210◦), and deliver (Yuanetal.2015). spectral classifications, stellar parameters (radial velocity Vr, ef- Followingayear-longPilotSurvey,LSS-GACwasinitiatedin fectivetemperatureTeff,surfacegravitylogg,metallicity[Fe/H], October,2012,andisexpectedtocompleteinthesummerof2017. α-elementtoironabundanceratio[α/Fe],andindividualelemental TheLSS-GACdatacollecteduptotheendofthefirstyearofthe abundances), as well as values of interstellar extinction and dis- RegularSurveyarepublicavailablefromtwoformalofficialdata tanceofthesurveyedstars,soastobuild-upanunprecedented,sta- releases, namely the early (LAMOST EDR; Luoetal. 2012) and tisticallyrepresentativemulti-dimensionaldatabasefortheGalactic first (LAMOST DR1; Luoetal. 2015) data release1. The LAM- (disk) studies.ThetargetsofLSS-GACareselecteduniformlyin OSTEDRincludesspectraandstellarparametersderivedwiththe theplanesof(g−r,r)and(r−i,r)Hessdiagramsandinthe(RA, LASPforstarsobservedduringthePilotSurvey,whiletheLAM- Dec)spacewithaMonteCarlomethod,basedontheXuyiSchmidt OSTDR1includesstarsobservedbyJune,2013.Inaddition,there TelescopePhotometricSurveyoftheGalacticAnticentre(XSTPS- isapublicreleaseofLSS-GACvalue-addedcataloguesforstarsob- GAC; Zhangetal.2013, 2014; Liuetal. 2014; Yuanetal.2015), servedbyJune,2013,theLSS-GACDR12(Yuanetal.2015).LSS- a CCD imaging photometric survey of ∼ 7000sq.deg. with the GACDR1presentsstellarparametersderivedwithLSP3,valuesof Xuyi1.04/1.20mSchmidtTelescope.Starsofallcoloursaresam- interstellar extinction and stellar distance deduced with a variety pledbyLSS-GAC.Thesamplingratesarehigherforstarsofrare ofmethods,aswellasmagnitudesofbroadbandphotometrycom- colours, without losing therepresentation of bulk stars,given the piled from various photometric catalogues (e.g. GALEX, SDSS, highsamplingdensity(& 1000starspersq.deg.).Thissimpleyet XSTPS-GAC,UCAC4,2MASSandWISE),andvaluesofproper non-trivialtargetselectionstrategyallowsforastatisticallymean- motions from the UCAC4 and PPMXL catalogues and those de- ingfulstudyoftheunderlyingstellarpopulationsforawiderange rivedbycombingtheXSTPS-GACand2MASSastrometricmea- of object class, from white dwarfs (e.g. Rebassa-Mansergasetal. surements,and,finally,stellarorbitalparameters(e.g.eccentricity) 2015),mainsequenceturn-offstars(e.g.Xiangetal.2015b)tored computedassumingspecificGalacticpotentials. clumpgiants(e.g.Huangetal.2015c),aftertheselectionfunction This paper presents the second release of value-added cata- hasbeenproperlytakenintoaccount. logues of LSS-GAC (LSS-GAC DR2). LSS-GAC DR2 presents Asanextension,LSS-GACalsosurveysobjectsinacontigu- the aforementioned multi-dimensional parameters deduced from ousareaofafewhundredsq.deg.aroundM31andM33.Thetargets 1,796,819 spectra of 1,408,737 unique stars observed by June, includebackgroundquasars,planetarynebulae(PNe),HIIregions, 2014.ComparedtoLSS-GACDR1,inadditiontoasignificantin- globular clusters, supergiant stars, as well as foreground Galac- creaseinstellarnumber, several improvements tothedatareduc- tic stars. In addition, to make full use of all available observing tionandstellarparameterdeterminationshavebeenimplemented, time, LSS-GACtargetsvery bright (VB) starsof r < 14mag in including: (1)Anupgraded LAMOST2D pipelinehasbeenused skyareasaccessibletoLAMOST(−10◦ 6 Dec 6 60◦)inpoor to process the spectra; (2) The spectral template library used by observing conditions (bright/grey lunar nights, or nights of poor LSP3hasbeenupdated,addingmorethan200newtemplates.The transparency).Thoseverybrightstarscompriseanexcellentsam- plesupplementarytothemainone.Giventheirrelativelylowsur- facedensities,atleastfortheareasoutsidethedisk,LSS-GAChas 1 http://dr1.lamost.org achievedaveryhighsamplingcompleteness(50percent)forthose 2 http://lamost973.pku.edu.cn/site/data 3 atmospheric parameters for all template stars have also been re- determined/calibrated; (3)Valuesofα-elementtoironabundance ratio[α/Fe] have been estimated withLSP3; (4) Accurate values ofstellaratmosphericparameters(T ,logg,[Fe/H],[α/Fe]),ab- eff solutemagnitudesMV andMKs,aswellaselementalabundances [C/H]and[N/H],havealsobeenestimatedfromthespectrausing a multivariate regression method based on kernel-based principal componentanalysis(KPCA). Thepaperisorganizedasfollows.Section2describestheob- servationsincludedintheLSS-GACDR2,includingabriefreview of the target selection algorithm and the observational footprint. Section3 introduces the data reduction briefly. Section4 presents adetaileddescriptionoftheimprovementsinstellarparameterde- terminationsincorporatedinLSS-GACDR2.Section5brieflydis- cussestheduplicateobservations,whichaccountsfornearly30per Figure2.LSS-GACDR2footprintfortheverybright(VB)plates.Tore- cent of all observations. Section6 introduces the determinations ducethefigurefilesize,only1in10observedstarsareplotted. of extinction anddistance. Section7presents proper motions and derivationofstellarorbitalparameters.Theformatofvalue-added cataloguesisdescribedinSection8,followedbyasummaryinSec- (∼4650Å)orthe(∼7450Å)partofthespectrum(Liuetal.2014). tion9. Thenumbersofspectraandstarshaveincreasedsignificantlycom- pared to those of LSS-GAC DR1, which contains, for example, 225,522spectraof189,042uniquestarsofSNR(4650Å)>10for the main survey, and 457,906 spectra of 385,672 unique stars of 2 OBSERVATIONS SNR(4650Å)> 10fortheVBsurvey(cf.Yuanetal.2015).Due Tomakegooduseofobservingtimeofdifferentqualitiesaswell to the overlapping of LAMOST fields of view of adjacent plates as to avoid fibre cross-talking, LSS-GAC stars are targeted by 4 andtherepeatingofobservationsfailedtomeetthequalitycontrol, typesofsurveyplatesdefinedinr-bandmagnitude(Liuetal.2014; thereisaconsiderable fractionof starsthat havebeen repeatedly Yuanetal.2015).Starsofr<14.0magaretargetedbyverybright targeted several times. For LSS-GACDR2, amongst the 948,361 (VB) plates, and observed in grey/lunar nights, with typical ex- uniquestarstargetedbythemainsurvey,71.0,20.6,6.0,1.7,0.5, posure time of (2 – 3) × 600s. Stars of 14.0 < r . 16.3mag 0.1percentofthestarsareobservedbyonetosixtimes,respec- aretargetedbybright(B)plates,andobservedingrey/darknights, tively. The corresponding fractions for the M31/M33 survey are withtypicalexposuretimeof2×1200s,whereasstarsof16.3 . 60.1,20.4,10.1,4.4,2.5,1.3percent,andthosefortheVBsurvey r . 17.8mag,andof17.8 . r < 18.5magaretargetedrespec- are73.5,20.5,3.7,1.7,0.3,0.2percent.Forthoseuniquestarswith tivelybymedium-bright(M)andfaint(F)plates,andobservedin SNR(4650Å)>10,thecorrespondingfractionsare83.6,13.2,2.4, darknightsofexcellentobservingconditions(intermofseeingand 0.6, 0.1,0.03 per cent for theLSS-GACmainsurvey, 72.6, 19.2, transparency),withtypicalexposuretimeof3×1800s. 5.6,1.7,0.7,0.2percentfortheM31/M33survey,and78.3,17.3, By June, 2014, 314 plates (194 B + 103 M + 17 F) for the 2.9, 1.2, 0.2, 0.1 per cent for the VB survey. Note that there are LSS-GAC main survey, 59 plates (38 B + 17 M + 4 F) for the alsoasmallfraction(∼ 0.8percent)ofstarsthataretargetedby M31/M33surveyand682platesfortheVBsurveyhavebeenob- boththeLSS-GACmain(orM31/M33)surveyandtheVBsurvey. served.Notethatspectraofafewplatescouldnotbesuccessfully Theseduplicateswerenot consideredwhencalculatingtheabove processed with the 2D pipeline and are therefore not included in percentagenumbers. theabovestatistics.Duringthesurvey,someobservingtime,onthe Figs.1and2plotthefootprintsofstarswitheitherablueor level of one or two grey nights per month has been reserved for redspectralSNRhigherthan10forLSS-GACDR2.Thefootprints monitoringtheinstrumentperformance(e.g.throughputandaccu- ofstarstargetedbyVB,BandMplatesareplottedinseparatepan- racyoffibrepositioning; Liuetal.2014;Yuanetal.2015).Some els.Forthemainsurvey,thestrategyistoextendtheobservations ofthosereservednightshavebeenusedtotargetsomeoftheLSS- of a stripe of Dec ∼ 29◦ to both higher and lower Declinations GACplates,yieldinganother 94observedplates(79B/M/F+15 (Yuanetal.2015).ComparedtoLSS-GACDR1,LSS-GACDR2 V).Finally,43BorMorFLSS-GACplateswereobservedfrom hascompletedtwomorestripesforBandMplates,namelythose SeptembertoOctober,2011,whentheLAMOSTwasbeingcom- ofDec ∼ 34◦ and∼ 24◦,respectively.AfewBandMplatesof missionedbeforethestartofPilotSurvey.Forthose43plates,the Galacticlatitudeb > 35◦ wereobservedusingeitherthereserved magnitudelimitsofassigningstarsinB/M/Fplatesarenotexactly timeorduringthecommissioningphase.FortheM31/M33survey, the same as those adopted during the Pilot and Formal surveys. 7Band9MplateswerecollectedinthesecondyearoftheRegu- Forconvenience,allplatesobservedusingreservedtimeaswellas larSurvey(September2013–June2014),leadingtoamuchlarger thosecollectedduringthecommissioningphasehavebeengrouped skycoveragecomparedtoLSS-GACDR1.Significantprogressin into,asappropriately,theLSS-GACmain,M31/M33andVBsur- theobservationofVBplatesisseeninLSS-GACDR2,intermof vey,respectively,leadingtoatotalof395platesfortheLSS-GAC boththeareaandcontinuityoftheskycoverage. main,100platesfortheM31/M33and697platesoftheVBsurvey, Figs.3 – 5 plot the density distributions of starstargeted, as respectively. wellasthosesuccessfullyobserved(i.e.withaspectralSNRhigher The total numbers of spectra collected and unique stars tar- than10, eitherintheblueorred),inthecolour –magnitudedia- geted by those plates are listed in Table1. Table1 also lists the grams (CMDs) for the main, M31/M33 and VB surveys, respec- numbersofspectraanduniquestarsthataresuccessfullyobserved, tively. For the main and M31/M33 surveys, the diagrams are for defined by a spectral SNR of higher than 10 either in the blue colour–magnitudecombinations(g−r,r)and(r−i,r)usedtose- 4 Xianget al. Table1.Numbersofspectraanduniquestars(inparentheses)observedbyLSS-GACbyJune,2014. LSS-GACMainSurvey M31/M33Survey VBSurvey AllSNRs 1,332,812(948,361) 305,226(171,259) 1,944,525(1,431,219) SNR(4650Å)>10 510,531(423,503) 91,921(65,841) 1,194,367(922,935) SNR(7450Å)>10 688,459(572,438) 68,380(58,197) 1,358,618(1,050,143) SNR(4650Å)>10orSNR(7450)>10 763,723(618,924) 113,597(80,452) 1,397,538(1,075,677) Figure1.LSS-GACDR2footprintsinaGalacticcoordinatesystemofstarsobservedrespectivelywithbright(B;leftpanel)andmedium(M;rightpanel) plates.TheredlinedenotesaconstantDeclinationof30◦.Toreducethefigurefilesize,only1in10observedstarsareplotted. lecttargets(Yuanetal.2015).Magnitudesofg,r,ibandsarefrom high sampling ratesof very bright stars(e.g. Xiangetal. 2015b), theXSTPS-GACsurvey, except for afew platesofhigh Galactic andthefactthatstarsofallcolourshavebeenobservedwithouta latitudes, for which magnitudes from the SDSS photometric sur- strongcolourbias,theselectionfunctioncanstillbewellaccounted veyareused.Thefiguresshowthat,asplanned,starsofallcolours forwithsomeeffortandcare,ifnotstraightforwardly. havebeenobserved.Figs.3–5alsoshowthatthedistributionsof Fig.6 plots the SNR distribution of spectra for the main, starsthathaveeitherablueorredspectralSNRhigherthan10,as M31/M33 and VBsurveys, aswell asthose of thewhole sample plottedinthemiddlepanelsofthosethreefigures,arequitesimi- fordwarfandgiantstars.OnlyspectrawitheitherSNR(4650Å)or lartothosetargeted,plottedinthetoppanelsofthethreefigures, SNR(7450Å)higherthan10areplotted.Thenumberofspectrain except forfaintones(r > 17.8mag).Notethatforthemainand logarithmicscaledecreasesapproximatelylinearlywithincreasing M31/M33surveys,somestarsofeitherr >18.5orr <14.0mag SNR.SNRsoftheredpartofthespectraaregenerallyhigherthan were observed during the commissioning phase. In contrast, the thoseofthebluepart.Also,spectraoftheVBsurveyhavegenerally distributions of stars of SNR(4650) > 10 are quite different – higherSNRsthanthoseofthemainandM31/M33surveys.Distri- therearefewerfaintstarsofredcolours.Thisiscausedbyacom- bution of SNRs for the giants are similar to those of the dwarfs. bination of the effects of low intrinsic fluxes in the blue of red Heretheclassificationofdwarfsandgiantsisbasedontheresults stars and the lower throughputs of the spectrographs in the blue of LSP3(cf. Section 4). For the whole sample, about 36, 57 and comparedtothoseinthered(Cuietal.2012).FortheVBsurvey, 73percentofthespectrahaveaSNRhigherthan50,30and20, (g−r,r)and(J −Ks,J)diagramsareplotted.Theg,r,imag- respectively,inthebluepartofthespectrum. nitudes are taken from the AAVSO Photometric All-Sky Survey (APASS;Munarietal.2014),whichhaveabrightlimitingmagni- tudeofabout10magandafaintlimitingmagnitude(10σ)ofabout 16.5mag ing,r,i-bands. For starsof r > 14.0mag, magnitudes 3 DATAREDUCTION fromtheXSTPS-GACorSDSSsurveysareadoptedifavailable.A TherawspectraofLSS-GACusedtogeneratethevalue-addedcat- comparisonofstarscommontoXSTPS-GACandAPASSsurveys alogueswereprocessedatPekingUniversitywiththeLAMOST2D showsgoodagreementinbothmagnitudesandcoloursforstarsof reductionpipeline(Luoetal.2012,2015)toextractthe1Dspectra. 14.0 < r < 15.0mag, with differences of just a few (< 5) per Thisprocessincludesseveralbasicreductionsteps,includingbias cent. Due to the heterogeneous input catalogs and magnitude cut subtraction,fibretracing,fibreflat-fielding,wavelengthcalibration criteriaused for theVBsurvey (Yuanetal.2015),themorpholo- andsky subtraction. Both fibretracing andflat-fieldingwerefirst giesofCMDdistributionsofVBplatesaremorecomplicatedthan carried out using twilight flat-fields. The results were further re- those of the main and M31/M33 plates. Nevertheless, due to the visedusingskyemissionlineswhenprocessingtheobjectspectra 5 Figure3.Colour-codedstellardensitydistributionsinthecolour-magnitude Figure4.SameasFig.3butfortheM31/M33survey. (g−r,r)and(r−i,r)diagramsfortheLSS-GACmainsurvey.Theupper panels show allobservedstars,while themiddlepanels showthosewith eitherSNR(4650Å)>10orSNR(7450Å)>10,andthelowerpanelsshow tingoffluxesmeasuredbytheindividualskyfibres.Themeasured thosewithSNR(4650Å)> 10.Thehistogramsshowtheonedimensional fluxesofskyemissionlinesintheobjectspectraarenormalizedto distributions ofstars incolours (g −r)and(r −i)orinmagnitude r, thoseofthesuper-skyspectrumtocorrectforpotentialdifferences respectively,normalizedtothemaximumvalue. of throughputs of fibresused to measure thesky and the objects. Thecorrectionassumesthatthestrengthsoftheskyemissionlines toaccountforthepotentialshiftsoffibretracesandthevariations areconstantacrosstheskyareacoveredbyagivenspectrograph, infibrethroughput.Typicalprecisionoffibreflat-fielding,asindi- whichisaboutonesquaredegree,andanydifferencesinskyemis- catedbythedispersionsofflat-fieldsacquiredindifferentdays,is sionlinefluxesasmeasuredbytheskyandobjectfibres,arecaused betterthan1percent.Wavelengthcalibrationwascarriedoutus- byerrorsinflat-fielding.Thecorrectionalsoassumesthatforthe ing exposures of a Cd-Hg arc lamp for the blue-arm spectra and skybackground,thecontinuumscaleswithemissionlineflux. anAr-Nearclampforthered-armspectra.Typically,theresiduals The resultant 1D spectra were then processed with the flux ofwavelengthcalibrationfortheindividualarclineshaveamean calibration pipeline developed specifically for LSS-GAC to deal valueclosetozeroandastandarddeviationof∼0.02Å,whichcor- withfieldsoflowGalacticlatitudesthatmaysufferfromsubstantial respondsto∼1kms−1invelocityspace.Whenprocessingtheob- interstellarextinction.Thepipelinegeneratesflux-calibratedspec- jectspectra,skyemissionlinesareusedtoadjustthewavelengths tra as well as co-adds the individual exposures of a given plate toaccountforanyresidualsystematicerrorsinthewavelengthcali- (Xiangetal. 2015a; Yuanetal. 2015). To deal with the interstel- brationand/orpotentialwavelengthdriftsbetweenthearc-lampand larextinction,thepipelinecalibratesthespectrainaniterativeway, object spectra. A comparison of stellar radial velocities with the usingF-typestarsselectedbasedonthestellaratmosphericparam- APOGEE measurements for LAMOST-APOGEE common stars etersyieldedbyLSP3asfluxstandards.Thetheoreticalsynthetic yieldsanoffsetof−3to−4kms−1(Xiangetal.2015c;Luoetal. spectrafromMunarietal.(2005)ofthesameatmosphericparame- 2015),andtheoffsetisfoundtobestableinthepastfewyears,with tersareadoptedastheintrinsicspectralenergydistributions(SEDs) typicalnight-to-nightvariationsofabout2kms−1.Foreachofthe ofthestandards.Typical(relative)uncertaintiesofthespectralre- 16 spectrographs, about 20 fibres are typically assigned to target sponse curves (SRCs) thus derived are about 10 per cent for the skybackgroundforskysubtraction.Thenumbersofskyfibresal- wavelengthrange4000–9000Å(Xiangetal.2015c). located for sky measurement are higher for plates of low source Compared tothepipelines usedtogenerate LSS-GACDR1, surface density, e.g. VB plates of |b| > 10◦. To subtract the sky afewimprovementshavebeenimplemented:(1)Severalfibresof background, the 2D pipeline creates a super-sky by B-spline fit- Spectrograph#4arefound tobemis-identifiedbeforeJune, 2013 6 Xianget al. Figure6.DistributionofspectralSNRsforthemain(topleft),M31/M33 (topright)andVB(bottomleft)surveys.Blueandredlinesrepresentspec- tral SNRat 4650and7450Å,respectively. Thebottom right panel plots SNR (4650Å) for the whole sample that have a spectral SNR (4650Å) higherthan10fordwarfs(solidline)andgiants(dashedline),respectively. Figure5.SameasFig3butfortheverybrightsurvey.Colour-magnitude diagramsof(g−r,r)and(J−Ks,J)areshown. conditions, may haveartificiallyhigh SNRs,yet thisratiocan be (LuoA.-L.,privatecommunication). Asa result,thecoordinates, infact quitesmallfor thosespectra. Theflagisdenoted by ‘OB- magnitudes,spectraandstellarparametersofstarstargetedbythose JECT_SKY_RATIO’inthevalue-addedcatalogues.Asecondflag fibreswerewronglyassignedinLAMOSTDR1(Luoetal.2015) isusedtomarkfibresthatmaybepotentiallyaffectedbythenearby aswellas LSS-GACDR1(Yuanetal. 2015). Thefibresare:#76 saturatedfibres.Saturationoccursforverybrightstars.Whenafi- (87),87(79),79(95),95(84),84(76),44(31),31(46),46(26), bresaturates,spectraofnearbyfibres,especiallythoseoffaintstars, 26 (44), where the numbers in the brackets are the correct ones. canbeseriouslycontaminatedbyfluxcrosstalk,leadingtoincor- Theerrorshavebeencorrected;(2)Thevaluesofinterstellarred- rectSNRsandwronglyestimatedstellarparameters.Whenafibre dening of flux standard stars are now derived with the star-pair saturates, starsobserved by theadjacent 50 fibers(±25) arenow method(Yuanetal.2015),replacingthosededucedbycomparing marked by flag ‘SATFLAG’in the value-added catalogues. Even theobservedandsyntheticcolours,asadoptedinLSS-GACDR1. when afiber isnot saturated, crosstalk may stilloccur if theflux Thechangeisbasedontheconsiderationthatthestar-pairmethod ofthatfibreisveryhigh.Toaccountforsuchsituation,athirdflag for extinction determination is model-free, and yields in general isintroduced.IfthespectrumfromagivenfibrehasaSNRhigher more robust results than the method adopted for LSS-GAC DR1 than300,thentheadjacent4(±2)fibresareassigneda‘BRIGHT- (Yuanetal.2015);(3)ForthefluxcalibrationofVBplates,g,r,i FLAG’ value of 1; otherwise the flag has a value of 0. For each magnitudesfromtheAPASSsurvey(Munarietal.2014)arecom- fibre,thevalueofmaximumSNRofthenearest5fibres(theadja- bined with 2MASS J,H,Ks magnitudes to derive values of ex- cent4plusthefibreofconcernitself),isalsolistedas‘BRIGHT- tinctionofflux-calibrationstandardstars.InLSS-GACDR1,only SNR’inthevalue-added catalogues. Finally,aflaghasbeen cre- 2MASSJ,H,Ksmagnitudeswereused.Thechangeshouldsignif- atedtomarkbadfibres.Amongthe4000fibresofLAMOST,some icantlyimprovetheaccuracyofextinctionestimatesforstandards have very low throughputs or suffer from serious positioning er- usedtoflux-calibrateVBplates. rors.Spectrayieldedbythose“bad”fiberscannot betrusted.The ConsideringthattheSNRalonedoesnotgiveafullydescrip- numberofbadfibrescontinuouslyincreaseswithtime,andreaches tion of the quality of a spectrum, a few flags are now added to about200byJune,2014.Thosefibersaremarkedby‘BADFIBRE’ image header of a processed spectrum. The first flag is the ratio inthevalue-added catalogues. Inaddition tothose newly created of (sky-subtracted) stellarfluxtothefluxof(super-) skyadopted flags,informationofobservingconditionswithregardtothemoon forsky-subtraction.Duetotheuncertaintiesinsky-subtraction,the (phase,angulardistance),theairmassandthepointingpositionof spectraofsomestars,especiallythoseobservedunderbrightlunar thetelescopearenowalsoincludedinLSS-GACDR2. 7 4 STELLARPARAMETERDETERMINATION: parametersinordertoaccountforthesystematicsamongsttheval- IMPROVEMENTSOFLSP3 uesfromthedifferentsources,thehomogenizationwascarriedout for only a limitedtemperature range of 4000 < T < 6300K. LSS-GAC DR1 presents values of radial velocity Vr and stellar Withmoredataavailable,thereisroomofconsidereaffble improve- atmospheric parameters (effective temperature T , surface grav- eff ment. itylogg,metallicity[Fe/H])derivedfromLSS-GACspectrawith Todealwiththelimitedwavelength coverage oftheMILES LSP3.Sincethen,afewimprovementsofLSP3havebeenimple- spectra and to improve the coverage and distribution of template mentedandareincludedinLSS-GACDR2,including(1)Anum- stars in the parameter space, an observational campaign is being ber of new spectral templates have been added to the MILES li- carried out to observe additional template stars that fill the holes brary,andatmosphericparametersofthetemplatestarshavebeen inparameterspace,toenlargethecoverageofparameterspace,as re-determined/calibrated;(2)Severalflagsarenowassignedtode- wellastoextendthespectralwavelengthcoverageto9200Å,using scribe the best-matching templates that has the characteristics of the NAOC 2.16m telescope and the YAO 2.4mtelescope (Wang a,e.g.,variablestar,binary,double/multiplestarorsupergiantetc. etal.inpreparation). Theprojectplanstoobtainlong-slitspectra ofagiventargetspectrum; (3)Valuesof α-elementtoironabun- covering3600–9200Åforsome900templatestarsnewlyselected danceratio[α/Fe]havebeenestimatedbytemplatematchingwith fromthePASTELcatalog(Soubiranetal.2010),acompilationof a synthetic spectral library; (4) A multivariate regression method starswithrobuststellarparameters,mostlyinferredfromhighres- based on kernel-based principal component analysis (KPCA) has olutionspectroscopy. Theprojectwillalsoextendthewavelength been used to obtain an independent set of estimates of stellar at- coverageofalltheoriginal MILESspectrato9200Å.Inthecur- mosphericparameters,includingT ,logg,[M/H],[Fe/H],[α/M], eff rentwork,267newtemplatespectraobtainedbythecampaignby [α/Fe], absolute magnitudes MV and MKs as well as individual October, 2015havebeen added totheMILESlibrarytogenerate elementalabundancesincluding[C/H]and[N/H]. parameter estimates presented in LSS-GAC DR2. In addition, to reduce the systematic and random errors of the atmospheric pa- rameters of the template stars, Huang et al. (in preparation) have 4.1 UpdatestotheMILESlibrary re-calibrated/determined the atmospheric parameters of all tem- TheoriginalMILESspectrallibrarycontainsmedium-to-lowres- plate stars, both old and newly selected. In doing so, the recent olution (full-width-at-half-maximum FWHM ∼ 2.5Å) long-slit determinations of parametersof templatestarsavailablefromthe spectraofwavelengthrange3525–7410Åfor985starsthathave PASTEL catalogues have been adopted, replacing the older val- robust stellar parameter estimates in the literature, mostly deter- ues used by the original MILES library. The updated values of minedwithhigh-resolutionspectroscopy(Sánchez-Blázquezetal. metallicityarethenusedtocalculateeffectivetemperaturesusing 2006; Falcón-Barrosoetal. 2011). TheMILES libraryisadopted thenewlypublished metallicity-dependent colour-temperature re- by LSP3 as templates for estimation of atmospheric parameters lationsofHuangetal.(2015a),deducedfrommorethantwohun- fromLAMOSTspectra.Comparedtoothertemplatelibrariesavail- dred nearby stars with direct, interferometric angular size mea- able in the literature, MILES has two advantages. Firstly, the surementsandHipparcosparallaxes.Valuesofsurfacegravityare MILESspectrahaverobustfluxcalibrationandthespectralresolu- re-determined using Hipparcos parallaxes (Perrymanetal. 1997; tionmatcheswellthatofLAMOSTspectra.Secondly,thetemplate Anderson&Francis 2012) and stellar isochrones from the Dart- stars cover a large volume of parameter space (3000 < T < mouth Stellar Evolution Database (Dotteretal. 2008). Values of eff 40,000K,0<logg<5dexand−3.0<[Fe/H]<0.5dex). [Fe/H]arethenre-calibratedtothestandardscaleofGaia-ESOsur- Still,forthepurposeofaccuratestellaratmosphericparame- vey(Jofréetal.2015).Fig.6plotsthenewlycalibrated/determined terestimation,theMILESlibraryhasafewdefectsinwantofim- parametersofthetemplatestarsintheTeff–loggandTeff–[Fe/H] provement.Oneisthelimitedspectralwavelengthcoverage.LAM- planes.NotethatingeneratingLSS-GACDR1,85oftheoriginal OST spectra cover the full optical wavelength range of 3700 – MILESstarswereabandonedbecausetherewerenocompletepa- 9000Å, whereas MILES spectra stop at 7410Å in the red. As a rameterestimatesintheliteratures.Thosestarsarenowincludedin result, LAMOST spectra in the 7400 –9000Å wavelength range thelibraryastheirparametershavebeenre-determined.Also,with havehithertonotbeenutilizedforparameterestimation.Thereare thenewlyselectedandobservedtemplatesaddedtothelibrary,we afewprominentfeaturesinthiswavelengthrangethataresensitive havenowdiscardedthe400interpolatedspectrausedwhengener- abundanceindicators,including, e.g.theCaII λ8498,8542, 8664 atingLSS-GACDR1. triplet and the NaI λ8193, 8197 doublet. In addition, since LSS- GACtargetsstarsofallcolours,especiallythoseinthedisk,about 4.2 [α/Fe]estimationbymatchingwithsyntheticspectra 30percentspectracollectedhavepoorSNRsinthebluebutgood SNRsin the red. Those stars are either intrinsically red or suffer α-element to iron abundance ratio [α/Fe] is a good indicator of fromheavyinterstellarextinction.Stellarparametersforthosestars theGalacticchemicalenrichmenthistory(e.g.Leeetal.2011),and havecurrentlynotbeenderivedfromLAMOSTspectra,byeither thusvaluable toderive. Toestimateratios[α/Fe]fromLAMOST LSP3orLASP,duetothefactthatboththeMILESandELODIE spectra, a method of template matching based on χ2-fitting with (adoptedbyLASP)libraries,donothavewavelengthcoveragelong syntheticspectraisdevelopedforLSP3.Detailsaboutthemethod enoughinthered.AnotherdefectoftheMILESlibraryisthein- androbustnesstestsofthededuced[α/Fe]valuesaredescribedin homogenous coverage of stars in the parameter space. As shown Lietal.(2016).Herewebrieflysummarizethemethodandpoint inXiangetal.(2015c),thereareholesandclustersinthedistribu- outafewimprovementsthatmayleadtobetterresults. tionof MILESstarsintheparameter space, leading tosomesig- The synthetic library used to estimate [α/Fe] was generated nificantartifactsintheresultantparameters. Finally,stellaratmo- withtheSPECTRUMcode(Gray1999)ofversion2.76,utilizing sphericparametersoftheoriginalMILESlibraryarecollectedfrom theKuruczstellarmodelatmospheresofCastelli&Kurucz(2004). varioussourcesintheliteraturethussufferfromsystematicerrors. Thesolar[α/Fe]ratioissettozero,andtheα-enhancedgridsare AlthoughCenarroetal.(2007)havetakenefforttohomogenizethe generated by scaling the elemental abundances of O, Mg, Si, S, 8 Xianget al. mentcontainsmainlyTifeatures,whilethatof5000–5300Åcon- tainsmainlyMgIfeatures,aswellasafewfeaturesofCa,Tiand Si.NotethatgiventhelowresolutionaswellaslimitedSNRsof LAMOSTspectra,Ca,TiandSifeatureswithinthosetwospectral segmentscontributeinfactonlyasmallfractionofthecalculated valuesofχ2,andarethereforenot veryusefulforthedetermina- tionof[α/Fe].Inmetal-richstars,theMgIbfeaturesareingeneral prominentenoughforarobustdeterminationof[α/Fe].However, inmetal-poor([Fe/H]< −1.0dex)stars,theMgIblinesbecome lessprominent sothat the[α/Fe]havelargeruncertainties. Inthe currentwork,inordertoimproveprecisionof[α/Fe]estimates,es- pecially for metal-poor stars, we have opted to include the 3910 –3980ÅspectralsegmentthatcontainstheCaIIHKlinesinthe calculationofχ2values.Meanwhile,asanoption,wealsoprovide resultsyieldedusingtheexactlysamespectralsegmentsasLietal. (2016). This is useful considering that the strong Ca II HK lines inmodelspectraformetal-richstarsmaybenotaccuratelysynthe- sized. The resolution of LAMOST spectra from individual fibers variesfromonetoanother,aswellaswithwavelength(Xiangetal. 2015c). To account for this in template matching, the synthetic spectraaredegradedinresolutiontomatchthatofthetargetspec- trum.Thelatterisderivedutilizingthearcspectrum.Thededuced resolution as a function of wavelength is further scaled to match theresolutionyieldedbyskyemissionlinesdetectedinthetarget spectruminorder toaccount for systematicvariations of spectral resolution between the arc and target exposures. Typically, for a Figure7.DistributionsoftemplatestarsusedbyLSP3intheTeff –logg given spectrograph, fibre to fibrevariations of spectral resolution andTeff –[Fe/H]planes.BlackdotsrepresentstarsintheoriginalMILES amountto0.3Å,risingto0.5–1.0Åamongthedifferentspectro- library,whilereddotsrepresent267newlyobservedtemplatesemployedin thegenerationofLSS-GACDR2(seethetext). graphs.Systematicvariationsofspectralresolutionbetweenthearc andtargetexposuresarefoundtobetypically0.2Å. Inaddition,inordertoallowforpossibleuncertaintiesinthe Table2.GridsofKURUCZsyntheticspectrafor[α/Fe]estimation. input atmospheric parameters Teff, log g and [Fe/H] yielded by LSP3aswell asany possible mismatchbetween the LSP3atmo- Parameter Range Step spheric parameters and those of the Kurucz stellar model atmo- spheres,inthecurrentwork,wehaveoptednottofixtheinputval- Teff [4000,8000]K 100 K uesofT ,loggand[Fe/H]asyieldedbyLSP3,butallowthemto logg [0.0,5.0]dex 0.25dex eff varyinlimitedrangesaroundtheinitialvalues.Therangesareset [Fe/H] [−4.0,0.5]dex 0.2dexfor[Fe/H]<−1.0dex to2σuncertaintiesoftheparametersconcerned,withlowerlimits 0.1dexfor[Fe/H]>−1.0dex [α/Fe] [−0.4,1.0]dex 0.1dex of500K,0.5dexand 0.5dexand upper limitsof 1000K,1.0dex and1.0dexforT ,log g and[Fe/H],respectively.Foreachgrid eff value of [α/Fe], the synthetic spectrum that has atmospheric pa- Ca and Ti, and those of C and N abundances are also enhanced rametersTeff,log gand[Fe/H]withintheaboverangesandfitsthe by theamount of α-elements. Linesfrommore then 15 diatomic targetspectrumbest(i.e.yieldingthesmallestχ2)istakenasthe molecule species, including H , CH, NH, OH, MgH, AlH, SiH, choiceofsyntheticspectrumwhenfittingandderiving[α/Fe]using 2 CaH,C ,CN,CO,AlO,SiO,TiOandZrO,aretakenintoaccount thetechniquedescribedinLietal.(2016). 2 inthe calculation of the opacity. Isotope lines arealso taken into Valuesof[α/Fe]arederivedwiththeabovealgorithmforall account. Intotal,320,000syntheticspectraaregenerated.Table2 LSS-GAC DR2 stars of a spectral SNR higher than 15. The left liststheparameterrangesandstepsofthegrids.Notethatthegrids panel in the third row of Fig.9 plots the density distribution of adoptedherehaveastepof0.1dexin[α/Fe],halfofthevalueused LSS-GAC DR2 dwarf stars in the [Fe/H] – [α/Fe] plane. Here inLietal.(2016).Allthecomputedsyntheticspectrahaveareso- the [α/Fe] are those derived using spectra including the 3910 – lutionof2.5ÅFWHM,andisinvariantwithwavelength. 3980Å segments. The figure shows an [α/Fe] plateau for metal- ForatargetspectrumwithatmosphericparametersT ,logg poor([Fe/H] < −1.0dex)stars,atamedianvalueabout0.4dex. eff and[Fe/H]yieldedbyLSP3,thesyntheticspectraareinterpolated Formoremetal-richstars,[α/Fe]decreaseswithincreasing[Fe/H], togenerateasetofspectrathathavethesameatmosphericparam- reaching amedian value of zero near thesolar metallicity, which eters as the target for all grid values of [α/Fe]. Values of χ2 be- means that the zero-point offset, i.e. deviations of [α/Fe] values tween the target and the individual interpolated synthetic spectra from zero at solar metallicity, is small, which is in contrast to arethencalculated.AGaussianplusasecondorderpolynomialis Lietal.(2016)whofindazero-pointoffsetof−0.12dex.However, thenusedtofitthededucedχ2asafunctionof[α/Fe].Thevalueof weindeedfindazero-pointoffsetofabout−0.1dexfor[α/Fe]de- [α/Fe]thatyieldsminimumχ2istakentobethe[α/Fe]ratioofthe rivedusingonlythe4400–4600Åand5000–5300Åsegments, targetspectrum.Tocomputeχ2,Lietal.(2016)usespectralseg- which is basically consistent with Lietal. (2016). The offset is ments4400–4600Åand5000–5300Å.The4400–4600Åseg- found to be mainly contributed by the 4400 – 4600Å segment. 9 Thecausesofthisdifferencearenotfullyunderstandyet.Wesus- estimation of absolute magnitudes (MV and MKs) directly from pecttheremaybesomeunrealisticinputsineithertheatmosphere LAMOST spectra; (3) A sample of LAMOST-Kepler common modelortheatomicandmoleculardatausedtogeneratethesyn- stars with accurate asteroseismic log g measurements for the es- theticspectra.Notethathereweoptnottointroduceanyexternal timation of logg of giant stars; and (4) A sample of LAMOST- corrections on the estimated [α/Fe].Random errorsof [α/Fe]in- APOGEE common stars for the estimation of metal abundance ducedbyspectralnoises,asestimatedbycomparingtheresultsde- [M/H],α-elementtoiron(metal)abundanceratio[α/Fe]([α/M]), ducedfromduplicateobservations,areafunctionofspectralSNR and of individual elemental abundances including [Fe/H], [C/H] andatmosphericparametersT ,logg and[Fe/H],andhavetyp- and[N/H]forgiantstars.Adetaileddescriptionoftheimplemen- eff ical values that decrease from ∼0.1 to ∼0.05dex as the spectral tation and test of the method is presented in Xiangetal. (2017). SNRincreasesfrom20toavaluehigherthan50.Toprovideareal- Here we note two updates of the implementation with respect to isticerrorestimatefor[α/Fe],therandomerrorinducedbyspectral thoseofXiangetal.(2017).Oneisthataunifiednumberofprinci- noisesiscombinedwiththemethoderror,whichisassumedtohave palcomponents(PCs)of100isadoptedexceptfortheestimation aconstantvalueof0.09dex,estimatedbyacomparisonwithhigh- ofabsolutemagnitudeswiththeLAMOST-Hipparcostrainingset, resolutionmeasurements(cf.Lietal.2016). forwhichboth100and300PCsareadopted.Anothermodification Forgiantstars,[α/Fe]estimatedwiththeabovealgorithmex- isthatadditionaltrainingstarshavebeenaddedtotheLAMOST- hibitsazero-pointoffsetsbetween0.1and0.2dex,probablycaused KeplerandLAMOST-APOGEEtrainingsetsasaresultthatmore byinadequaciesofthesyntheticspectraforgiantstars.Inthiswork, commonstarsbecomeavailableasthesurveysprogress.Bothtrain- nocorrectionsforthoseoffsetsareapplied.Notethatforgiantstars, ingsetsnowcontain(exactly)3000stars. [α/Fe]valuesarealsoestimatedwiththeKPCAregressionmethod Comparedtotheweighted-meanresults,loggand[Fe/H]de- using the LAMOST-APOGEEcommon stars as the training data rivedwiththeKPCAregressionmethodusingtheMILEStraining set(cf.§4.3), andtheresultant values arepresented astherecom- sethavebeenfoundtosufferfromlesssystematics,andthusbet- mendedones(cf.§4.6). terforstatisticalanalyses.Acomparisonwithasteroseismicmea- surements shows that for stars of T < 6000K and [Fe/H] > eff −1.5dex, uncertainties of KPCA logg estimatescan be assmall 4.3 StellaratmosphericparametersestimatedwithKPCA as0.1dexforspectralSNRshigherthan50.Theuncertaintiesin- method creasesubstantiallyastheSNRdeteriorates,reaching∼0.2dexata TheLSP3versionusedtogenerateLSS-GACDR1estimatesstel- SNRof20(Xiangetal.2017).Similarly,comparisonswith[Fe/H] laratmosphericparametersT ,loggand[Fe/H]withaχ2-based determinationsfromhighresolutionspectroscopyshowthatuncer- eff weighted-meanalgorithm.Thealgorithmachievesahighprecision tainties of KPCA [Fe/H] estimates are ∼0.1dex for good SNRs. inthesensethatrandomerrorsofthededucedparametersinduced Formetal-poor([Fe/H]<−1.5dex)orhot(Teff >8000K)stars, byspectralnoisesarewellcontrolled,evenforstarsofSNRsaslow KPCA estimates of both logg and [Fe/H] become less reliable, as10.Nevertheless,parametersestimatedwiththeweighted-mean and should beused withcaution. Systematicdifferences between algorithm suffer fromseveral artifacts. One isthe so-called ‘sup- KPCAand weighted-mean estimatesof Teff exist for starshotter pressioneffect’–valuesofthederivedloggarenarroweddownto than∼6500K,withdeviationsreachasmuchas∼300Kforstars anartificiallysmallrange.Thisispartlycausedbythefactthatχ2 ofTeff ∼7500K.Morestudiesareneededtounderstandthecause calculated from a LAMOST spectrum with respect to a template ofdeviations. Forthetimebeing, werecommend weighted-mean spectrumisonlymoderatelysensitivetologg,thusthesetsoftem- Teff valuesastheyareestimatedinastraightforwardwayandwell platesusedtocalculatetheweighted-meanvaluesoflog gforthe validated(Xiangetal.2015c).However,notethatweighted-mean individual target sources often have similar distributionsin logg. estimates of Teff suffer from clustering effect so that they may Anotherartifactistheso-called‘boundaryeffect’–parametersof weakly clump in the parameter space on the scale of a few tens starswithtrueparametersthatpassorareclosetotheboundaryof Kelvin,whiletheKPCAestimatesofTeff donothavesuchprob- parameter space covered by the templates are often either under- lem. estimated or overestimated systematically by the weighted-mean Surface gravitiesof giant starsof Teff < 5600 and logg < algorithm.Thiseffectisespeciallyseriousfor[Fe/H]andloggesti- 3.8dexareestimatedwiththeKPCAmethodusingtheLAMOST- mation.Finally,duetotheinhomogeneousdistributionoftemplates Kepler trainingset.HerethecutsofTeff andlogg arebased on intheparameterspace,moderateclusteringeffectisalsoseeninthe valuesyieldedbytheweighted-meanmethod.TheKPCAestimate deducedparametervalues. of logg is likely to be accurate to 0.1dex given a spectral SNR To overcome the above defects of the weighted-mean algo- higherthan50.Theuncertaintyincreasesto∼0.2dexataSNRof rithm,aregressionmethodbasedonKernel-basedPrincipalCom- 20(Huangetal.2015b;Xiangetal.2017). ponentAnalysis(KPCA)hasrecentlybeenincorporatedintoLSP3 Absolute magnitudes MV and MKs of all stars with a (Xiangetal.2017).Themethodisimplementedinamachinelearn- weighted-mean effectivetemperaturelower than12,000Karees- ingscheme.Atrainingdatasetisfirstdefinedtoextractnon-linear timated directly from LAMOST spectra using the LAMOST- principalcomponents(andtheloadingvectors)aswellastobuild- Hipparcostrainingset.Twosetsofabsolutemagnitudesaregiven, upregressionrelationsbetweentheprincipalcomponents andthe correspondingtorespectively100and300PCsadoptedforparam- targetparameters.Fourtrainingdatasetsaredefinedforthedeter- eterestimation.Forabsolutemagnitudesestimatedusing100PCs, mination of specific sets of parameters of specific types of stars. typical uncertainties are 0.3–0.4mag inboth MV and MKs for a They are: (1) The MILES library for the estimation of T and spectralSNRhigherthan50,andthevaluesincreaseto∼0.6mag eff [Fe/H]ofA/F/G/Kstars,andfortheestimationofloggofstarsthat ataSNRof20.Forabsolutemagnitudesestimatedusing300PCs, haveloggvalueslargerthan3.0dexasgivenbytheweighted-mean uncertaintiesareonly0.2–0.3magforaspectralSNRhigherthan algorithm.Thelatterstarsaremainlydwarfsandsub-giants;(2)A 50,buttheresultsaremoresensitivetoSNR,withatypicaluncer- sampleofLAMOST-Hipparcoscommonstarswithaccurateparal- taintyof∼0.7magataSNRof20. lax (thus distance and absolute magnitude) measurements for the Asignificantadvantageofestimatingabsolutemagnitudesdi- 10 Xianget al. Metal (iron) abundance [M/H] ([Fe/H]), α-element to metal (iron) abundance ratio [α/M] ([α/Fe]), as well as abundances of carbon and nitrogen, [C/H] and [N/H], are estimated using the LAMOST-APOGEE training set. Xiangetal. (2017) have demonstrated that the results have a precision comparable to thosededucedfromAPOGEEspectrawiththeASPCAPpipeline (GarcíaPérezetal. 2015; Holtzmanetal. 2015). Specifically, es- timates of [M/H], [Fe/H], [C/H] and [N/H] have a precision bet- terthan0.1dexgivenaspectralSNRhighthan30,and∼0.15dex foraSNRof20.Wenotehowever,sincetheAPOGEEstellarpa- rameters are not externally calibrated except for [M/H], any sys- tematicsintheAPOGEEresultspropagatedintooursthroughthe training set. As pointed out by Holtzmanetal. (2015), APOGEE estimatesofelementalabundancesmaysufferfromsystematicbi- asesofabout0.1–0.2dex.For[M/H],theAPOGEEvaluesarecal- ibrated to [Fe/H] measurements of star clusters for [Fe/H] range [−2.5,0.5]dex.Nevertheless,itisfoundthat[Fe/H]([M/H])esti- matedwiththeLAMOST-APOGEEtrainingsetare0.1dexsystem- aticallyhigherthanthoseestimatedwiththeMILESlibrary.Such an overestimation is also confirmed by examining common stars withhighresolutionspectroscopic[Fe/H]measurementsavailable from thePASTELcatalogue. The discrepancy islikely due to an offsetinabsolutevaluebetweentheAPOGEEandMILES(PAS- Figure8.Comparisonofabsolutemagnitudesanddistanceswiththosein- TEL)metallicities.Theestimated[α/M]([α/Fe])valueshaveatyp- ferredfromGaiaTGASparallaxfor50,000LAMOST-TGAScommonstars icalprecisionof0.03–0.06dexgivenaspectralSNRhigherthan thathaveaTGAS-basedmagnitudeerrorsmallerthan0.2mag.Theupper 20. Xiangetal. (2017) have demonstrated that, as a consequence panelsshowscolour-codedcontoursofstellarnumberdensityinlogarith- ofsuchahighprecision,acleardistinctionbetweenthesequences micscale.Crossesinredaremedianvaluesofourestimatescalculatedin binsoftheTGAS-basedvalues.Thelowerpanelsplotdistributionofdiffer- ofthickandthindiskstarsisseeninthe[M/H]([Fe/H])–[α/M] encesofmagnitudesanddistancesbetweenourestimatesandtheTGAS- ([α/Fe])plane,quitesimilartothatrevealedbyresultsfromhigh- basedvalues.RedlinesareGaussianfitstothedistribution,withthemean resolution spectroscopy.Note however that, for stars with [α/M] anddispersionoftheGaussianmarkedintheplot. higher than 0.30dex or lower than 0.0dex, the KPCA values are probablysystematicallyunderestimatedoroverestimatedduetoa lackof trainingstarsof suchabundance ratios.Inaddition, given rectlyfromtheobservedspectraisthatthemagnitudesaswellas thatAPOGEE[α/M]([α/Fe])valuesarenotexternallycalibrated, theresultant distancemoduli,aremodel independent. Fig.8plots theremayalsobesomesystematicshidedinourresults. a comparison of the estimates of MKs for 300 PCs as well as the distances thus estimated with results inferred from the Gaia 4.4 Estimationofparametererrors TGAS parallaxes (Lindegrenetal. 2016) for a sample of 50,000 LAMOST-TGAS common stars that have a TGAS-based magni- Errorsofthededucedstellarparametersareestimatedinastatisti- tudeerrorsmallerthan0.2mag.HeretheTGASdistancesandMKs calway. Parametererrorscontributed bybothspectralnoisesand values are derived using values of interstellar extinction derived inadequaciesofthemethodaretakenintoaccount.ForTeff,logg withthestarpairmethod(cf.Section6.1).Thefigureshowsvery and[Fe/H]estimatedbytheweighted-meanalgorithm,orthoseby goodagreementbetweenourestimatesandtheTGASresults.Sys- the KPCA method using the MILES training set, as well as MV tematicsinbothMKsanddistanceestimatesarenegligible,andthe and MKs estimated by the KPCA method using the LAMOST- dispersion isonly0.26magfor MKs,12 per cent for distance. A Hipparcostrainingset,parametererrorsinducedbyspectralnoises similarcomparisonofresultsyieldedusing100PCsyieldsamean andthosebythemethodareestimatedseparately. Errorsinduced differenceof0.04magandadispersionof0.29maginMKs,and by spectral noises, as in the case of LSS-GAC DR1, are esti- ameandifferenceof−2percent andadispersionof13percent mated by comparing results derived from duplicate observations indistanceestimates.Ofcourse,spectralSNRsfortheLAMOST- made in different nights, and are estimated separately for giants TGAScommonstarsareveryhigh,whichhaveamedianvalueof (logg < 3.5dex) and dwarfs (logg > 3.5dex). The results are 150,asthestarsareverybright.NotethatFig.8showsalsoaposi- fitted with a second-order polynomial function of SNR, Teff and tivenon-GaussiantailinthedifferenceofMKs,withacorrespond- [Fe/H], ing negative tail in the difference of distance. This non-Gaussian σ=c0+c1×SNR+c2×Teff +c3×[Fe/H]+c4×SNR2 tailislikelycausedbybinarystars,forwhichtheestimatesofab- solutemagnitudesfromLAMOSTspectraareonlymarginallyaf- +c5×Te2ff +c6×[Fe/H]2+c7×SNR×Teff fected,whereasthephotometricmagnitudesareunderestimatedre- +c8×SNR×[Fe/H]+c9×Teff ×[Fe/H] specttothoseassumingsinglestars.NotethatnotalltheLAMOST- (1) TGASstarsusedforthecomparisoncanbefoundintheLSS-GAC Hereloggestimatedwiththeweighted-meanalgorithmisusedto value-addedcataloguesasmanyofthemaretargetedbyothersur- group starsinto giantsand dwarfs. Generally, the errorsdecrease veyprojectsofLAMOST.Thespectraofthosestarshavebeenpro- significantlywithincreasingSNR,andhotormetal-poorstarshave cessedwithLSP3andthedataareonlyinternallyavailableforthe largererrorsthancoolormetal-richones. moment. Themethoderrorsarededucedfromtheresidualsobtainedby

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.