ebook img

L1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation (Advances in Design and Control) PDF

338 Pages·2010·10.17 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview L1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation (Advances in Design and Control)

L Adaptive 1 Control Theory DC21_Hovakimyan-Cao-FM.indd 1 7/15/2010 8:24:14 AM Advances in Design and Control SIAM’s Advances in Design and Control series consists of texts and monographs dealing with all areas of design and control and their applications. Topics of interest include shape optimization, multidisciplinary design, trajectory optimization, feedback, and optimal control. The series focuses on the mathematical and computational aspects of engineering design and control that are usable in a wide variety of scientific and engineering disciplines. Editor-in-Chief Ralph C. Smith, North Carolina State University Editorial Board Athanasios C. Antoulas, Rice University Siva Banda, Air Force Research Laboratory Belinda A. Batten, Oregon State University John Betts, The Boeing Company (retired) Stephen L. Campbell, North Carolina State University Michel C. Delfour, University of Montreal Max D. Gunzburger, Florida State University J. William Helton, University of California, San Diego Arthur J. Krener, University of California, Davis Kirsten Morris, University of Waterloo Richard Murray, California Institute of Technology Ekkehard Sachs, University of Trier Series Volumes Hovakimyan, Naira, and Cao, Chengyu, L Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation 1 Speyer, Jason L., and Jacobson, David H., Primer on Optimal Control Theory Betts, John T., Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Second Edition Shima, Tal and Rasmussen, Steven, eds., UAV Cooperative Decision and Control: Challenges and Practical Approaches Speyer, Jason L. and Chung, Walter H., Stochastic Processes, Estimation, and Control Krstic, Miroslav and Smyshlyaev, Andrey, Boundary Control of PDEs: A Course on Backstepping Designs Ito, Kazufumi and Kunisch, Karl, Lagrange Multiplier Approach to Variational Problems and Applications Xue, Dingyü, Chen, YangQuan, and Atherton, Derek P., Linear Feedback Control: Analysis and Design with MATLAB Hanson, Floyd B., Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis, and Computation Michiels, Wim and Niculescu, Silviu-Iulian, Stability and Stabilization of Time-Delay Systems: An Eigenvalue- Based Approach Ioannou, Petros and Fidan, Barıs, Adaptive Control Tutorial Bhaya, Amit and Kaszkurewicz, ¸Eugenius, Control Perspectives on Numerical Algorithms and Matrix Problems Robinett III, Rush D., Wilson, David G., Eisler, G. Richard, and Hurtado, John E., Applied Dynamic Programming for Optimization of Dynamical Systems Huang, J., Nonlinear Output Regulation: Theory and Applications Haslinger, J. and Mäkinen, R. A. E., Introduction to Shape Optimization: Theory, Approximation, and Computation Antoulas, Athanasios C., Approximation of Large-Scale Dynamical Systems Gunzburger, Max D., Perspectives in Flow Control and Optimization Delfour, M. C. and Zolésio, J.-P., Shapes and Geometries: Analysis, Differential Calculus, and Optimization Betts, John T., Practical Methods for Optimal Control Using Nonlinear Programming El Ghaoui, Laurent and Niculescu, Silviu-Iulian, eds., Advances in Linear Matrix Inequality Methods in Control Helton, J. William and James, Matthew R., Extending H Control to Nonlinear Systems: Control of Nonlinear 1 Systems to Achieve Performance Objectives DC21_Hovakimyan-Cao-FM.indd 2 7/15/2010 8:24:14 AM L Adaptive 1 Control Theory Guaranteed Robustness with Fast Adaptation Naira Hovakimyan University of Illinois Urbana, Illinois Chengyu Cao University of Connecticut Storrs, Connecticut Society for Industrial and Applied Mathematics Philadelphia DC21_Hovakimyan-Cao-FM.indd 3 7/15/2010 8:24:15 AM Copyright © 2010 by the Society for Industrial and Applied Mathematics. 10 9 8 7 6 5 4 3 2 1 All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688 USA. Trademarked names may be used in this book without the inclusion of a trademark symbol. These names are used in an editorial context only; no infringement of trademark is intended. Advanced Digital Logic is a registered trademark of Advanced Digital Logic Inc. Honeywell is a registered trademark of Honeywell International Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. For MATLAB product information, please contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000, Fax: 508-647-7001, [email protected], www.mathworks.com. Figure 1 in the preface appears courtesy of the United States Army. Figure 2 in the preface appears courtesy of the Naval Postgraduate School. Figures 3 & 4 in the preface appear courtesy of NASA. Figure 6.1 used with permission from NASA. Library of Congress Cataloging-in-Publication Data Hovakimyan, Naira. L adaptive control theory : guaranteed robustness with fast adaptation / Naira 1 Hovakimyan, Chengyu Cao. p. cm. -- (Advances in design and control ; 21) Includes bibliographical references and index. ISBN 978-0-898717-04-4 1. Adaptive control systems. 2. Robust control. I. Cao, Chengyu. II. Title. TJ217.H68 2010 629.8’36--dc22 2010013646 is a registered trademark. DC21_Hovakimyan-Cao-FM.indd 4 7/15/2010 8:24:15 AM To my parents Emma and Viktor, and to my sister Anna with love and gratitude NH To my wife Xingwei and our son Lucas Bochao, as well as to our parents Jinrong, Guangju, Runkuan, and Yageng with love and gratitude CC y DC21_Hovakimyan-Cao-FM.indd 5 7/15/2010 8:24:15 AM L1book (cid:1) (cid:1) 2010/7/22 pagevii (cid:1) (cid:1) Contents Foreword xi Preface xiii 1 Introduction 1 1.1 HistoricalOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 TwoDifferentArchitecturesofAdaptiveControl . . . . . . . . . . . . 4 1.2.1 DirectMRAC . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 DirectMRACwithStatePredictor . . . . . . . . . . . . 6 1.2.3 TuningChallenges . . . . . . . . . . . . . . . . . . . . . 7 1.3 SavingtheTime-DelayMargin . . . . . . . . . . . . . . . . . . . . . 8 1.4 UniformlyBoundedControlSignal . . . . . . . . . . . . . . . . . . . 12 2 StateFeedbackinthePresenceofMatchedUncertainties 17 2.1 SystemswithUnknownConstantParameters . . . . . . . . . . . . . . 17 2.1.1 ProblemFormulation . . . . . . . . . . . . . . . . . . . 18 2.1.2 L AdaptiveControlArchitecture . . . . . . . . . . . . . 18 1 2.1.3 AnalysisoftheL AdaptiveController:Scaling . . . . . 19 1 2.1.4 Design of the L Adaptive Controller: Robustness and 1 Performance . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.5 SimulationExample . . . . . . . . . . . . . . . . . . . . 29 2.1.6 LoopShapingviaState-PredictorDesign . . . . . . . . . 31 2.2 SystemswithUncertainSystemInputGain . . . . . . . . . . . . . . . 35 2.2.1 ProblemFormulation . . . . . . . . . . . . . . . . . . . 36 2.2.2 L AdaptiveControlArchitecture . . . . . . . . . . . . . 37 1 2.2.3 PerformanceBoundsoftheL AdaptiveController . . . 39 1 2.2.4 PerformanceinthePresenceofNonzeroTrajectory InitializationError . . . . . . . . . . . . . . . . . . . . . 44 2.2.5 Time-DelayMarginAnalysis . . . . . . . . . . . . . . . 47 2.2.6 Gain-MarginAnalysis . . . . . . . . . . . . . . . . . . . 59 2.2.7 SimulationExample:RoboticArm . . . . . . . . . . . . 59 2.3 ExtensiontoSystemswithUnmodeledActuatorDynamics . . . . . . 67 2.3.1 ProblemFormulation . . . . . . . . . . . . . . . . . . . 67 2.3.2 L AdaptiveControlArchitecture . . . . . . . . . . . . . 68 1 2.3.3 AnalysisoftheL AdaptiveController . . . . . . . . . . 70 1 vii (cid:1) (cid:1) (cid:1) (cid:1) L1book (cid:1) (cid:1) 2010/7/22 pageviii (cid:1) (cid:1) viii Contents 2.3.4 SimulationExample:Rohrs’Example . . . . . . . . . . . 76 2.4 L AdaptiveControllerforNonlinearSystems . . . . . . . . . . . . . 80 1 2.4.1 ProblemFormulation . . . . . . . . . . . . . . . . . . . 80 2.4.2 L AdaptiveControlArchitecture . . . . . . . . . . . . . 81 1 2.4.3 AnalysisoftheL AdaptiveController . . . . . . . . . . 83 1 2.4.4 SimulationExample:WingRock . . . . . . . . . . . . . 90 2.5 L AdaptiveControllerinthePresenceofNonlinearUnmodeled 1 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 2.5.1 ProblemFormulation . . . . . . . . . . . . . . . . . . . 94 2.5.2 L AdaptiveControlArchitecture . . . . . . . . . . . . . 95 1 2.5.3 AnalysisoftheL AdaptiveController . . . . . . . . . . 97 1 2.5.4 SimulationExample . . . . . . . . . . . . . . . . . . . . 105 2.6 FilterDesignforPerformanceandRobustnessTrade-Off . . . . . . . 111 2.6.1 OverviewofStochasticOptimizationAlgorithms . . . . . 113 2.6.2 LMI-BasedFilterDesign . . . . . . . . . . . . . . . . . 114 3 StateFeedbackinthePresenceofUnmatchedUncertainties 121 3.1 L AdaptiveControllerforNonlinearStrict-FeedbackSystems . . . . 121 1 3.1.1 ProblemFormulation . . . . . . . . . . . . . . . . . . . 121 3.1.2 L AdaptiveControlArchitecture . . . . . . . . . . . . . 122 1 3.1.3 AnalysisoftheL AdaptiveController . . . . . . . . . . 125 1 3.1.4 SimulationExample . . . . . . . . . . . . . . . . . . . . 136 3.2 L AdaptiveControllerinthePresenceofUnmatchedUncertainties . 140 1 3.2.1 ProblemFormulation . . . . . . . . . . . . . . . . . . . 141 3.2.2 L AdaptiveControlArchitecture . . . . . . . . . . . . . 142 1 3.2.3 AnalysisoftheL AdaptiveController . . . . . . . . . . 145 1 3.2.4 SimulationExample . . . . . . . . . . . . . . . . . . . . 154 3.3 Piecewise-ConstantAdaptiveLawsforSystemswithUnmatched Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 3.3.1 ProblemFormulation . . . . . . . . . . . . . . . . . . . 159 3.3.2 L AdaptiveControlArchitecture . . . . . . . . . . . . . 160 1 3.3.3 AnalysisoftheL AdaptiveController . . . . . . . . . . 164 1 3.3.4 SimulationExample . . . . . . . . . . . . . . . . . . . . 172 4 OutputFeedback 179 4.1 L Adaptive Output Feedback Controller for First-Order Reference 1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 4.1.1 ProblemFormulation . . . . . . . . . . . . . . . . . . . 180 4.1.2 L AdaptiveControlArchitecture . . . . . . . . . . . . . 180 1 4.1.3 AnalysisoftheL AdaptiveOutputFeedbackController 183 1 4.1.4 DesignfortheL -NormCondition . . . . . . . . . . . . 189 1 4.1.5 SimulationExample . . . . . . . . . . . . . . . . . . . . 190 4.2 L AdaptiveOutputFeedbackControllerforNon-SPRReference 1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 4.2.1 ProblemFormulation . . . . . . . . . . . . . . . . . . . 192 4.2.2 L AdaptiveControlArchitecture . . . . . . . . . . . . . 193 1 4.2.3 AnalysisoftheL AdaptiveController . . . . . . . . . . 198 1 (cid:1) (cid:1) (cid:1) (cid:1) L1book (cid:1) (cid:1) 2010/7/22 pageix (cid:1) (cid:1) Contents ix 4.2.4 SimulationExample:Two-CartBenchmarkProblem . . . 207 5 L AdaptiveControllerforTime-VaryingReferenceSystems 211 1 5.1 L AdaptiveControllerforLinearTime-VaryingSystems . . . . . . . 211 1 5.1.1 ProblemFormulation . . . . . . . . . . . . . . . . . . . 211 5.1.2 L AdaptiveControlArchitecture . . . . . . . . . . . . . 212 1 5.1.3 AnalysisofL AdaptiveController . . . . . . . . . . . . 214 1 5.1.4 SimulationExample . . . . . . . . . . . . . . . . . . . . 218 5.2 L AdaptiveControllerforNonlinearSystemswithUnmodeled 1 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 5.2.1 ProblemFormulation . . . . . . . . . . . . . . . . . . . 223 5.2.2 L AdaptiveControlArchitecture . . . . . . . . . . . . . 224 1 5.2.3 AnalysisoftheL AdaptiveController . . . . . . . . . . 226 1 5.2.4 SimulationExample . . . . . . . . . . . . . . . . . . . . 234 6 Applications,Conclusions,andOpenProblems 241 6.1 L AdaptiveControlinFlight . . . . . . . . . . . . . . . . . . . . . . 241 1 6.1.1 FlightValidationofL AdaptiveControlatNaval 1 PostgraduateSchool . . . . . . . . . . . . . . . . . . . . 243 6.1.2 L Adaptive Control Design for the NASA AirSTAR 1 FlightTestVehicle . . . . . . . . . . . . . . . . . . . . . 254 6.1.3 OtherApplications . . . . . . . . . . . . . . . . . . . . . 259 6.2 KeyFeatures,Extensions,andOpenProblems . . . . . . . . . . . . . 260 6.2.1 MainFeaturesoftheL AdaptiveControlTheory . . . . 260 1 6.2.2 ExtensionsNotCoveredintheBook . . . . . . . . . . . 260 6.2.3 OpenProblems . . . . . . . . . . . . . . . . . . . . . . . 261 A SystemsTheory 263 A.1 VectorandMatrixNorms . . . . . . . . . . . . . . . . . . . . . . . . 263 A.1.1 VectorNorms . . . . . . . . . . . . . . . . . . . . . . . 263 A.1.2 InducedNormsofMatrices . . . . . . . . . . . . . . . . 264 A.2 SymmetricandPositiveDefiniteMatrices . . . . . . . . . . . . . . . 265 A.3 L-spacesandL-norms . . . . . . . . . . . . . . . . . . . . . . . . . 265 A.4 ImpulseResponseofLinearTime-InvariantSystems . . . . . . . . . . 267 A.5 ImpulseResponseofLinearTime-VaryingSystems . . . . . . . . . . 268 A.6 LyapunovStability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 A.6.1 AutonomousSystems . . . . . . . . . . . . . . . . . . . 269 A.6.2 Time-VaryingSystems . . . . . . . . . . . . . . . . . . . 270 A.7 L-Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 A.7.1 BIBOStabilityofLTISystems . . . . . . . . . . . . . . 273 A.7.2 BIBOStabilityforLTVSystems . . . . . . . . . . . . . 276 A.8 LinearParametrizationofNonlinearSystems . . . . . . . . . . . . . . 278 A.9 LinearTime-VaryingRepresentationofSystemswithLinear UnmodeledDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 281 A.10 LinearTime-VaryingRepresentationofSystemswithLinear UnmodeledActuatorDynamics . . . . . . . . . . . . . . . . . . . . . 283 A.11 PropertiesofControllableSystems . . . . . . . . . . . . . . . . . . . 285 (cid:1) (cid:1) (cid:1) (cid:1)

Description:
This book presents a comprehensive overview of the recently developed L1 adaptive control theory, including detailed proofs of the main results. The key feature of the L1 adaptive control theory is the decoupling of adaptation from robustness. The architectures of L1 adaptive control theory have gua
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.