ebook img

Lakmal Karunarathne An Intelligent Power Management System for Unmanned Aerial Vehicle ... PDF

247 Pages·2012·40.68 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lakmal Karunarathne An Intelligent Power Management System for Unmanned Aerial Vehicle ...

CRANFIELD UNIVERSITY Defence College of Management and Technology DepartmentofEngineering&AppliedScience PhD Thesis AcademicYear2012 Lakmal Karunarathne An Intelligent Power Management System for Unmanned Aerial Vehicle Propulsion Applications Supervisor Dr J.T. Economou copyright⃝cCranfieldUniversity2012.Allrightsreserved.Nopartofthispublicationmaybereproducedwithoutwrittenpermissionofthe copyrightholder. Abstract ElectricpoweredUnmannedAerialVehicles(UAVs)haveemergedasapromi- nentaviationconceptduetotheadvantageoussuchasstealthoperationand zeroemission. Inaddition,fuelcellpoweredelectricUAVsaremoreattrac- tive as a result of the long endurance capability of the propulsion system. Thisdissertationinvestigatesnovelpowermanagementarchitectureforfuel cell and battery powered unmanned aerial vehicle propulsion application. The research work focused on the development of a power management system to control the hybrid electric propulsion system whilst optimizing thefuelcellairsupplyingsystemperformances. The multiple power sources hybridization is a control challenge associated withthepowermanagementdecisionsandtheirimplementationinthepower electronic interface. In most applications, the propulsion power distribu- tion is controlled by using the regulated power converting devices such as unidirectional and bidirectional converters. The amount of power shared withtheeachpowersourceisdependedonthepowerandenergycapacities of the device. In this research, a power management system is developed for polymer exchange membrane fuel cell and Lithium-Ion battery based hybrid electric propulsion system for an UAV propulsion application. Ini- tially, the UAV propulsion power requirements during the take-off, climb, endurance,cruisingandmaximumvelocityaredetermined. Apowerman- agement algorithm is developed based on the UAV propulsion power re- quirement and the battery power capacity. Three power states are intro- duced in the power management system called Start-up power state, High power state and Charging power state. The each power state consists of thepowermanagementsequencestodistributetheloadpowerbetweenthe battery and the fuel cell system. A power electronic interface is developed withaunidirectionalconverterandabidirectionalconvertertointegratethe fuel cell system and the battery into the propulsion motor drive. The main objective of the power management system is to obtain the controlled fuel cellcurrentprofileasaperformancevariable. Therelationshipbetweenthe fuel cell current and the fuel cell air supplying system compressor power isinvestigatedandareferencedmodelisdevelopedtoobtaintheoptimum compressor power as a function of the fuel cell current. An adaptive con- troller is introduced to optimize the fuel cell air supplying system perfor- mancesbasedonthereferencedmodel. Theadaptiveneuro-fuzzyinference system based controller dynamically adapts the actual compressor operat- ingpowerintotheoptimumvaluedefinedinthereferencemodel. Theon- linelearningandtrainingcapabilitiesoftheadaptivecontrolleridentifythe nonlinearvariationsofthefuelcellcurrentandgenerateacontrolsignalfor thecompressormotorvoltagetooptimizethefuelcellairsupplyingsystem performances. Thehybridelectricpowersystemandthepowermanagementsystemwere developed in real time environment and practical tests were conducted to validatethesimulationresults. Acknowledgements I would like to extend my heartily gratitude to my supervisor, Dr. John Economou for giving me the PhD research opportunity in Cranfield Uni- versity. I appreciate all the guidance, encouragement and support given by John throughout my time at Cranfield. As a perceptive lecturer, John’s comments, feedbacks and suggestions were extremely helpful to focus on my research objectives. In addition, the support given for publishing the researchworksininternationalconferencesandjournalswasadmirable. I am pleased to appreciate the constructive comments given by Professor Jiabin Wang and Dr. Craig Lawson during the viva. I would like to thanks PhDthesiscommitteeandProfessorKevinKnowleswhowerealwayssup- porting and guiding me throughout the project. It is my pleasure to thank ShrivenhamCampustechnicalstaffmembers,Ms. StaceyPaget,Mr. David WaselyandMr. BarryGray. My heartfelt gratitude goes to my parents, sister, brother and brother in- law who are always looking forward for a bright future for me. Finally, a graceful appreciation goes to my wife Kusum, for encouraging me and sharingjoyfulthoughtsevenIwasfarawayfromhersight. Contents Contents i ListofFigures vii ListofTables xiii Nomenclature xviii 1 Introduction 1 1.1 ResearchBackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 ElectricPropulsionandPowerManagement . . . . . . . . . . . . . . . . 3 1.3 FuelCellControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 ResearchObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 ControlApproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 OverviewofDissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 LiteratureReview 11 2.1 LiteratureReview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 i CONTENTS 2.2 ElectricPropulsionTechnology . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 ElectricPropulsioninAerospaceApplications . . . . . . . . . . . . . . . 14 2.4 FuelCellandBatteryHybridElectricSystem . . . . . . . . . . . . . . . . 18 2.4.1 HybridSystemPowerManagement . . . . . . . . . . . . . . . . . 19 2.5 IntelligentPowerManagement . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.1 AdaptiveNeuroFuzzyControl . . . . . . . . . . . . . . . . . . . . 26 2.6 FuelCells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6.1 FuelCellHistory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6.2 FuelCellTypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.6.3 PEMFuelCellDevelopment . . . . . . . . . . . . . . . . . . . . . 35 2.7 PEMFCSystemControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 PEMFuelCellSystemsand CathodeDynamics 41 3.1 PEMFuelCells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2 CellVoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.1 OpenCircuitVoltage . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.1.1 PressureEffect . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.1.2 TemperatureEffect . . . . . . . . . . . . . . . . . . . . . 47 3.3 PEMFuelCellPolarization . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3.1 ExchangeCurrentDensity . . . . . . . . . . . . . . . . . . . . . . . 48 3.3.2 ActivationLoss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.3 OhmicLoss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.4 ConcentrationLoss . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.5 PEMFuelCellOperationalVoltage . . . . . . . . . . . . . . . . . 53 3.4 CathodeDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4.1 AirFlowRate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5 AirSupplySystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5.1 AirPressurization . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.6 FuelCellNetPower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.6.1 VoltageGain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.6.2 NetPowerGain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 ii CONTENTS 4 UAVPropulsionPower Requirements 63 4.1 UAVMissionProfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.1 LongEnduranceMission . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 UAVPerformanceRequirements . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 TotalAircraftWeight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.4 Take-offPerformances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4.1 RateofClimb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.5 AircraftLevelFlightOperation . . . . . . . . . . . . . . . . . . . . . . . . 73 4.6 MissionMaximumVelocities . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.7 PropellerEfficiencyandMotorShaftPower . . . . . . . . . . . . . . . . . 75 4.7.1 DCMotorandPropellerMatching . . . . . . . . . . . . . . . . . . 76 4.7.2 MissionPowerProfileforLongEnduranceMission . . . . . . . . 78 4.8 RangeoftheMission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5 ElectricPropulsionSystem 83 5.1 ElectricPropulsionSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2 PermanentMagnetBrushlessDCmotor . . . . . . . . . . . . . . . . . . . 84 5.2.1 OperationalPrincipals . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2.2 MotorControlApproach . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.3 MotorSpecifications . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3 DCBusPower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.4 BatterySystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.4.1 BatteryCharacteristics . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.4.2 BatterySizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.5 PowerConverters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.6 PEMFuelCellSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.7 SimulationModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6 IntelligentPowerManagement 107 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2 PowerManagementSystem . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.1 Start-upState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2.2 ChargingState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 iii CONTENTS 6.2.3 HighPowerState . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3 FuelCellPowerConditioningUnit . . . . . . . . . . . . . . . . . . . . . . 114 6.3.1 UnidirectionalConverterVoltageandCurrentLimits . . . . . . . 115 6.4 BDCVoltageandCurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5 OperationPrinciple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5.1 VoltageModeController . . . . . . . . . . . . . . . . . . . . . . . 117 6.5.2 CurrentModeController . . . . . . . . . . . . . . . . . . . . . . . 118 6.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.6.1 FiniteStateMachineSimulation . . . . . . . . . . . . . . . . . . . 120 6.6.2 Start-upStateTransitions . . . . . . . . . . . . . . . . . . . . . . . 121 6.6.3 HighPowerStateTransitions . . . . . . . . . . . . . . . . . . . . . 122 6.7 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.7.1 CaseStudy(I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.7.2 CaseStudy(II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7 FuelCellControland PowerManagement 135 7.1 FuelCellSystemControlApproaches . . . . . . . . . . . . . . . . . . . . 136 7.2 AdaptiveControlStrategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7.3 ANFISControllerOperation . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.3.1 FuzzyLogicDecisions . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.3.1.1 FuzzificationInterface . . . . . . . . . . . . . . . . . . . . 143 7.3.1.2 RuleBaseSystem . . . . . . . . . . . . . . . . . . . . . . 144 7.3.1.3 FuzzyInferenceMachine . . . . . . . . . . . . . . . . . . 145 7.3.1.4 DefuzzificationInterface . . . . . . . . . . . . . . . . . . 146 7.3.2 AdaptiveProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.3.3 ANFISMATLABModel . . . . . . . . . . . . . . . . . . . . . . . 150 7.4 CompressorandMotorModels . . . . . . . . . . . . . . . . . . . . . . . . 153 7.4.1 CompressorMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 7.5.1 ANFISResults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.5.2 PlantResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 7.5.3 CompressorPowerComparison . . . . . . . . . . . . . . . . . . . 165 iv CONTENTS 8 PowerConvertersDesign andControl 169 8.1 DCBusVoltageRegulation . . . . . . . . . . . . . . . . . . . . . . . . . . 170 8.2 UnidirectionalPowerConverterTopology . . . . . . . . . . . . . . . . . . 172 8.2.1 UDCTheoryofOperation . . . . . . . . . . . . . . . . . . . . . . 173 8.2.2 UnidirectionalPowerConverterDesign . . . . . . . . . . . . . . 175 8.2.2.1 InductorDesign . . . . . . . . . . . . . . . . . . . . . . . 176 8.2.2.2 DCBusCapacitance . . . . . . . . . . . . . . . . . . . . . 179 8.3 BidirectionalConverterTopology . . . . . . . . . . . . . . . . . . . . . . . 180 8.3.1 BDCTheoryofOperation . . . . . . . . . . . . . . . . . . . . . . . 181 8.3.2 BidirectionalConverterDesign . . . . . . . . . . . . . . . . . . . 182 8.3.2.1 BDCBoostModeOperation . . . . . . . . . . . . . . . . 182 8.3.2.2 BDCBuckModeOperation . . . . . . . . . . . . . . . . 185 8.3.2.3 Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . 186 8.3.3 LVSideCapacitance . . . . . . . . . . . . . . . . . . . . . . . . . . 186 8.4 PulseWidthModulationandEmbeddedControl . . . . . . . . . . . . . . 188 8.4.1 MicrocontrollerPWMSignalControl . . . . . . . . . . . . . . . . 190 9 Experiments,Resultsand Discussions 193 9.1 TheHybridElectricExperimentalSetup . . . . . . . . . . . . . . . . . . . 193 9.2 Experiment(1): Start-UpStateTest . . . . . . . . . . . . . . . . . . . . . . 194 9.2.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 9.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 9.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 9.3 Experiment(2): HighPowerandChargingPowerStatesTest . . . . . . . 201 9.3.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 9.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 9.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 10 ConclusionandFuturework 207 10.1 PowerManagement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 10.2 FuelCellControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 10.3 PotentialFutureResearch . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 v

Description:
The multiple power sources hybridization is a control challenge associated with the fuel cell system and the battery into the propulsion motor drive. is investigated and a referenced model is developed to obtain the optimum .. 7.9 ANFIS controller and Plant Models developed in MatLab Simulink .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.