KRATTA, a versatile triple telescope array for charged reaction products J.Łukasik∗,P.Pawłowski,A.Budzanowski1,B.Czech,I.Skwirczyn´ska InstituteofNuclearPhysics,IFJ-PAN,31-342Krako´w,Poland J.Brzychczyk,M.Adamczyk,S.Kupny,P.Lasko,Z.Sosin,A.Wieloch InstituteofPhysics,JagiellonianUniversity,30-059Krako´w,Poland M.Kisˇ,Y.Leifels,W.Trautmann GSI,D-64291Darmstadt,Germany 3 1 0 2Abstract n A new detection system KRATTA, Krako´w Triple Telescope Array, is presented. This versatile, low threshold, broad energy a Jrangesystemhasbeenbuilttomeasuretheenergy,emissionangle,andisotopiccompositionoflightchargedreactionproducts. It consistsof38independentmoduleswhichcanbearrangedinanarbitraryconfiguration. Asinglemodule,coveringactivelyabout 0 14.5 msr of the solid angle at the optimal distance of 40 cm from the target, consists of three identical, 500 µm thick, large area photodiodes,usedalsofordirectdetection,andoftwoCsI(1500ppmTl)crystalsof2.5and12.5cmlength,respectively. Allthe ]signalsaredigitallyprocessed. Theloweridentificationthreshold,duetothethicknessofthefirstphotodiode,hasbeenreducedto t eabout2.5MeVforprotons(∼65µmofSiequivalent)byapplyingapulseshapeanalysis. Thepulseshapeanalysisallowedalso d to decompose the complex signals from the middle photodiode into their ionization and scintillation components and to obtain a - ssatisfactory isotopic resolution with a single readout channel. The upper energy limit for protons is about 260 MeV. The whole n setupiseasilyportable. ItperformedverywellduringtheASY-EOSexperiment,conductedinMay2011atGSI.Thestructureand i .performanceofthearrayaredescribedusingtheresultsofAu+Aucollisionsat400MeV/nucleonobtainedinthisexperiment. s c iKeywords: chargedparticledetection,tripletelescope,CsI(Tl)scintillator,largeareaPINphotodiode,lownoisepreamplifier, s pulseshapeanalysis y h p [1. Introduction possibleidentificationthreshold,thefirstlayerofthetelescope is usually made of a gas chamber (e.g. DELF [6], MULTICS 1 v Charged-particle detection and identification with isotopic [7], FASA [8], INDRA [9], ISiS [10], GARFIELD [11], FI- 7resolution over a large dynamic range in particle type and en- ASCO[12])orofathinSidetector(e.g. FAUST[13],INDRA 2ergy, is mandatory for studies of isotopic effects in heavy-ion [9],LASSA[14],CHIMERA[15],HiRA[16],NIMROD[17], 1reactions. Phenomena related to the isotopic composition of FAZIA [18]). The first, ∆E, layer is then followed by one or 2 .thereactionsystemandtheemittedproductshavebeenshown two,thicker,Sidetectorsorscintillators. 1 tobeusefulforexploringthepropertiesofneutron-richnuclear 0 Theoptionwiththesilicon∆Elayer,hastheadvantageofa matteras,e.g.,encounteredinneutronstars[1,2]. Theirimpor- 3 better resolution and is easier to handle, but usually results in 1tancewillincreasewiththeavailabilityofsecondarybeamsof higherthresholdsandiscostly. ThepresentedKRATTAmod- :highintensity. Alsostudiesofnuclearstructurenearthelimits v ulesbelongtothisclassoftelescopes,however,theyhavebeen ofstabilityrequireincreasinglysophisticatedandprecisedetec- i optimizedtobebudgetfriendly,withoutloosingthequalityof Xtionsystems. Acomprehensiveoverviewoftherecentandfu- detection. Instead of using the Si detectors of different thick- rturedevelopmentsinthisfieldofinstrumentationcanbefound a ness, they are using three identical, catalog size, photodiodes inRef. [3]. andtwoCsI(Tl)crystals. Thankstothedigitalsignalprocess- Most of the existing charged particle detectors for the in- ing and the off-line pulse shape analysis, the obtained mass termediate energy range (up to a few tens or hundreds of resolutions for light charged particles are very satisfactory in MeV/nucleon) base their identification on the two- or three- a broad energy range. On one hand, the pulse shape analysis fold telescope method [4, 5]. In order to provide the lowest allowedtoreducetheenergythreshold, resultingfromtherel- atively thick first layer, by a factor of 3. On the other hand, itallowedtoeffectivelydoublethethicknessofthesilicon∆E ∗Correspondingauthor. layer, by combining the ionization components from the first Emailaddress:[email protected](J.Łukasik) 1Deceased. two photodiodes, and consequently, to improve the resolution PreprintsubmittedtoNuclearInstrumentsandMethodsA January11,2013 ofthefirstsegmentofthetelescope. Photodiodes[23] ActiveAreaa 28×28mm2 Thicknessa 500±15µm 2. Motivationandrequirements Thicknessnon-uniformitya <3µm DeadLayersa 1.5/20µmfront/rear ThemainparametersoftheKRATTAarrayhavebeenmoti- SurfaceOrientationa (111) vatedbytheneedsoftheASY-EOSexperiment[19]. Thisex- FullDepletionVoltageb(FD) 120-135V perimenthasbeendesignedtostudythedensitydependenceof DarkCurrent@FDb 6-16nA,typ. 9nA the nuclearsymmetry energy bymeasuring flowsand isotopic TerminalCapacitance@FDb 190±3pF compositions of the reaction products from the 197Au+197Au, RiseTime(Laserδpulse)a 40ns 96Ru+96Ru,and96Zr+96Zrreactionsat400MeV/nucleon.Dur- ing the experiment the most relevant products, neutrons and CsI(Tl)Crystals[24] Z=1 and 2 particles, have been measured by the LAND [20] Tlconcentrationc 1500ppm detector and the direction and magnitude of the impact vector Lightoutputnon-uniformityc <7% were estimated using the CHIMERA [15] and ALADIN ToF- Shape Truncatedpyramids Wall[21]detectors. TheKRATTAarrayhasbeendesignedto Tolerance ±0.1mm complementtheneutronandhydrogendetectionwithLANDby Wrapping[26] measuring the isotopic composition and flow of light charged Reflectancea >98% reaction products up to atomic number Z (cid:46) 7, and specially, Thicknessa 65µm toidentifythehydrogenandheliumisotopeswitharesolution muchbetterthanachievablewithLAND.Thearraywasplaced aValuesfromtechnicalnote. on the opposite side of the beam with respect to LAND, and bValuesfrommanufacturer’sInspectionSheet. covered approximately the same solid angle (160 msr). It has cNominalvalues. been designed to detect energetic particles emerging from the “mid-rapidity”regionofthe400MeV/nucleonreactions.Mod- Table1: Maincharacteristicsoftheactiveelements. ulardesign,portability,lowthresholds(below3MeV/nucleon) and high maximum energy (∼260 MeV/nucleon for p and α), a “Single Chip Telescope”, SCT [25], configuration and pro- allowthearraytobeusedinvariousconfigurationsandexperi- videsacompositesignalcombinedofadirect(ionization)com- ments.Inparticular,itwillverywellsuittheneedsofthefuture ponent and of a scintillation component coming from the thin cyclotron facility at IFJ-PAN in Krako´w, planned for proton crystal (CsI1). The third photodiode (PD2) reads out the light beams from 70 to 250 MeV. Last, but not least, the KRATTA fromthethickcrystal(CsI2)and,inaddition,providesanion- modules are also compatible with the design of the existing izationsignalforparticlesthatpunchthroughthecrystalwithin KrakowForwardWallDetector[22]andcanbeusedforreach- itsactivearea. ingcompletecoverageofthe2πazimuthalangle. 3. Activeelementsandgeometry The modules of KRATTA are composed of three large area HAMAMATSUPINphotodiodesfordirectdetection[23]and oftwoCsI(Tl)crystals[24].Thelayoutanddimensionsofthese activeelementsarepresentedinFig. 1andtheirmaincharac- teristicsaresummarizedinTable1. m] transverse dimension [c--20211 PDP0D128.00 mm2C.5s cI1m29.67 mm32.77 mm 12C.5s Ic2m 38.50 mmPD2 40 42 44 46 48 50 52 54 56 58 distance from the target [cm] Figure1: Schematiclayoutoftheactiveelements. Figure2: Singlemodulecontent. Thefirstphotodiode(PD0inFig. 1)servesasaSi∆Edetec- The larger front face of the longer crystal with respect to tor providing the ionization signal alone. It has been “reverse the rear face of the smaller one (see Fig. 1) permits its use mount”,i.e.theohmicsidetowardstheincomingparticles.The at an about 2 times larger distance from the target, in config- secondphotodiode(PD1),naturally“reversemount”,worksin uration that completes the missing half of the FWD phoswich 2 oftheconsecutiveactivelayersaresummarizedinTable2. As willbeshownlateron,thelowthresholdcanbefurtherreduced by applying a pulse shape analysis to the ionization signals of PD0. ThethresholdsfromTable2donottakeintoaccountthe target, the air and the entrance window present in front of the active layers. In the case of the ASY-EOS experiment, these layers caused increase of the lower threshold, E , by about low 12.9MeV/nucleonforprotonsandαparticles(8.6,1.8and2.5 MeV/nucleon energy losses due to the 350 µm Au target, 40 cmofairand100µmofCu,respectively). Forlowenergyex- periments, the effects of air and the entrance window can be minimizedbyperformingthemeasurementinvacuumandre- movingtheCufoilormakingitthinner. 4. Electronicsanddataacquisition Figure3: KRATTAina7×5configuration. Themainelectronicsanddataacquisitionfunctionsarepre- sentedschematicallyinFig.4.Thephotodiodes(3permodule) have been reverse biased at 120 V, using the in-house made Fragment E E E low int up 120-channel, remote controlled, high voltage power supplies. 1H 8.3 89.6 254.4 The signal from each photodiode has been integrated with the 4He 8.3 89.4 253.9 own-design,lownoise,chargepreamplifier[28]. 7Li 9.5 103.6 296.5 20Ne 19.9 231.3 719.0 43Ca 26.7 339.7 1134.2 91Zr 34.0 513.9 1911.8 197Au 38.6 775.8 3550.9 Table2: Lower,E andintermediate,E ,thresholdsandup- low int perlimits,E ,forselectedspecies(inMeV/u). Thethresholds up correspondtotheenergylossesin500µmofSi,in1000µmof Si + 2.5 cm of CsI and in 1000 µm of Si + 15 cm of CsI, re- spectively. TheyhavebeencalculatedusingtheATIMAtables [27]. array[22]. Thecrystalshavebeenpolishedandwrappedwith ahighlyreflectiveESR[26]foil,exceptforthefrontandback windows. Thewindowshavebeenprotectedwith6µmMylar foils. The crystals were optically decoupled. The photodiode Figure4: Analog,logicalanddigitalsignalflowchart. HVPS chipshavebeengluedontocustom-madePCBframesandput -highvoltagepowersupply. PA-chargesensitivepreamplifier. incloseopticalcontactwiththecrystalwindows.Theactiveel- V1724 - CAEN digitizers. TRIVA5 - VME Trigger Synchro- ementshavebeenplacedinsidealuminumboxestogetherwith nizationModule[30]. MT-mastertrigger. FIFO-logicalFan- the charge preamplifiers (see Fig. 2). The photodiode frames InFan-Outmodule.RIO4-VMEcontrollerboard[31]running andthealuminumhousingreducedthegeometricacceptanceof LynxOS.MBS-MultiBranchSystem,aGSIacquisitionstan- asinglemoduletoabout54%. Theactivesolidangleofamod- dard[32]. SMS-SharedMemorySegment. ule amounts to 4.5 msr. The entrance window has been made ofa100µmthickcopperfoil. Duringtheexperiment,35mod- The preamps were supplied with ±6 V and their dynamic ules have been arranged in a 7×5 array (Fig. 3), all placed at rangespannedabout3.6V.Threenominalchargegainsofthe aradialdistanceof40cmfromthetarget, andoperatedinair. preamplifiers have been used, depending on the azimuthal an- In a spherical coordinate system, with the origin at the target gleofthemodule: 44.5,22.2and13.5mV/MeV,with1,2and and the beam axis defining the reference equatorial plane, the 3.3 pF feedback capacitors, respectively. After optional am- columnsfollowthemeridiansfromthebeamleveluptoabout plification, the signals have been digitized with the 100 MHz, 27◦ elevation (latitude) and the rows span the azimuth angles 14 bit digitizers [29] and stored for the off line analysis. All (longitude) between 21◦ and 64◦ with respect to the beam di- logical and digital electronics modules shown in Fig. 4 have rection. The energy thresholds resulting from the thicknesses beencontrolledwiththeRIO4board[31]withinasingleVME 3 crate. During the experiment, the 14 Flash ADC boards have (cid:88)2 (cid:32) e−∆t/RCRC V (t)=RC Q beentriggeredwithanexternaltriggersplitanddeliveredinto S Sk (RC−τ )(RC−τ ) each FADC module. The stored waveforms spanned 5.12 or k=1 RS Fk 10.24 µs (512 or 1024 time bins), with a 2 µs pre-trigger en- + e−∆t/τRS τRS + e−∆t/τFkτFk (cid:33) (5) ablingaprecisebaselineestimation. Theshortersampleshave (τRS −RC)(τRS −τFk) (τFk−τRS)(τFk−RC) been sufficient for the first photodiode supplying the fast ion- where, for generalization, V is the baseline and ∆t = t −t , ization signal alone. The expected data throughput amounted 0 0 witht beingthebeginningofthepulse. to about 5 MB/s, assuming 1 kHz single hit rate. The actual 0 The two scintillation components (5) have been introduced dataratedidnotgobeyondthisestimateduringtheexperiment. to account for the fast and slow decay modes of the CsI(Tl) The digitizers have been remotely set up and monitored using crystals. Therisetimes,τ andτ ,accountforthephotodi- a self-developed software. The data flow has been controlled RD RS ode,scintillatorandthepreamprisetimes. Overall,themodel usingthestandardGSIMBSsystem[32]. dependson11parameterslistedinTable3. 5. Pulseshapeanalysis Parameter Value Ionization Thepulseshapeanalysishastwomainpurposesinthecase Q Amplitude fitted ofKRATTAdata.Firstofall,ithastoenablethedecomposition D τ Risetime ∼90ns fixed/fitted ofthesignalsfromthemiddlephotodiode,PD1(SCT),intothe RD τ Falltime <300ns fixed/fitted ionization and scintillation components. Secondly, it is used FD to resolve masses of particles stopped in the first photodiode, Scintillation PD0, utilizing the relation between the range of a particle and Q Fastcomponentamplitude fitted S1 thetimecharacteristicsoftheinducedcurrentsignal[33]. Q Slowcomponentamplitude fitted S2 The following assumptions have been made to accomplish τF1 Fastfalltime ∼650ns fitted these two goals. The preamplifier response has been mod- τF2 Slowfalltime ∼3.2µs fixed eled using a simple parallel RC circuit approximation [34]: τRS Risetime ∼140ns fixed Common i(t) dV(t) V(t) = + (1) RC Preampfalltimeconstant ∼6µs fixed C dt RC t Timeoffset ∼2µs fitted 0 V Baseline fitted where,RCisthefeedbackcouplingtimeconstant,i(t)isthein- 0 ducedcurrentduetothecarriermotioninthephotodiode,and V(t) is the measured voltage pulse. This relation assumes an Table3: 11parametersofthemodelwaveforms. infinite open loop gain, small detector capacitance and a zero risetimeofthechargeintegrator, whichisanidealization, but ThepreampfalltimeconstantparameterRC hasbeendeter- enables an analytical approach. The induced current has been mined individually for each chip by selecting the pulses with approximatedwithonedirect(ionization), i (t),andtwoscin- D the fast ionization component alone. The resulting RC con- tillation,i (t),components,allofthesameform: Sk stants were smaller than the nominal ones by a few µs due e−t/τRD −e−t/τFD to small leakage currents. In order to describe precisely the i (t)= Q , (2) D D τ −τ shapes due to particles stopped in the first photodiode, PD0, RD FD e−t/τRS −e−t/τFk boththetimeconstants,τRD andτFD,werefittedandthescin- iSk(t)= QSk τ −τ , k=1,2 (3) tillationcomponentswereobviouslynotused. IncaseofPD1 RS Fk and PD2, the rise and fall times τ and τ were fixed. The RD FD where Q’s are the induced charges and the τ ,τ and the fitsweredoneusingtheFUMILI[35]minimizationpackage,a RD RS τ ,τ aretheriseandfalltimesfortherespectivecomponent. relativelyfastandpreciseimplementationoftheGauss-Newton FD Fk The assumed shapes attempt to account for both, the compli- algorithm. Constrainingsomeoftheparameterswasfoundin- cated actual current pulse shape induced by the electrons and evitable,notonlytoobtainagooddescriptionofthewaveforms holes drifting in the photodiode [33], and for the instrumen- (χ2) but, at the same time, to maintain the global agreement talrisetimeofthepreamp. Withtheassumedpreamplifierre- betweenthereconstructedamplitudesofthethreecomponents sponse(1)andthecurrentshapes(2)and(3),itwaspossibleto and the predictions of the range-energy tables (see discussion obtainthecorrespondinganalyticalmodelshapesofthewave- ofFigs. 16,17). forms,V(t)=V +V (t)+V (t),with: Anadditionaladvantageofusingthedigitizationofthesig- 0 D S (cid:32) e−∆t/RCRC nals and the fitting method, was the knowledge of the actual V (t)=RCQ chargesQforeachcomponent,irrespectivelyofthesubstantial D D (RC−τRD)(RC−τFD) ballisticdeficit(reductionoftheamplitude)duetoarelatively + (τRD−e−R∆Ct/)τ(RDτRτDRD−τFD) + (τFD−e−τ∆Rt/Dτ)F(DττFFDD−RC)(cid:33) (4) sthheorstudmiscQhSar1g+etQimSe2 orefptrheesepnretsamthpest(oRtaCl (cid:39)lig6htµsp)r.oFdourceindsitnantchee, 4 2000 scintillators. For typical values of the parameters presented in A PD0 D PD1 Table 3, the ballistic deficit amounts to about 5-15% for the 40 1500 (SCT) ionizationsignalandtoabout25and50%forthefastandslow 1000 CsI(Tl) components, respectively. Usually, the fall time con- 20 500 stantofthepreampisacompromisebetweenthelevelofpile- 0 ups, the baseline variation, and the ballistic deficit. However, 0 since ballistic deficit is not an issue in our approach, the short V] 0 100 200 300 400 500 0 200 400 600 800 1000 m1000 B PD0 E PD1 preampfalltimes,oftheorderofthetimespanofthewaveform s/ 1500 (SCT) el andoftheslowCsI(Tl)decaytime,havetheadditionaladvan- n n 1000 tage of making the maximum and the tail of the pulse visible ha 500 c withinthedigitizedsample. 7 500 todWioadvee,foPrDm0s,ohfavloewbeeennerfigtytepdawrtiitchleasssitnogplpeedcoimnpthoenefinrtstofphthoe- V(t) [ 00 100 200 300 400 500 00 200 400 600 800 1000 form(4),withthetimeconstantparameterstreatedasfreefitpa- C PD2 F PD1 2000 (SCT) rameters. Amoreprecisetimecharacteristicsoftheassociated 1000 current pulse (2) was needed to perform a pulse shape based 1000 500 identificationoftheseparticles(seediscussionofFig. 13). ThequalityofthefitsisdemonstratedinFig.5.Theordinate 0 0 representsthemeasuredvoltage,intheFADCchannels,which 0 200 400 600 800 1000 0 200 400 600 800 1000 isabouttwicesmallerthantheactualoneduetothematching Time [10 ns/bin] of the 50 Ω FADC input impedance. The hits corresponding Figure 5: Example waveforms and their decomposition. Full totheselectedwaveformsarealsomarkedintheidentification time scale corresponds to 5 (panels A-B) or 10 (panels C- mapspresentedinthenextsection. F) µs. The ordinate represents the measured voltage in the PanelAofFig. 5showsawaveformforalowenergyelec- FADC channels. Histogram (when visible): measured wave- tron,particleorgamma,registeredbarelyabovetheacquisition form. Solid line: sum of all fit components. Dashed line: thresholdandstoppedinPD0(seealsoFig. 13). Herethemea- ionization component. Hatched areas: fast and slow CsI(Tl) sured histogram is visible and the deviations from the smooth scintillation components. A: low-energy electron, particle or fit visualize the level of the total noise. The resultant signal gamma ray, barely above the acquisition threshold, stopped in distortions, includingthephotodiode, preamplifier, FADCand PD0 (see corresponding hit in Fig. 13). B: α particle stopped pickup noise sources, have been observed on the level of 0.4 inPD0(seeFig. 13). C:αparticlestoppedinCsI2(seeFig. 7, mVrms,correspondingtoabout30keV. 12). D: α particle stopped in PD1 (see Figs. 6, 8, 9,11). E: α PanelBofFig.5presentsthequalityofthefitwiththeshape particlebarelypunchingthroughPD1andstoppedinCsI1(see given by an ionization component alone (4), applied to parti- Figs. 6,8,10,11). F:higherenergyαparticlestoppedinCsI1 cles stopped in PD0. Its location in the identification map is (seeFigs. 6,8,10,11.) presentedinFig. 13. Thisfitallowedforderivationofboth,the riseandfalltimesand,therefore,alsoofthemode(positionof maximum)oftheassociatedcurrentsignal(2): beenremovedbysubtractingitswelldefinedfractionfromthe τ τ τ totalamplitudeandthusmakingtheionizationandscintillation mode= RD FD log RD (6) τ −τ τ componentsoftheSCTalmostperfectlyorthogonal. RD FD FD Panel C of Fig. 5 shows the waveform of a high energy α particlestoppedintheCSI2crystal. Thecorrespondinghithas 6. Performance beenmarkedinFigs. 7and12. PanelsD-E-FofFig. 5showtheevolutionofthepulseshape Figures 6-13 present various identification (ID) maps ob- of an α particle detected and stopped in the SCT as its energy tained by using the parameters of the reconstructed waveform increases.Thecorrespondinghitshavebeenmarked,whenpos- components. ThestrongestlinesinFigs. 6-13correspondto p, sible,inFigs. 6,8-11. d, t, 3He, α, and so on, from bottom to top, respectively (see The fitting of signals from PD2 (Fig. 5, panel C) produces Fig. 16forpreciselabeling). small artificial ionization contributions for particles which ac- The reconstructed amplitude maps for the first two and the tually do not hit the photodiode (see Fig. 7). It amounts, on lasttwophotodiodesoftheKRATTAmodulearepresentedin average,to1.7±0.5%ofthetotalamplitude. Correspondingly, Figs. 6and7. theartificialcontributionofascintillationcomponentforparti- TheidentificationmapinFig. 6showsacomplexspectrum clesstoppedinthePD1photodiode,andthusproducingnolight with each “ID-line” composed of two parts: an ordinary Si- (see representative hit in panel D), is about 3.8±0.6%. These Sihyperbolicsegmentatlowenergies,forparticlesstoppedin numbersspecifythequalityofthepulseshapeparametrization PD1,andamorecurvedpartforparticlespunchingthroughthe and the systematic uncertainty of the decomposition into dif- PD1 photodiode and stopped in the CsI1 crystal. Due to line ferent components. The artificial scintillation component has crossing and its complex structure, this kind of a map cannot 5 3000 3000 2500 2500 s] s] nnel2000 +D nnel2000+D a a h h c c ude [1500 +E ude [1500+E plit plit m m A1000 A1000 D0 F D0 F P + P + 500 500 0 0 0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000 PD1 Amplitude [channels] PD1 Scintillation [channels] Figure 6: ∆E-E ID map for the first two photodiodes, PD0 vs Figure8: DecompositionofthemapfromFig. 6. PD0vsscin- PD1(SCT), for particles stopped in PD1 or in the thin crystal tillationdetectedbyPD1-forparticlespunchingthroughPD1 (CsI1). andstoppedinCsI1. 12000 3000 10000 2500 annels]8000 nnels]2000 +D h a c h ation [6000 ude [c1500 PD1 Scintill4000 C PD0 Amplit1000 2000 + 500 0 0 0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000 PD2 Scintillation [channels] PD1 Ionization [channels] Figure7: ∆E-EIDmapofscintillationsignalsforCsI1vsCsI2 Figure9: DecompositionofthemapfromFig. 6. PD0vsion- detectedbyPD1andPD2. izationsignalfromPD1-forparticlesstoppedinPD1(produc- ingnolight). be used for identification, however thanks to the presence of many characteristic punch-through points and curvatures, it is TheisotopicresolutionvisiblefromFig. 8canbeimproved verywellsuitedforenergycalibrationpurposes. bysummingupthereconstructedionizationcomponentsfrom Fig.7showsa∆E-Emapforscintillationsignalsdetectedby PD0 and PD1, and thus, increasing the effective thickness of asecondvsthirdphotodiode.Apartfromtheverygoodisotopic the first ∆E layer to 1 mm of Si. See also inset in Fig. 14. resolution,onecanseeasubstantialbackgroundfromthesec- Fig. 11presentsaclassical∆E-EIDmapobtainedfromFig. 6 ondaryreactions/scatteringsinthecrystalsandalsofromparti- thankstothepulseshapedecomposition(seediscussionofFig. cles crossing the module at an angle and not originating from 17 for more details on this transformation and Fig. 14 for the thetarget, aswellasback-bendingscorrespondingtoparticles correspondingmassresolution.) punchingthroughthethickcrystal(seediscussionattheendof Figures10and12showthe“Fast-Slow”IDmapsfortheCsI1 thissection).Thankstothepulseshapedecomposition,theion- and CsI2 crystals, respectively. The latter represents a variant izationcomponentforparticleshittingthephotodiode(nuclear ofthestandardrepresentation,usingthetotallightvstheratio counter effect) at the back of the thick crystal has been easily SlowoverFast(seee.g. [36]). TheFast-Slowrepresentationis removed. very useful in many respects in addition to the standard ∆E-E Usingtheindividualreconstructedamplitudesfortheioniza- one: Onecanobserveacleardoublealphaline(α-αinFigs. 10 tion and for the scintillation components, the map of Fig. 6 and12)whichishiddeninthe∆E-Erepresentationbehindthe can be decomposed into the PD0-PD1(Si) and PD0-PD1(CsI) Li isotope lines. The Fast-Slow map shows a clear “γ-line” - components of the SCT segment (Figs. 9 and 8). This makes a strong line below the proton line due to γ-rays (see inset in effectivelyKRATTAevenafour-foldtelescope. Fig. 10),whichcanbepreciselyisolatedandremovedfromthe 6 7000 14000 α α 6000 α α 12000 s] s]5000 nel10000 channel4000 st [chan8000 Fast [3000 w+Fa6000 CSI1: 2000 111024000000 +F SI2: Slo4000 +C 800 C F 600 1000 E + 240000+E γ line 2000 + 00 200 400 600 800 1000 0 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 0.2 0.4 0.6 0.8 1 1.2 1.4 CSI1: Slow [channels] CSI2: Slow/Fast [channels] Figure10:FastvsSlowcomponentsofthescintillationinCsI1. Figure12:TotallightvsSlowoverFastcomponentsofthescin- Theinsetshowsmoreclearlyaγ−lineandthe p, d, tlines. tillationinCsI2. Note,thatunlikeinFig. 7,thepunchthrough linesdonotcrossthelowerlyingisotopelines. 6000 35 5000 s] nel 30 n D ha4000+ on [c +E MeV] 25 nizati3000 ude [ 20 D1 Io2000 mplit 15 0+P +F D0 A +B PD P 10 1000 5 00 2000 4000 6000 8000 10000 12000 A PD1 Scintillation [channels] 0 + 0 20 40 60 80 100 120 140 160 180 PD0 Mode [ns] Figure11: SummedPD0+PD1ionizationcomponentsvsscin- tillation in PD1 for particles stopped in CsI1. Note a slightly Figure13:Amplitudevsmodeofthecurrentsignalforparticles improvedresolutioncomparedtoFig. 8(seeinsetinFig. 14) stoppedinPD0,obtainedfromasingleSichip. ∆E-Emap. Last,butnotleast,ascanbeseenfromFig. 12,the Table2)from8.3toabout2.5MeVforprotons,wheretheyare punch through segments do not cross the lower lying isotope stillresolvablefromdeuterons(seetwobottomlinesinFig.13). linesinawaytheydoincaseofthe∆E-Emaps(Fig. 7). Thus, Thiseffectivelycorrespondstothereductionofthethicknessof theFast-Slowmapsallowtoisolatethepunchthroughsegments thefirst∆Elayerfrom500toabout65µmofSi. inamuchmorepreciseway. Unfortunately,thepunchthrough One should stress, that the time scale presented in Fig. 13 segmentseventuallymergewiththeγ-lines,whichmakesitdif- exceedsbyaboutafactorof3thecollectiontimesestimatedon ficulttodiscriminatebetweenthesetwo. thebasisofthemobilitiesofthecarriersalone,thustheplasma Figure 13 demonstrates yet another powerful feature of the delay, or other effects, seem to be quite important in slowing pulseshapeanalysis. Itallowedtoperformanidentificationof downthecollectionprocess. themajorityoflightparticlesstoppedinthefirstphotodiodeby The mass resolution for particles stopped in the thin crystal plottingtheamplitudevsmodeofthereconstructedcurrentsig- (CsI1)andinthethickone(CsI2)canbeviewedfromFigs. 14 nal(6).Duetotheconstantvalueofthefieldwithintheintrinsic and15,respectively. region of the PIN diode the enhancement of the resolution for The background in Fig. 14, resulting mainly from the sec- stoppedparticlesisnotexpectedtobeaspronouncedasinthe ondaryreactions/scatteringinthecrystal,amountstoabout6% caseofreversemountPNdetectors[37],nevertheless,therela- forthehitsbelowthe p, d, t peaks. ForenergeticZ = 1parti- tionbetweentherangeandthecarriercollectiontimeseemsto clestraversingthethickcrystal(12.5cmofCsI)thesecondary bestillstrongenoughtoenabletheisotopicseparationoflight reaction probability amounts to about 46% (Fig. 15). These particles. This method allowed to reduce the lower identifica- probabilities agree reasonably well with the simple estimates tionthreshold,duetothethicknessofthefirstphotodiode,(see obtainedusingthenuclearcollisionlengthof22.30cmforCsI 7 8000 104 6000 103 4000 7000 counts102 200000.8 0.9 1 1.1 nels]6000 10 an5000 h c 1 de [4000 1 2 3 4 Z 5 6 7 8 plitu 15N m3000 Figure14:Particleidentificationspectrum(chargedistribution) 0 A 12,13C D obtained from the map of Fig. 11, for particles stopped in the P2000 10,11,12,13B thincrystal. Theinsetshowsthe p, d, t peaks(inlinearscale) 1000 7,9,10Be orebstpaeincetidvefrlyo.mtheFig.11(solid)andFig.8(dashedhistogram), 00 2010,20,3H4000 60030,4,6H80e00 10000 1260,70,80,91L4i000 16000 18000 20000 PD1 Amplitude [channels] Figure16: SameasFig. 6butwiththesuperimposedIDlines 104 calculatedusingtheATIMArange-energytables. 103 counts102 parameter Light-Energy relation [39], applicable for particles 10 stoppedinthescintillator: 1 1 2 3 4 Z 5 6 7 8 (cid:32) (cid:34) (cid:35)(cid:33) E Light=a E−a AZ2log 1+ (7) Figure15: SameasFig. 14,butobtainedfromthemapofFig. 1 2 a AZ2 2 7,forparticlesstoppedinthethickcrystal. withEbeingtheenergy,A,Z-massandatomicnumbersofthe stoppedparticle,a ,a -thegainandquenchingparameters. 1 2 [38],whichyieldstheprobabilitiesof11%and43%for2.5and Havingthis(inverse)calibrationitwaspossibletosuperpose 12.5cmofCsI,respectively. Thebackgroundmeasuredunder the ATIMA lines on the decomposed ID map for the Single the p, d, t lines includes also some contribution from the sec- ChipTelescopesegmentoftheKRATTAmodule. Theresultis ondary reactions of neutrons and heavier charged particles, as presentedinFig. 17andisworthacomment. well as from the accidental coincidences. The γ and punch- through hits have been removed from the background, in both cases.Thehighsecondaryinteractionprobabilityobviouslyde- terioratestheidentificationqualityanddefinesthelimitsforap- 3500 plyingthetelescopemethodtointermediateenergies. s]3000 el n n a2500 h 7. Discussionandremarks c on [2000 Sincetheparametrizationofthepulseshapesisonlyapprox- zati ni1500 imate and has no deep physical background, one can ask how 1 Io precise is the decomposition into individual components and PD1000 howphysicaltheyare. Inordertoaddressthesequestions,the ∆E-E map of the SCT (PD1+CsI1) has been compared to the 500 predictionsoftheATIMArange-energytables. Suchacompar- 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 ison requires the knowledge of the energy calibration of both, PD1 Scintillation [channels] thesiliconphotodiodesandoftheCsI(Tl)lightoutput.Thecal- ibration has been performed using the ID map of Fig. 6 (see Figure 17: Decomposed SCT ∆E-E identification map (ob- Fig. 16)whichisrelativelyinsensitivetothedetailsofthede- tained with a single readout channel) with the superimposed composition and is perfectly suited for the energy calibration ID lines calculated using the ATIMA tables. The sequence of due to its richness in characteristic punch-through points and linesisthesameasinFig. 16. curvatures. The calibration routine allowed to adjust the thicknesses of The observed very good agreement between the recon- the dead and active layers, the energy calibration parameters, structed amplitudes and the range-energy table predictions is aswellasthelight-energyconversionparameters. Forthelat- quitenon-trivialtakingintoaccountthesimplicityofthepulse ter,asimpleintegratedBirks’formula(seee.g. [34])hasbeen shape parametrization. In order to obtain this kind of agree- used,withdE/dx∝ AZ2/E,yieldingacommonlyappliedtwo- ment,whichisstillacompromise,itwasnotenoughtosetall 8 theparametersfreeandsearchfortheminimumofthe χ2 dis- ofthe∆EcomponentforZ = 1particlesresultsmostprobably tribution. Such an automatic procedure guarantees the best fit fromthesimplicityoftheLight-Energyconversionformula(7) tothewaveforms,butnotnecessarilyguaranteesthefollowup and (or) from the light output non-uniformity of the crystals. ofthetrendsdefinedbytherange-energytables. Ingeneral,an The overall agreement is, nevertheless, quite satisfactory and automatic procedure can lead, depending also on the starting the calculated lines can be used not only to derive the energy values, to some local minima, produce discontinuities or lead calibrationparameters,butalsoforidentification(seeFig. 15), in directions diverging from the ATIMA lines. The presented aftersmallmanualadjustments. agreement has been obtained after searching for the optimal The energy calibration routine based on the ATIMA range- values and fixing some of the parameters (see Table 3). The energytablesoperatedonallthreemaps(Figs. 16-18)simulta- agreementwiththeATIMAlinescouldbemadeevenbetter,for neously,allowingforaconsistentdeterminationofthecalibra- instancebyfreeingtheτRS parameter, howeverattheexpense tionparametersforallphotodiodesandbothcrystals. Specifi- of loosing completely the mass resolution in Fast-Slow repre- cally, for the CsI(Tl) crystals with 1500 ppm of Tl concentra- sentation(contrarytothecasepresentedinFig. 10). Thus,the tion,thequenchingparametera wasfoundtobeequalto0.32, 2 presentedagreementisaresultofaniterativeprocedureoffix- avaluecompatiblewiththeonefrom[39]andabout20%larger ing some of the parameters and also of the energy calibration thantheaverageonequotedfortheINDRAcrystals[40]. The parameters,butoncethecrucialparametersareconstrainedthe calibration of the SCT allowed also to estimate the efficiency fittingproceedsautomatically. of the scintillation. The combination of a relatively high Tl The whole procedure could probably be better automatized doping, high reflectance of the wrapping and large active area byusingmorerealisticpulseshapeparametrizations,especially of the photodiode, resulted in a relatively high efficiency for for individual electron and hole components of the ionization energy-light conversion. It was found that only about 6 times signal, taking into account the plasma delay effects, interac- moreenergywasneededtoproduceanelectron-holepairinthe tionsbetween carriers, diffusioneffects, etc[33]. However, to photodiodethroughascintillationprocessintheCsI(Tl)crystal our knowledge, such pulse shape parametrizations are still to thaninthedirectionizationprocessinthephotodiode.Thisfact bedeveloped. Definitely,amorerealisticpreamplifierresponse isworthnoting,sinceforthe“goodscintillators”quotedin[34] functionwouldimprovetheresolutionandwouldallowfordis- thisfactoramountsto15-20. entangling between physical and instrumental parameters. A Obviously, a drawback of the telescope method at high en- morerealisticparametrizationandanalysiswouldbeworththe ergies,isthehighlevelofthesecondaryreactions. Inorderto effort of implementing it to e.g. better understand the relation handlethisproblem,amoresophisticatedmethods,neuralnet- between the range and the charge collection times which en- worksanddiscriminantanalysisarebeingtested,butthisgoes abletheidentificationoftheparticlesstoppedinthesiliconde- beyondthescopeofthisarticle. tectors. Nevertheless, any more sophisticated analysis would definitelyslowdownevenmoretheanalysis. 12000 8. Summary 10000 s] Anew,lowthreshold,broadenergyrange,versatilearrayof nel triple telescopes, KRATTA, has been constructed. The mod- n8000 a h ules, equippedwithdigitalelectronicschains, allowedforiso- c n [ topicidentificationoflightchargedreactionproducts. Scintillatio46000000 thePucolsmepslheaxpeSCanTalpyuslisseasllhoawpeeds ifnotroreinadliisvtiidcudaelcioomnipzoastiiotinonanodf 1 scintillationcomponents andeventually profitfrom the, other- D P wise harmful, nuclear counter effect. The isotopic resolution 2000 obtainedusingasinglereadoutchannelwasfoundtocompete very well with those obtained using the standard two channel 0 0 2000 4000 6000 8000 10000 12000 readout. The applied pulse shape analysis permitted also the PD2 Scintillation [channels] identificationofparticlesstoppedinthefirstphotodiodeandthe Figure 18: ∆E-E identification map for scintillation signals reductionoftheidentificationthreshold,duetothethicknessof from CsI1 vs CsI2, with the superimposed ID lines calculated the first photodiode, by a factor of three. Thanks to the pulse usingtheATIMAtables.Thesequenceoflinesisthesameasin shapeanalysis,itwasalsopossibletoobtaintheballisticdeficit Fig. 16. Theγ-lineandpunch-throughhitshavebeenremoved freeamplitudes,whichallowedforeasyenergycalibrationand (cf. Fig. 7). identification based on the predictions of the range-energy ta- bles. Finally,Fig. 18showsthecalculatedATIMAlinessuperim- The array has met the expectations, fulfilled the design re- posed on the ∆E-E identification map for scintillation signals quirements and performed very well during the ASY-EOS ex- from thin vs thick CsI(Tl) crystals. The slight overestimation perimentatGSI. 9 9. Acknowledgments [39] D.Hornetal.,Nucl.Instr.andMeth.A320(1992)273. [40] M.Paˆrlogetal.,Nucl.Instr.andMeth.A482(2002)693. Work made possible through funding by Polish Min- istry of Science and Higher Education under grant No. DPN/N108/GSI/2009. We (S.K.) acknowledge the support by the Foundation for Polish Science - MPD program, co-financed by the European UnionwithintheEuropeanRegionalDevelopmentFund. Stimulating discussions, expertise and help of Giacomo PoggiaswellasofMarianPaˆrlog,RemiBougaultandHector AlvarezPolduringthedesignandtestphaseoftheprototypes aregratefullyacknowledged. References [1] Bao-AnLietal.,Phys.Rep.464(2008)113. [2] M.DiToroetal.,J.Phys.G37(2010)083101. [3] R.T.deSouzaetal.,Eur.Phys.J.A30(2006)275. [4] J.B.AEngland,“TechniquesinNuclearStructurePhysics”,Wiley(1974). [5] R.W.Leo,“TechniquesforNuclearandParticlePhysicsExperiments”, Springer-Verlag(1987). [6] R.Bougaultetal.,Nucl.Instrum.MethodsA259(1987)473. [7] I.Iorietal.,Nucl.Instr.Meth.A325(1993)458. [8] S.P.Avdeyevetal.,Nucl.Instrum.MethodsA332(1993)149. [9] J.Pouthasetal.,Nucl.Instr.Meth.A357(1995)418. [10] K.Kwiatkowskietal.,Nucl.Instr.Meth.A360(1995)583. [11] F.Gramegnaetal.,Nucl.Instr.Meth.A389(1997)474. [12] M.Binietal.,Nucl.Instr.Meth.A515(2003)497. [13] F.Gimeno-Noguesetal.,Nucl.Instr.Meth.A399(1997)94. [14] B.Davinetal.,Nucl.Instr.Meth.A473(2001)302. [15] A.Paganoetal.,Nucl.Phys.A734(2004)504. [16] M.S.Wallaceetal.,Nucl.Instr.Meth.A583(2007)302. [17] S.Wu¨nscheletal.,Nucl.Phys.A604(2009)578. [18] http://fazia2.in2p3.fr/spip/ [19] P.Russottoetal.,IWM2011Proc.,Conf.Proc.Vol.105,p.91.P.Rus- sotto et al., IWM 2009 Proc., Conf. Proc. Vol. 101, p. 22. http:// www.irb.hr/users/mkis. http://www.ct.infn.it/asyeos2010. P.Russottoetal.,Phys.Lett.B697(2011)471. [20] Th.Blaichetal.,Nucl.Instr.Meth.A314(1992)136.P.Pawłowskietal., Nucl.Instr.Meth.A694(2012)47. [21] A.Schu¨ttaufetal.,Nucl.Phys.A607(1996)457. [22] A.Budzanowskietal.,Nucl.Instr.Meth.A482(2002)528. [23] HAMAMATSUSiPhotodiodeforDirectDetection(S5377-0052(X)). [24] Manufacturer: Institute of Modern Physics, Chinese Academy of Sci- ences,Lanzhou,China. [25] G.Pasqualietal.,Nucl.Instr.Meth.A301(1991)101. [26] 3MVikuitiTMESRfoil,recommendedbythecrystalmanufacturer. [27] http://www-linux.gsi.de/~weick/atima [28] Z.Sosinetal.,inpreparation. [29] CAENV1724digitizer. [30] http://www.gsi.de/informationen/wti/ee/elekt_ entwicklung/triva_e.html [31] RIO4-8072RE,CES,http://www.ces.ch [32] http://www-win.gsi.de/daq/ [33] C.A.J.Ammerlaanetal.,Nucl.Instr.Meth.22(1963)189.A.Alberigi Quarantaetal.,Nucl.Instr.Meth.57(1967)131.G.Pauschetal.,Nucl. Instr.andMeth.A337(1994)573.M.Paˆrlogetal.,Nucl.Instr.Meth.A 613(2010)290.Z.Sosin,Nucl.Instr.Meth.A693(2012)170. [34] G.F. Knoll, “Radiation Detection and Measurement”, 4-th ed., Wiley (2010),Chapt.9,16. [35] http://root.cern.ch.A.J.Ketikianetal.,Nucl.Instr.andMeth.A 314(1992)578.S.N.Dymovetal.,Nucl.Instr.andMeth.A440(2000) 431. [36] F.Benrachietal.,Nucl.Instr.andMeth.A281(1989)137. [37] G.Pauschetal.,Nucl.Instr.andMeth.A365(1995)176.L.Bardelliet al.,Nucl.Instr.andMeth.A654(2011)272. [38] http://pdg.lbl.gov/2012/AtomicNuclearProperties/HTML_ PAGES/141.html 10