L.E.J. Brouwer – Topologist, Intuitionist, Philosopher Dirk van Dalen L.E.J. Brouwer – Topologist, Intuitionist, Philosopher How Mathematics Is Rooted in Life DirkvanDalen DepartmentofPhilosophy UtrechtUniversity Utrecht,Netherlands Whilstwehavemadeconsiderableeffortstocontactallholdersofcopyrightmaterialcon- tainedinthisbookwehavefailedtolocatesomeofthem.Shouldholderswishtocontactthe Publisher,wewillmakeeveryefforttocometosomearrangementwiththem. ISBN978-1-4471-4615-5 ISBN978-1-4471-4616-2(eBook) DOI10.1007/978-1-4471-4616-2 SpringerLondonHeidelbergNewYorkDordrecht LibraryofCongressControlNumber:2012954496 AMSSubjectClassification: 01A70,01A55,01A60 Basedonapreviouseditionofthetwo-volumework: Mystic,Geometer,andIntuitionist:TheLifeofL.E.J.BrouwerbyDirkvanDalen Copyright©OxfordUniversityPress1999and2005 ©Springer-VerlagLondon2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Frontcoverimage:HannaElkan/MAI,BrouwerArchive/© Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) In lovingmemoryofourdaughterTineke 8 July1958–14 October2009 Preface Faireabstractiondumonded’objets(cequiestnecessairepourtravaillerdanslesmathéma- tiquesintuitionistes)n’estpossiblequ’enéprouvantlaviecommeunrêve. Brouwer Among the leading scientists of all times, Brouwer occupies a somewhat un- orthodoxpositionthatmeritsacloserlook.Ageniusisusuallysupposedtobecon- tinuallyinvolvedinbrilliantandillustriousactivities.Mozart,forexample,wassaid to the embodiment of music, his mind at all times and places emerged in creation andreflection.Inmathematics,Eulerwouldbetheperfectexample—alwaysinves- tigating, creating, publishing, until a ripe old age. Brouwer belonged to different class of genius; gifted with a deep intuition, he had an unparalleled access to the secretsandintricaciesofmathematicsandothersubjects,butthemanifestationsof hisgeniuswererathertheeruptionsofaproudandisolatedvolcanothanasmooth runningriverofclevertheorems.Indeed,Brouwerrefusedtojointheclassofspe- cialisedacademics,whoswearallegiancetoaparticulartopic.Hefeltfreetoinvest histimeandenergyinawiderangeofactivities,runningfrommysticism,psycho- linguistics,art,politicstolongwalks,swimming,solitarycontemplation,tofighting injustice. The scientific highlights, of course, are Brouwer’s topological innovations and thecreationofhisrevolutionaryintuitionisticmathematics.Botharemanifestations ofhisunparalleledpowerofreflection.Hisintuitionismclearlybenefittedfrom,and wasbasedonhismysticviews. In the following pages the life of this unusual scientist is sketched. The scien- tifichighlightsarehisbreakthroughintheyoungsubjectoftopologythattriggered thetransitionfromthetraditionofCantortomoderntopology,andtheintroduction andconsolidationofconstructivemethodsandphilosophyunderthenameintuition- ism.Asaconfirmedinternationalisthegotentangledintheinterbellumstrugglefor the ending of the boycott of the German and Austrian scientists. And roughly at thesametimehewasdrawnintotheFormalism–Intuitionismconflict,knowasthe Grundlagenstreit,whichfoundanuntimelyendintheso-calledWarofthefrogsand themice. vii viii Preface Oneshouldnotgettheimpressionthathislifewasonelongstringofconflicts, butiscertainlytruethathisuncompromisingoppositiontoinjusticegothimmore thanhisshareofproblems. The present biography is a revision of the earlier two volume biography pub- lishedbytheOxfordUniversityPress.Afterthesehad,sotospeak,passedtheirnat- urallifespan,theOUPgracefullyagreedtoallowmetopublishthepresentversion with Springer. The contents have here and there been updated, and some sections havebeenpruned. I have in the Oxford Press edition expressed my gratitude to a large number of friends and colleagues and institutions, and I want on this place to say again how muchthebiographyowestothem.IamindebtedtoGarthDaleswhovolunteeredto proofreadthefirstsevenchapters. Without the efficient and friendly support of Joerg Sixt and his staff my task wouldhavebeenaheavyburden,theymorethandeservemythanks. In the mean time the Selected Correspondence of Brouwer (Brouwer 2011) (in anEnglishtranslation)hasappeared,sothereaderwillhaveaccesstoarichsource ofbackgroundinformationnotavailableearlier. Utrecht,theNetherlands DirkvanDalen November2012 Contents 1 ChildandStudent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 SchoolYears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 StudentinAmsterdam . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 TheReligiousCredo . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 Friendship:AdamavanScheltema . . . . . . . . . . . . . . . . . 20 2 MathematicsandMysticism . . . . . . . . . . . . . . . . . . . . . . . 39 2.1 TeachersandStudy . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2 FirstResearch,Four-DimensionalGeometry . . . . . . . . . . . . 44 2.3 Marriage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.4 Bolland’sPhilosophyCourse . . . . . . . . . . . . . . . . . . . . 54 2.5 AmongtheArtistsandVegetarians . . . . . . . . . . . . . . . . . 57 2.6 TheDelftLectures . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.7 FamilyLifeinBlaricum . . . . . . . . . . . . . . . . . . . . . . . 74 3 TheDissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.1 PreparationsandHesitations . . . . . . . . . . . . . . . . . . . . . 77 3.2 UnderKorteweg’sSupervision . . . . . . . . . . . . . . . . . . . 83 3.3 OntheRoleofLogic. . . . . . . . . . . . . . . . . . . . . . . . . 95 3.4 MathematicsandtheWorld . . . . . . . . . . . . . . . . . . . . . 99 3.5 ObservationsonSetTheoryandFormalism . . . . . . . . . . . . . 101 3.6 ThePublicDefence . . . . . . . . . . . . . . . . . . . . . . . . . 115 4 Cantor–SchoenfliesTopology . . . . . . . . . . . . . . . . . . . . . . 119 4.1 TheGeometryofContinuousChange . . . . . . . . . . . . . . . . 119 4.2 LieGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.3 PublishingintheMathematischeAnnalen. . . . . . . . . . . . . . 127 4.4 FixedPointsonSpheresandtheTranslationTheorem . . . . . . . 130 4.5 VectorFieldsonSurfaces . . . . . . . . . . . . . . . . . . . . . . 133 4.6 AnalysisSitusandSchoenflies . . . . . . . . . . . . . . . . . . . 137 5 TheNewTopology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.1 Invarianceofdimension . . . . . . . . . . . . . . . . . . . . . . . 149 ix x Contents 5.2 TheFixedPointTheoremandOtherSurprises . . . . . . . . . . . 169 5.3 TheKarlsruheMeetingandtheContinuityMethod . . . . . . . . . 175 6 MakingaCareer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 6.1 FinancialWorries . . . . . . . . . . . . . . . . . . . . . . . . . . 193 6.2 FirstInternationalContacts . . . . . . . . . . . . . . . . . . . . . 199 6.3 ClimbingtheLadder . . . . . . . . . . . . . . . . . . . . . . . . . 200 6.4 TheShortcomingsofSchoenflies’Bericht . . . . . . . . . . . . . 204 6.5 PrivaatDocent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6.6 Korteweg’sCampaignforBrouwer . . . . . . . . . . . . . . . . . 214 6.7 SchoenfliesAgain . . . . . . . . . . . . . . . . . . . . . . . . . . 225 7 TheWarYears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 7.1 SetsandSequences—LaworChoice?. . . . . . . . . . . . . . . . 232 7.2 TheInternationalAcademyforPhilosophy . . . . . . . . . . . . . 241 7.3 FamilyLife. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 7.4 AnOfferfromLeiden . . . . . . . . . . . . . . . . . . . . . . . . 250 7.5 VanEedenandtheInternationalAcademy . . . . . . . . . . . . . 253 7.6 FacultyPolitics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 7.7 TheFlemishCause. . . . . . . . . . . . . . . . . . . . . . . . . . 269 7.8 AirPhotographyandNationalDefence . . . . . . . . . . . . . . . 271 8 MathematicsAftertheWar . . . . . . . . . . . . . . . . . . . . . . . 279 8.1 HowtoAppointProfessors . . . . . . . . . . . . . . . . . . . . . 283 8.2 TheReturntoTopology . . . . . . . . . . . . . . . . . . . . . . . 285 8.3 TheOffersfromGöttingenandBerlin. . . . . . . . . . . . . . . . 290 8.4 TheAcademy—HowDenjoyWasElected . . . . . . . . . . . . . 294 8.5 NegotiationswithHermannWeyl . . . . . . . . . . . . . . . . . . 297 8.6 IntuitionismandtheBegründungs-Papers . . . . . . . . . . . . . . 302 8.7 AndBrouwer—ThatIstheRevolution . . . . . . . . . . . . . . . 308 8.8 Intuitionism,theNauheimConference . . . . . . . . . . . . . . . 316 8.9 TheFailureoftheInstituteforPhilosophy . . . . . . . . . . . . . 320 9 PoliticsandMathematics . . . . . . . . . . . . . . . . . . . . . . . . 327 9.1 TheConseilandtheBoycottofGermany . . . . . . . . . . . . . . 327 9.2 TheNauheimConferenceandIntuitionism . . . . . . . . . . . . . 333 9.3 TheDenjoyConflict . . . . . . . . . . . . . . . . . . . . . . . . . 336 9.4 Weitzenböck’sAppointmentinAmsterdam . . . . . . . . . . . . . 349 9.5 KohnstammandthePhilosophyofScienceCurriculum . . . . . . 351 9.6 TheNewChronicle . . . . . . . . . . . . . . . . . . . . . . . . . 354 10 TheBreakthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 10.1 TheSignificCircle . . . . . . . . . . . . . . . . . . . . . . . . . . 357 10.2 Intuitionism—PrinciplesforChoiceSequences . . . . . . . . . . . 365 10.3 IntuitionismintheMathematischeAnnalen . . . . . . . . . . . . . 376 10.4 BeyondBrouwerianCounterexamples . . . . . . . . . . . . . . . 382 10.5 Fraenkel’sRoleinIntuitionism . . . . . . . . . . . . . . . . . . . 385 10.6 Heyting’sFirstContributions . . . . . . . . . . . . . . . . . . . . 391 Contents xi 11 TheFathersofDimension . . . . . . . . . . . . . . . . . . . . . . . . 395 11.1 TheTwoRussians . . . . . . . . . . . . . . . . . . . . . . . . . . 395 11.2 TheDefinitionofDimension . . . . . . . . . . . . . . . . . . . . 398 11.3 TheVienneseConnection . . . . . . . . . . . . . . . . . . . . . . 421 11.4 TheScientificLegacyofUrysohn . . . . . . . . . . . . . . . . . . 424 12 Progress,Recognition,andFrictions . . . . . . . . . . . . . . . . . . 435 12.1 TheFirstSkirmishesintheFoundationalConflict . . . . . . . . . 435 12.2 ConsolidationandEntrenchment . . . . . . . . . . . . . . . . . . 447 12.3 TheRiemannVolume . . . . . . . . . . . . . . . . . . . . . . . . 458 12.4 InternationalRelations . . . . . . . . . . . . . . . . . . . . . . . . 463 12.5 TheDutchTopologicalSchool . . . . . . . . . . . . . . . . . . . 468 13 FromBerlintoVienna . . . . . . . . . . . . . . . . . . . . . . . . . . 491 13.1 MoreIntuitionism . . . . . . . . . . . . . . . . . . . . . . . . . . 491 13.2 FeelingsofCrisisandGermanScience . . . . . . . . . . . . . . . 493 13.3 TheBerlinLectures . . . . . . . . . . . . . . . . . . . . . . . . . 497 13.4 TheViennaLectures . . . . . . . . . . . . . . . . . . . . . . . . . 514 13.5 OtherActivities . . . . . . . . . . . . . . . . . . . . . . . . . . . 522 14 TheThreeBattles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527 14.1 TheGrundlagenstreit . . . . . . . . . . . . . . . . . . . . . . . . 527 14.2 TheBolognaConference . . . . . . . . . . . . . . . . . . . . . . 541 14.3 TheWaroftheFrogsandtheMice . . . . . . . . . . . . . . . . . 552 14.4 TheEndingsoftheGrundlagenstreit . . . . . . . . . . . . . . . . 588 14.5 TheMengerConflict . . . . . . . . . . . . . . . . . . . . . . . . . 595 15 TheThirties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603 15.1 FreudenthalArrives . . . . . . . . . . . . . . . . . . . . . . . . . 604 15.2 IntuitionisticLogic . . . . . . . . . . . . . . . . . . . . . . . . . . 607 15.3 TheSodalitasAffair . . . . . . . . . . . . . . . . . . . . . . . . . 608 15.4 GöttingenUndertheNazi’s . . . . . . . . . . . . . . . . . . . . . 619 15.5 Bieberbach’sConversion . . . . . . . . . . . . . . . . . . . . . . 622 15.6 CompositioMathematica . . . . . . . . . . . . . . . . . . . . . . 630 15.7 GöttingenReconsidered? . . . . . . . . . . . . . . . . . . . . . . 636 15.8 DutchAffairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641 16 WarandOccupation . . . . . . . . . . . . . . . . . . . . . . . . . . . 663 16.1 OccupiedHolland . . . . . . . . . . . . . . . . . . . . . . . . . . 663 16.2 Weitzenböck’sChoice . . . . . . . . . . . . . . . . . . . . . . . . 666 16.3 FreudenthalDismissed . . . . . . . . . . . . . . . . . . . . . . . . 667 16.4 University—ResistanceorSurvival . . . . . . . . . . . . . . . . . 671 16.5 Freudenthal’sFortunes . . . . . . . . . . . . . . . . . . . . . . . . 675 16.6 TheDeclarationofLoyalty . . . . . . . . . . . . . . . . . . . . . 683 16.7 TheBrouwerFamilyinWartime . . . . . . . . . . . . . . . . . . 694 16.8 WeitzenböckinUniform . . . . . . . . . . . . . . . . . . . . . . . 698