ebook img

Kondo effect of magnetic impurities on nanotubes PDF

1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Kondo effect of magnetic impurities on nanotubes

ff Kondo e ect of magnetic impurities on nanotubes P.P.Barusellia,b,A.Smogunovb,c,d,e,M.Fabrizioa,c,f,E.Tosattia,c,f aSISSA,ViaBeirut2/4,Trieste34014,Italy bCNR-IOMDemocritos,ViaBeirut2/4,Trieste34014,Italy cICTP,StradaCostiera11,Trieste34014,Italy dVoronezhStateUniversity,UniversitySquare1,Voronezh394006,Russia epresentaddress:CEASaclay,France fINFM,DemocritosUnita´diTrieste,ViaBeirut2/4,Trieste34014,Italy 2Abstract 1 0Theeffectofmagneticimpuritiesontheballisticconductanceofnanocontactsis,assuggestedinrecentwork,amenabletoabinitio 2study[1]. Ourmethodproceedsviaaconventionaldensityfunctionalcalculationofspinandsymmetrydependentelectronscat- teringphaseshifts,followedbythesubsequentnumericalrenormalizationgroupsolutionofAndersonmodels–whoseingredients n aandparametersarechosensoastoreproducethesephaseshifts. WeapplythismethodtoinvestigatetheKondozerobiasanomalies Jthatwouldbecausedintheballisticconductanceofperfectmetallic(4,4)and(8,8)singlewallcarbonnanotubes,ideallyconnected 6toleadsatthetwoends,byexternallyadsorbedCoandFeadatoms. Thedifferentspinandelectronicstructureoftheseimpurities 1arepredictedtoleadtoavarietyofKondotemperatures,generallywellbelow10K,andtointerferencebetweenchannelsleading toFano-likeconductanceminimaatzerobias. ] elKeywords: Kondoeffect,phaseshifts,carbonnanotubes,magneticimpurities,zero-biasanomalies - r t s .1. Introduction adjusted to yield, within the Hartree-Fock approximation, the t a same channel- and spin-dependent impurity scattering phase m Thezero-biasanomaliesobservedinSTSconductancespec- shiftsasthosethatwecalculateabinitiobyDFT–whoseinput troscopythroughadsorbedmagneticimpuritiesandtosomeex- - information is therefore put to maximal use. For the last step, dtent in metal break junctions have recently revived interest in solvingtheAndersonmodels,weemployedastandardnumer- ntheKondoeffect. Addressingthesesystemstheoreticallyposes icalrenormalizationgroup(NRG)scheme. Whileothergroups coseveral problems. In the first place, and unlike quantum dots, have dealt with the overall Kondo problem in different ways [abinitioelectronicstructurecalculationssuchasdensityfunc- [2,3], wefindour“DFT+NRG”routeextremelyinstructive, tional theory (DFT) are essential to establish a quantitatively andworthexploringinmorecomplexsituationsthanthesimple 1meaningful starting point. Which among the impurity-related v Au-Ni-AucontactstudiedinRef[1]. Inthepresentapplication levelsandresonancesdrivethespinpolarization, whatistheir 3 weconsiderasinglewallcarbonnanotube(SWNT)asourlin- multiplicity,theirhybridization,etc. areallquestionsthatneed 0 earconductingsystem,andasingleexternallyadsorbedtransi- 3an ab initio calculation. Next, this information must be trans- tionmetalatom,eitherCoorFe,asthemagneticimpurity. To 3latedintosomemanageablemanybodyHamiltonian,possibly beginwith,themetallicnanotubehastwoconductingchannels 1.withoutthelossofthebrutequantitativeinformationprovided insteadofonlyoneasAu. Themagneticatomsinturnhavein 0byDFT.Finally,themanybodyHamiltonian(s)mustbesolved, principle a richer multiplicity of magnetic levels than Ni. We 2toextractKondoparametersandthepredictedconductancefea- wishtoexplorewhatthisrichnessmightbring. 1 tures near zero bias, possibly with their behavior with param- : veters such as nanocontact geometry, temperature and external Xifield, to be eventually compared with experiment. One ap- 2. Systemsandsymmetries proach in this direction was recently taken by our group [1]. r aGivenananocontactbetweentwoleads,oneidentifies,withthe We considered alternatively Co or Fe impurities on either help of symmetry, the impinging and outgoing channels that (4,4) or (8,8) metallic SWNTs (see fig. 1). If z is the SWNT carry current across the impurity. From the matching symme- axis,itselectronicstatesofcanbeclassifiedaccordingtoparity tryselectedlocaldensitiesofstatesattheimpurity,oneidenti- withrespecttoxyplanereflection(e−o,even-odd)andxzplane fiestheimportantimpurityorbitalswiththeirdifferentmagnetic reflection(s−a,symmetricandantisymmetric). DFTcalcula- splittings and hybridizations. This leads to formulate multi- tions(seesection3)predictthattheexternallyadsorbedimpu- orbital Anderson models, which contain a multiplicity of pa- ritiesshouldhaveminimumenergywhenatthehollowsite(see rameters to be adjusted. In our scheme the parameters are fig. 2), that is above the center of a carbon hexagon. Assum- ing that geometry, the impurity electronic states can be clas- Emailaddress:[email protected](P.P.Baruselli) sified according to the same parity numbers as those of clean PreprintsubmittedtoPhysicaE January17,2012 (cid:88) SWNTs. Weareinterestedinparticularin3d and4simpurity H = J σ(cid:126) ·σ(cid:126) (2) Hund i j orbitals,whoseparitiesareshownintab. 1. i<j,j=1,4 1(cid:88) σ(cid:126) = d†(cid:126)s d (3) 3. Abinitioelectronicstructure i 2 iα αβ iβ αβ (cid:88) Wecarriedoutstandarddensity-functionaltheory(DFT)cal- HAnd = (cid:15) c†c −tc†c+V(c†d+dc†)+(cid:15)d†d+Un↑n↓(4) i ik ik ik i i i i i i i i i i i i i i culations, allowing for full relaxation of all atomic positions k in a unit cell, which comprised 80 and 160 carbon atoms for whered† createsanelectronontheimpurityorbitalwithsym- the (4,4) and (8,8) tubes respectively plus one Co or Fe ad- i sorbed impurity. Calculations used the standard plane-wave metryi,c† createsanelectroninakconductionstatewithsym- ik package Quantum-ESPRESSO [4] within the generalized gra- metryi,(cid:126)sarethePaulimatrices,tiisapotentialscatteringterm dient approximation (GGA) to exchange-correlation function- duetotothechargedensityoftheimpurity, Vi isthecoupling als in parametrization of Perdew, Burke and Ernzerhof. The oftheimpurityorbitalwiththeconductionelectronstates,(cid:15)i is planewavecut-offswere30Ryand300Ryforthewavefunc- thebareenergyoftheimpurityorbital,UiistheHubbardrepul- tions and for the charge density, respectively. Integration over sionontheorbital, J <0isaglobalHundexchangeparameter theone-dimensionalBrillouinzonewasaccomplishedusing8 (favouring high spin for the isolated impurity), and the single k-pointsandasmearingparameterof10mRy. Whennecessary particleenergiesofconductionelectrons(cid:15)ik aresuchastogive to test the sensitivity of DFT results to correlation effects, we aconstantdensityofstates,withexactlythesamevalueasthat extended to “GGA+U” with a reasonably small Hubbard “U” ofthecleanSWNT(perspindirection)ascomputedbyDFT: [4]–butgenerallythestraightDFTresultwasused. (cid:88) 1 WefoundthatCobehavesasaS = 1 impurityonboth(4,4) δ((cid:15)−(cid:15)ik)=ρ(cid:39) , i=es,eo,as,ao (5) 2 12eV and (8,8) SWNTs, its d orbital driving the spin polarization. k xz TheCoatomswitchesfromthe3d74s2configurationoftheiso- Inpractice,onlyconductionbandscoupledtoamagneticor- lated atom to a slightly surprising low-spin 3d94s0 one when bital are retained in our NRG procedure (see section 6). This adsorbedonthenanotube. FebehavesasaS = 1impurityon leavesuswithasinglebandcoupledtoasingleimpuritylevelin the (8,8) tube, similarly switching from the high-spin 3d64s2 thecaseofCo(onceorbitald isignored),andwithtwobands, xy oftheisolatedatomtoalow-spin3d84s0 intheadsorbedstate. eachcoupledtooneimpuritylevel,inthecaseofFe/(8,8)(once Here the pair of orbitals d and d is magnetically polarized orbitald isignored).ThecaseofFe/(4,4)ismoreinvolvedand xz xy z2 (seefig. 3andtab. 2),aresultingoodagreementwithprevious wewillpresentlynotdealwithit. calculations[5,6]. Orbitalsd forCoandd forFearepartly xy z2 empty,andfallneartheFermienergyinstraightDFT:butthey 5. JoiningupDFTandmanybody promptlymovebelowE whenevenasmallU isswitchedon. F Weconcludethattheseorbitalsarenotgoingtobeinvolvedin Hamiltonian eq. 1 is easily solved in the (unrestricted) Kondobehaviourandcanbeneglectedtoafirstapproximation Hartree-Fockapproximation[7],breakingspinrotationalsym- inordertokeepthemany-bodymodelsimple. Thebehaviorof metry. This leads to a phase shift in conduction electrons of Fe/(4,4) is complicated. The s orbital is partly filled, and d symmetryi(i=es,eo,as,ao)attheFermienergy z2 is magnetically polarized besides the (dxz,dxy) pair, so here Fe Γ shouldbehaveasaS = 23 impurity. δσi =φi+arctan(cid:15)σi (6) As in previous work [1] we implemented DFT computa- i tionofthe(spin-polarized)mean-fieldballistcconductanceand, whereφi = arctanπρti (cid:39) 0isthephaseshiftcausedbytheim- more importantly, of the impurity-related spin- and channel- purity charge scattering. This is numerically found to be neg- selected phase shifts suffered by the SWNT conduction elec- ligible, so we shall ignore it from now on. The peak of the tronsasafunctionofenergy. Anexampleisshowninfig. 4for impurityDOSisfoundtobeat Coonthe(4,4)SWNT. J (cid:15)σ =(cid:15) +U(cid:104)n−σ(cid:105)−σ (m −m) (7) i i i i 2 tot i 4. GeneralizedAndersonmodel where 1 Γσ (cid:104)nσ(cid:105)= arctan i (8) TheKondomodelisusuallyunderstoodbymeansofamany- i π (cid:15)σ bodyAndersonHamiltonian[7]. Inourcaseweneedtoextend i it in principle to the four SWNT conduction bands, each hy- istheaverageoccupationofup/downorbital bridized with some impurity orbital among the 3d and 4s, of m =(cid:104)n↑(cid:105)−(cid:104)n↓(cid:105) (9) same symmetry. These impurity orbitals in turn are mutually i i i coupledbyanintra-atomicferromagneticHundexchangeterm, isthemagnetizationofeachorbitaland (cid:88) (cid:88)n H = HiAnd+HHund (1) mtot = mi (10) i=es,ea,os,oa i=1 2 isthetotalmagnetizationoftheatom. Asin[1],wechooseto SinceinDFTtheyare(cid:39) 0,theycanbesafelyneglected. Sum- reproduce the same phase shifts at the Fermi energy for each mingup,bothCo/(4,4)andCo/(8,8)shouldexhibita(zerotem- symmetry, and the same peaks in the density of states of the peratureandzerobias)conductanceG ∼ G ,whereasFe/(8,8) 0 impurity orbitals as those computed by DFT. This allows to should haveG ∼ 0. These results remain valid so long as ei- uniquely fix (cid:15), U and Γ as long as just one magnetic orbital thertemperatureand/orbiasremainwellbelowT . However, i i i K isconsideredineq. 1–thatisthecaseofCo(i = os). When itturnsoutthatKondotemperaturesT arequitelow(seetab. k morethanoneorbitalisinvolved,suchasinFe,(orinCoifor- 3), which might make this effect hard to observe in a real ex- bitald weretobetakenintoaccount)weneedtofixJaswell. periment. Interestingly, a much higher Kondo temperature of xy WecanextractJfromtheDFTcalculatedexchangesplittingof about 15 K has been quoted for Co/graphene[11]. While the filledorbitals,accordingto reasonsforthisdifferencebetweengrapheneandnanotubesare presentlybeinginvestigated,itshouldbenotedthatseveralfac- (cid:15)↑−(cid:15)↓ = Jm (11) tors differ, including symmetry, and heavy doping in real, de- f f 2 tot positedgraphene. Since different d orbitals have slightly different splittings, we Finally, we can qualitatively address the predicted bias- just took an average value as deduced form different orbitals. dependent lineshape of the Kondo conductance anomaly. ThisyieldsJ ∼1eVinCoandJ ∼1.2eVinFe. Through the Keldysh technique for non-equilibrium Green- functions it is possible to compute the finite-bias conductance [12],oncetheimpurityGreenfunctionG((cid:15))iscalculatedfrom i 6. ResultsofNRGcalculations NRG[13]: We solved the Anderson Hamiltonian by means of NRG gs,a =1−Γ(cid:61)Gi((cid:15)) (17) [8, 9], which allows to compute all the needed static and dy- Forsimplicity,wehavetaken namic quantities we need in an almost exact, albeit numeri- cal, way. We extracted the conduction electrons phase shifts Γ /Γ G((cid:15))= k (18) fromthesingleparticleenergiesatthezeroenergyfixedpoint, i (cid:15)+iΓ k andtheKondotemperaturefromtheimpurityGreenfunctionat where imaginaryfrequency: wπ k T = Γ =0.342Γ (19) 1 1 (cid:88)|(cid:104)GS|d|n(cid:105)|2 b K 4 K k G(i(cid:15))= = (12) i(cid:15)−(cid:15)i−Σ(i(cid:15))+iΓi Zpart n i(cid:15)−(cid:15)n ThisgivesrisetoaFanolineshape[14] (Zpart is the partition function and GS the ground state). The g = (q+v)2 , v≡(cid:15)/Γ (20) Kondotemperatureisgivenby s,a (q2+1)(v2+1) k πwZΓ withq = 0,soforeachband(s−a)thelineshapeispredicted TK = 4k (13) to be a symmetric antilorentzian, with a width proportional to b theKondotemperature. Smallsourcesofasymmetrywillarise wherew = 0.4128istheWilsoncoefficientandZ isthequasi- froma)thepotentialscatteringt whichweignoredinEq. 4;b) i particleresidue fromtheinterferencewithorbitalsbelongingtothesameband a or s, but with different symmetry e/o; and c) from particle- ∂Σ(i(cid:15)) Z−1 =1− (14) hole asymmetries in eq. 18. However, we estimate that the ∂(i(cid:15)) asymmetryparameterqshouldgenerallyremainbelow0.1. In Alternatively,anapproximateformula[10],validforoneimpu- Co/(4,4) and Co/(8,8), only gs contributes to the lineshape, ga ritycoupledtoonechannel, beingalmostone–andmoreoverindependentfromenergyon the Kondo energy scale. In Fe/(8,8), both g and g have an (cid:114) s a UΓ antilorentzianshape, althoughwithvery differentwidths. The TK ∼0.4107 2i ieπ(cid:15)i((cid:15)i+Ui)/2ΓiUi (15) totallineshapeisjusttheirsum(seefig. 5). couldbeused,withsimilarresults. The zero-bias conductance is given, in terms of the final 7. Conclusions phaseshifts,by We implemented our recently devised DFT+NRG scheme G [1]tocalculatetheKondoeffectcausedbyCoandFeadsorbed g≡ =cos2(δ −δ )+cos2(δ −δ )≡g +g (16) G es os ea oa s a impuritiesontheconductanceof(4,4)and(8,8)nanotubes. On 0 the methodological side, the present calculation represents a where G ≡ 2e2 is the quantum of conductance. Note that in goodpedagogicalillustrationofourtechnique. Forthesystems 0 h the clean tube G = 2G . Phase shifts are only computed for chosen, the predicted anomalies are symmetric antilorentzian 0 Kondo channels, and are found to be always (cid:39) π/2. For the dips, reducing total zero bias conductance to zero for Fe, and non-Kondochannels,theycanbedirectlyextractedfromDFT. byafactor1/2forCo.Whiletherearenodatatocomparewith, 3 s a e d ,d ,s d z2 x2−y2 xy o d d xz yz Table1: Symmetriesofdandsorbitalswithrespecttothexyplane(evene- oddo)andthexzplane(symmetrics-antisymmetrica). Imp. SWNT Orb. (cid:15) (eV) U(eV) Γ(eV) T (K) d K Impurity MagneticOrbital Symmetry Spin Co (4,4) d -1.62 2.17 0.082 ∼1 Co d os 1 xz xz 2 (8,8) dxz -1.83 2.11 0.054 ∼1 (d ) ea 0 xy Fe (8,8) d -1.24 2.01 0.060 ∼10−4 Fe ddxz eoas 121 dxxyz -1.38 2.13 0.043 ∼10−3 xy 2 (dz2,s) es 0 Table3: RecapitulativetableofimportantquantitiesofourAndersonmodels. KondotemperatureissolowinFeduetothereducedbroadeningΓandtothe Table2:MagneticorbitalsasfoundfromDFTcalculations,theirsymmetry,and HundcouplingJthatcouplesthetwoimpurityorbitals. spintheycarry(S =1/2foreachmagneticorbital).Orbitalsinparenthesesare notKondoorbitals,sodonotcontributetothetotalspinoftheimpurityandare ignoredinthemany-bodymodel,butstillparticipatesintransport. thispredictionshouldinprinciplebeamenabletoexperimental check. However, we note that our calculated Kondo tempera- tures are very small, which might constitute and experimental challenge. ThisworkwassponsoredunderPRIN/COFIN,andalsoun- derFANAS/AFRI.WeareindebtedtoA.Ferretti,P.Lucignano, R. Mazzarello, and L. De Leo for early collaboration and dis- cussions. References [1] P.Lucignano,R.Mazzarello,A.Smogunov,M.Fabrizio,andE.Tosatti, NatureMaterials8,563(2009). [2] M.ReyesCalvo,J.Ferna´ndez-Rossier,J.J.Palacios,D.Jacob,D.Natel- son,andC.Untiedt,Nature458,1150(2009). [3] T.A.Costi,L.Bergqvist,A.Weichselbaum,J.vonDelft,T.Micklitz,A. Rosch,P.Mavropoulos,P.H.Dederichs,F.Mallet,L.Saminadayar,and C.Ba¨uerle,Phys.Rev.Lett.102,056802(2009). [4] www.quantum-espresso.org [5] E. Durgun, S. Dag, V. M. K. Bagci, O, Gu¨lseren, T. Yildirim, and S. Ciraci,Phys.Rev.B67,201401(2003). [6] Y.Yagi,T.M.Briere,M.H.F.Sluiter,V.Kumar,A.A.Farajian,andY. Kawazoe,Phys.Rev.B69,075414(2004) [7] P.W.Anderson,Phys.Rev.124,41(1961). [8] K.G.Wilson,Rev.Mod.Phys.47,773(1975). [9] R.Bulla,T.A.Costi,andT.Pruschke,Rev.Mod.Phys.80,395(2008). [10] A. Hewson, The Kondo problem to heavy fermions, Cambridge Univ. Press(1993). [11] T.O.Wehling,A.V.Balatsky,M.I.Katsnelson,A.I.Lichtenstein,and A.Rosch,Phys.Rev.Lett.81,115427(2010). [12] Y.MeirandN.S.Wingreen,Phys.Rev.Lett.68,2512(1992). [13] T.A.Costi,A.C.Hewson,andV.Zlatic,J.Phys.: Condens.Matter6, 2519(1994). [14] U.Fano,Phys.Rev.124,1866(1961). Figure1:Aschematicviewofclean(4,4)and(8,8)SWNTswiththeirsymme- tries. 4 Co (4,4) S O D -2.5 -2 -1.5 -1 -0.5 0 0.5 1 Energy(eV) Fe (8,8) S O D -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 Energy(eV) Figure3:Projecteddensityofstatesofimpurity3dand4sorbitals.Above:Co on(4,4)SWNT;below:Feon(8,8)SWNT. Figure2: Aschematicviewof(4,4)and(8,8)SWNTswithanimpurityad- sorbedinthehollowposition. 5 Co (4,4) 1.5 1 2 d) 0.5 a Phase shift (r -0 .05 eeeassudu ductance g 1 .15 ead on -1 osu C osd 0.5 oau oad -1.5 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0 Energy (eV) -1 -0.5 0 0.5 1 Bias potential(mV) Co (4,4) 2 1 Symmetric band Antisymmetric band Total 0.8 1.5 g e mission 0.6 nductanc 1 ns Co a 0.4 Tr 0.5 su 0.2 sd au ad 0 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 Bias potential ( V) -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 Figure5:Predictedzero-biasanomalyforCoimpurityonboth(4,4)and(8,8) Energy (eV) SWNTs(above)andforFeon(8,8)SWNT(below)(g≡G/G0,G0=2e2/h). Figure4:Above:conductanceasafunctionofenergyofconductionelectrons forCoon(4,4)SWNT,foreachsymmetrys−aandspindirectionu−d(up- down);below:phaseshiftofconductionelectronsfordifferentsymmetriess−a, e−oandspindirectionsu−d. 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.