ff Kondo e ect of magnetic impurities on nanotubes P.P.Barusellia,b,A.Smogunovb,c,d,e,M.Fabrizioa,c,f,E.Tosattia,c,f aSISSA,ViaBeirut2/4,Trieste34014,Italy bCNR-IOMDemocritos,ViaBeirut2/4,Trieste34014,Italy cICTP,StradaCostiera11,Trieste34014,Italy dVoronezhStateUniversity,UniversitySquare1,Voronezh394006,Russia epresentaddress:CEASaclay,France fINFM,DemocritosUnita´diTrieste,ViaBeirut2/4,Trieste34014,Italy 2Abstract 1 0Theeffectofmagneticimpuritiesontheballisticconductanceofnanocontactsis,assuggestedinrecentwork,amenabletoabinitio 2study[1]. Ourmethodproceedsviaaconventionaldensityfunctionalcalculationofspinandsymmetrydependentelectronscat- teringphaseshifts,followedbythesubsequentnumericalrenormalizationgroupsolutionofAndersonmodels–whoseingredients n aandparametersarechosensoastoreproducethesephaseshifts. WeapplythismethodtoinvestigatetheKondozerobiasanomalies Jthatwouldbecausedintheballisticconductanceofperfectmetallic(4,4)and(8,8)singlewallcarbonnanotubes,ideallyconnected 6toleadsatthetwoends,byexternallyadsorbedCoandFeadatoms. Thedifferentspinandelectronicstructureoftheseimpurities 1arepredictedtoleadtoavarietyofKondotemperatures,generallywellbelow10K,andtointerferencebetweenchannelsleading toFano-likeconductanceminimaatzerobias. ] elKeywords: Kondoeffect,phaseshifts,carbonnanotubes,magneticimpurities,zero-biasanomalies - r t s .1. Introduction adjusted to yield, within the Hartree-Fock approximation, the t a same channel- and spin-dependent impurity scattering phase m Thezero-biasanomaliesobservedinSTSconductancespec- shiftsasthosethatwecalculateabinitiobyDFT–whoseinput troscopythroughadsorbedmagneticimpuritiesandtosomeex- - information is therefore put to maximal use. For the last step, dtent in metal break junctions have recently revived interest in solvingtheAndersonmodels,weemployedastandardnumer- ntheKondoeffect. Addressingthesesystemstheoreticallyposes icalrenormalizationgroup(NRG)scheme. Whileothergroups coseveral problems. In the first place, and unlike quantum dots, have dealt with the overall Kondo problem in different ways [abinitioelectronicstructurecalculationssuchasdensityfunc- [2,3], wefindour“DFT+NRG”routeextremelyinstructive, tional theory (DFT) are essential to establish a quantitatively andworthexploringinmorecomplexsituationsthanthesimple 1meaningful starting point. Which among the impurity-related v Au-Ni-AucontactstudiedinRef[1]. Inthepresentapplication levelsandresonancesdrivethespinpolarization, whatistheir 3 weconsiderasinglewallcarbonnanotube(SWNT)asourlin- multiplicity,theirhybridization,etc. areallquestionsthatneed 0 earconductingsystem,andasingleexternallyadsorbedtransi- 3an ab initio calculation. Next, this information must be trans- tionmetalatom,eitherCoorFe,asthemagneticimpurity. To 3latedintosomemanageablemanybodyHamiltonian,possibly beginwith,themetallicnanotubehastwoconductingchannels 1.withoutthelossofthebrutequantitativeinformationprovided insteadofonlyoneasAu. Themagneticatomsinturnhavein 0byDFT.Finally,themanybodyHamiltonian(s)mustbesolved, principle a richer multiplicity of magnetic levels than Ni. We 2toextractKondoparametersandthepredictedconductancefea- wishtoexplorewhatthisrichnessmightbring. 1 tures near zero bias, possibly with their behavior with param- : veters such as nanocontact geometry, temperature and external Xifield, to be eventually compared with experiment. One ap- 2. Systemsandsymmetries proach in this direction was recently taken by our group [1]. r aGivenananocontactbetweentwoleads,oneidentifies,withthe We considered alternatively Co or Fe impurities on either help of symmetry, the impinging and outgoing channels that (4,4) or (8,8) metallic SWNTs (see fig. 1). If z is the SWNT carry current across the impurity. From the matching symme- axis,itselectronicstatesofcanbeclassifiedaccordingtoparity tryselectedlocaldensitiesofstatesattheimpurity,oneidenti- withrespecttoxyplanereflection(e−o,even-odd)andxzplane fiestheimportantimpurityorbitalswiththeirdifferentmagnetic reflection(s−a,symmetricandantisymmetric). DFTcalcula- splittings and hybridizations. This leads to formulate multi- tions(seesection3)predictthattheexternallyadsorbedimpu- orbital Anderson models, which contain a multiplicity of pa- ritiesshouldhaveminimumenergywhenatthehollowsite(see rameters to be adjusted. In our scheme the parameters are fig. 2), that is above the center of a carbon hexagon. Assum- ing that geometry, the impurity electronic states can be clas- Emailaddress:[email protected](P.P.Baruselli) sified according to the same parity numbers as those of clean PreprintsubmittedtoPhysicaE January17,2012 (cid:88) SWNTs. Weareinterestedinparticularin3d and4simpurity H = J σ(cid:126) ·σ(cid:126) (2) Hund i j orbitals,whoseparitiesareshownintab. 1. i<j,j=1,4 1(cid:88) σ(cid:126) = d†(cid:126)s d (3) 3. Abinitioelectronicstructure i 2 iα αβ iβ αβ (cid:88) Wecarriedoutstandarddensity-functionaltheory(DFT)cal- HAnd = (cid:15) c†c −tc†c+V(c†d+dc†)+(cid:15)d†d+Un↑n↓(4) i ik ik ik i i i i i i i i i i i i i i culations, allowing for full relaxation of all atomic positions k in a unit cell, which comprised 80 and 160 carbon atoms for whered† createsanelectronontheimpurityorbitalwithsym- the (4,4) and (8,8) tubes respectively plus one Co or Fe ad- i sorbed impurity. Calculations used the standard plane-wave metryi,c† createsanelectroninakconductionstatewithsym- ik package Quantum-ESPRESSO [4] within the generalized gra- metryi,(cid:126)sarethePaulimatrices,tiisapotentialscatteringterm dient approximation (GGA) to exchange-correlation function- duetotothechargedensityoftheimpurity, Vi isthecoupling als in parametrization of Perdew, Burke and Ernzerhof. The oftheimpurityorbitalwiththeconductionelectronstates,(cid:15)i is planewavecut-offswere30Ryand300Ryforthewavefunc- thebareenergyoftheimpurityorbital,UiistheHubbardrepul- tions and for the charge density, respectively. Integration over sionontheorbital, J <0isaglobalHundexchangeparameter theone-dimensionalBrillouinzonewasaccomplishedusing8 (favouring high spin for the isolated impurity), and the single k-pointsandasmearingparameterof10mRy. Whennecessary particleenergiesofconductionelectrons(cid:15)ik aresuchastogive to test the sensitivity of DFT results to correlation effects, we aconstantdensityofstates,withexactlythesamevalueasthat extended to “GGA+U” with a reasonably small Hubbard “U” ofthecleanSWNT(perspindirection)ascomputedbyDFT: [4]–butgenerallythestraightDFTresultwasused. (cid:88) 1 WefoundthatCobehavesasaS = 1 impurityonboth(4,4) δ((cid:15)−(cid:15)ik)=ρ(cid:39) , i=es,eo,as,ao (5) 2 12eV and (8,8) SWNTs, its d orbital driving the spin polarization. k xz TheCoatomswitchesfromthe3d74s2configurationoftheiso- Inpractice,onlyconductionbandscoupledtoamagneticor- lated atom to a slightly surprising low-spin 3d94s0 one when bital are retained in our NRG procedure (see section 6). This adsorbedonthenanotube. FebehavesasaS = 1impurityon leavesuswithasinglebandcoupledtoasingleimpuritylevelin the (8,8) tube, similarly switching from the high-spin 3d64s2 thecaseofCo(onceorbitald isignored),andwithtwobands, xy oftheisolatedatomtoalow-spin3d84s0 intheadsorbedstate. eachcoupledtooneimpuritylevel,inthecaseofFe/(8,8)(once Here the pair of orbitals d and d is magnetically polarized orbitald isignored).ThecaseofFe/(4,4)ismoreinvolvedand xz xy z2 (seefig. 3andtab. 2),aresultingoodagreementwithprevious wewillpresentlynotdealwithit. calculations[5,6]. Orbitalsd forCoandd forFearepartly xy z2 empty,andfallneartheFermienergyinstraightDFT:butthey 5. JoiningupDFTandmanybody promptlymovebelowE whenevenasmallU isswitchedon. F Weconcludethattheseorbitalsarenotgoingtobeinvolvedin Hamiltonian eq. 1 is easily solved in the (unrestricted) Kondobehaviourandcanbeneglectedtoafirstapproximation Hartree-Fockapproximation[7],breakingspinrotationalsym- inordertokeepthemany-bodymodelsimple. Thebehaviorof metry. This leads to a phase shift in conduction electrons of Fe/(4,4) is complicated. The s orbital is partly filled, and d symmetryi(i=es,eo,as,ao)attheFermienergy z2 is magnetically polarized besides the (dxz,dxy) pair, so here Fe Γ shouldbehaveasaS = 23 impurity. δσi =φi+arctan(cid:15)σi (6) As in previous work [1] we implemented DFT computa- i tionofthe(spin-polarized)mean-fieldballistcconductanceand, whereφi = arctanπρti (cid:39) 0isthephaseshiftcausedbytheim- more importantly, of the impurity-related spin- and channel- purity charge scattering. This is numerically found to be neg- selected phase shifts suffered by the SWNT conduction elec- ligible, so we shall ignore it from now on. The peak of the tronsasafunctionofenergy. Anexampleisshowninfig. 4for impurityDOSisfoundtobeat Coonthe(4,4)SWNT. J (cid:15)σ =(cid:15) +U(cid:104)n−σ(cid:105)−σ (m −m) (7) i i i i 2 tot i 4. GeneralizedAndersonmodel where 1 Γσ (cid:104)nσ(cid:105)= arctan i (8) TheKondomodelisusuallyunderstoodbymeansofamany- i π (cid:15)σ bodyAndersonHamiltonian[7]. Inourcaseweneedtoextend i it in principle to the four SWNT conduction bands, each hy- istheaverageoccupationofup/downorbital bridized with some impurity orbital among the 3d and 4s, of m =(cid:104)n↑(cid:105)−(cid:104)n↓(cid:105) (9) same symmetry. These impurity orbitals in turn are mutually i i i coupledbyanintra-atomicferromagneticHundexchangeterm, isthemagnetizationofeachorbitaland (cid:88) (cid:88)n H = HiAnd+HHund (1) mtot = mi (10) i=es,ea,os,oa i=1 2 isthetotalmagnetizationoftheatom. Asin[1],wechooseto SinceinDFTtheyare(cid:39) 0,theycanbesafelyneglected. Sum- reproduce the same phase shifts at the Fermi energy for each mingup,bothCo/(4,4)andCo/(8,8)shouldexhibita(zerotem- symmetry, and the same peaks in the density of states of the peratureandzerobias)conductanceG ∼ G ,whereasFe/(8,8) 0 impurity orbitals as those computed by DFT. This allows to should haveG ∼ 0. These results remain valid so long as ei- uniquely fix (cid:15), U and Γ as long as just one magnetic orbital thertemperatureand/orbiasremainwellbelowT . However, i i i K isconsideredineq. 1–thatisthecaseofCo(i = os). When itturnsoutthatKondotemperaturesT arequitelow(seetab. k morethanoneorbitalisinvolved,suchasinFe,(orinCoifor- 3), which might make this effect hard to observe in a real ex- bitald weretobetakenintoaccount)weneedtofixJaswell. periment. Interestingly, a much higher Kondo temperature of xy WecanextractJfromtheDFTcalculatedexchangesplittingof about 15 K has been quoted for Co/graphene[11]. While the filledorbitals,accordingto reasonsforthisdifferencebetweengrapheneandnanotubesare presentlybeinginvestigated,itshouldbenotedthatseveralfac- (cid:15)↑−(cid:15)↓ = Jm (11) tors differ, including symmetry, and heavy doping in real, de- f f 2 tot positedgraphene. Since different d orbitals have slightly different splittings, we Finally, we can qualitatively address the predicted bias- just took an average value as deduced form different orbitals. dependent lineshape of the Kondo conductance anomaly. ThisyieldsJ ∼1eVinCoandJ ∼1.2eVinFe. Through the Keldysh technique for non-equilibrium Green- functions it is possible to compute the finite-bias conductance [12],oncetheimpurityGreenfunctionG((cid:15))iscalculatedfrom i 6. ResultsofNRGcalculations NRG[13]: We solved the Anderson Hamiltonian by means of NRG gs,a =1−Γ(cid:61)Gi((cid:15)) (17) [8, 9], which allows to compute all the needed static and dy- Forsimplicity,wehavetaken namic quantities we need in an almost exact, albeit numeri- cal, way. We extracted the conduction electrons phase shifts Γ /Γ G((cid:15))= k (18) fromthesingleparticleenergiesatthezeroenergyfixedpoint, i (cid:15)+iΓ k andtheKondotemperaturefromtheimpurityGreenfunctionat where imaginaryfrequency: wπ k T = Γ =0.342Γ (19) 1 1 (cid:88)|(cid:104)GS|d|n(cid:105)|2 b K 4 K k G(i(cid:15))= = (12) i(cid:15)−(cid:15)i−Σ(i(cid:15))+iΓi Zpart n i(cid:15)−(cid:15)n ThisgivesrisetoaFanolineshape[14] (Zpart is the partition function and GS the ground state). The g = (q+v)2 , v≡(cid:15)/Γ (20) Kondotemperatureisgivenby s,a (q2+1)(v2+1) k πwZΓ withq = 0,soforeachband(s−a)thelineshapeispredicted TK = 4k (13) to be a symmetric antilorentzian, with a width proportional to b theKondotemperature. Smallsourcesofasymmetrywillarise wherew = 0.4128istheWilsoncoefficientandZ isthequasi- froma)thepotentialscatteringt whichweignoredinEq. 4;b) i particleresidue fromtheinterferencewithorbitalsbelongingtothesameband a or s, but with different symmetry e/o; and c) from particle- ∂Σ(i(cid:15)) Z−1 =1− (14) hole asymmetries in eq. 18. However, we estimate that the ∂(i(cid:15)) asymmetryparameterqshouldgenerallyremainbelow0.1. In Alternatively,anapproximateformula[10],validforoneimpu- Co/(4,4) and Co/(8,8), only gs contributes to the lineshape, ga ritycoupledtoonechannel, beingalmostone–andmoreoverindependentfromenergyon the Kondo energy scale. In Fe/(8,8), both g and g have an (cid:114) s a UΓ antilorentzianshape, althoughwithvery differentwidths. The TK ∼0.4107 2i ieπ(cid:15)i((cid:15)i+Ui)/2ΓiUi (15) totallineshapeisjusttheirsum(seefig. 5). couldbeused,withsimilarresults. The zero-bias conductance is given, in terms of the final 7. Conclusions phaseshifts,by We implemented our recently devised DFT+NRG scheme G [1]tocalculatetheKondoeffectcausedbyCoandFeadsorbed g≡ =cos2(δ −δ )+cos2(δ −δ )≡g +g (16) G es os ea oa s a impuritiesontheconductanceof(4,4)and(8,8)nanotubes. On 0 the methodological side, the present calculation represents a where G ≡ 2e2 is the quantum of conductance. Note that in goodpedagogicalillustrationofourtechnique. Forthesystems 0 h the clean tube G = 2G . Phase shifts are only computed for chosen, the predicted anomalies are symmetric antilorentzian 0 Kondo channels, and are found to be always (cid:39) π/2. For the dips, reducing total zero bias conductance to zero for Fe, and non-Kondochannels,theycanbedirectlyextractedfromDFT. byafactor1/2forCo.Whiletherearenodatatocomparewith, 3 s a e d ,d ,s d z2 x2−y2 xy o d d xz yz Table1: Symmetriesofdandsorbitalswithrespecttothexyplane(evene- oddo)andthexzplane(symmetrics-antisymmetrica). Imp. SWNT Orb. (cid:15) (eV) U(eV) Γ(eV) T (K) d K Impurity MagneticOrbital Symmetry Spin Co (4,4) d -1.62 2.17 0.082 ∼1 Co d os 1 xz xz 2 (8,8) dxz -1.83 2.11 0.054 ∼1 (d ) ea 0 xy Fe (8,8) d -1.24 2.01 0.060 ∼10−4 Fe ddxz eoas 121 dxxyz -1.38 2.13 0.043 ∼10−3 xy 2 (dz2,s) es 0 Table3: RecapitulativetableofimportantquantitiesofourAndersonmodels. KondotemperatureissolowinFeduetothereducedbroadeningΓandtothe Table2:MagneticorbitalsasfoundfromDFTcalculations,theirsymmetry,and HundcouplingJthatcouplesthetwoimpurityorbitals. spintheycarry(S =1/2foreachmagneticorbital).Orbitalsinparenthesesare notKondoorbitals,sodonotcontributetothetotalspinoftheimpurityandare ignoredinthemany-bodymodel,butstillparticipatesintransport. thispredictionshouldinprinciplebeamenabletoexperimental check. However, we note that our calculated Kondo tempera- tures are very small, which might constitute and experimental challenge. ThisworkwassponsoredunderPRIN/COFIN,andalsoun- derFANAS/AFRI.WeareindebtedtoA.Ferretti,P.Lucignano, R. Mazzarello, and L. De Leo for early collaboration and dis- cussions. References [1] P.Lucignano,R.Mazzarello,A.Smogunov,M.Fabrizio,andE.Tosatti, NatureMaterials8,563(2009). [2] M.ReyesCalvo,J.Ferna´ndez-Rossier,J.J.Palacios,D.Jacob,D.Natel- son,andC.Untiedt,Nature458,1150(2009). [3] T.A.Costi,L.Bergqvist,A.Weichselbaum,J.vonDelft,T.Micklitz,A. Rosch,P.Mavropoulos,P.H.Dederichs,F.Mallet,L.Saminadayar,and C.Ba¨uerle,Phys.Rev.Lett.102,056802(2009). [4] www.quantum-espresso.org [5] E. Durgun, S. Dag, V. M. K. Bagci, O, Gu¨lseren, T. Yildirim, and S. Ciraci,Phys.Rev.B67,201401(2003). [6] Y.Yagi,T.M.Briere,M.H.F.Sluiter,V.Kumar,A.A.Farajian,andY. Kawazoe,Phys.Rev.B69,075414(2004) [7] P.W.Anderson,Phys.Rev.124,41(1961). [8] K.G.Wilson,Rev.Mod.Phys.47,773(1975). [9] R.Bulla,T.A.Costi,andT.Pruschke,Rev.Mod.Phys.80,395(2008). [10] A. Hewson, The Kondo problem to heavy fermions, Cambridge Univ. Press(1993). [11] T.O.Wehling,A.V.Balatsky,M.I.Katsnelson,A.I.Lichtenstein,and A.Rosch,Phys.Rev.Lett.81,115427(2010). [12] Y.MeirandN.S.Wingreen,Phys.Rev.Lett.68,2512(1992). [13] T.A.Costi,A.C.Hewson,andV.Zlatic,J.Phys.: Condens.Matter6, 2519(1994). [14] U.Fano,Phys.Rev.124,1866(1961). Figure1:Aschematicviewofclean(4,4)and(8,8)SWNTswiththeirsymme- tries. 4 Co (4,4) S O D -2.5 -2 -1.5 -1 -0.5 0 0.5 1 Energy(eV) Fe (8,8) S O D -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 Energy(eV) Figure3:Projecteddensityofstatesofimpurity3dand4sorbitals.Above:Co on(4,4)SWNT;below:Feon(8,8)SWNT. Figure2: Aschematicviewof(4,4)and(8,8)SWNTswithanimpurityad- sorbedinthehollowposition. 5 Co (4,4) 1.5 1 2 d) 0.5 a Phase shift (r -0 .05 eeeassudu ductance g 1 .15 ead on -1 osu C osd 0.5 oau oad -1.5 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0 Energy (eV) -1 -0.5 0 0.5 1 Bias potential(mV) Co (4,4) 2 1 Symmetric band Antisymmetric band Total 0.8 1.5 g e mission 0.6 nductanc 1 ns Co a 0.4 Tr 0.5 su 0.2 sd au ad 0 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 Bias potential ( V) -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 Figure5:Predictedzero-biasanomalyforCoimpurityonboth(4,4)and(8,8) Energy (eV) SWNTs(above)andforFeon(8,8)SWNT(below)(g≡G/G0,G0=2e2/h). Figure4:Above:conductanceasafunctionofenergyofconductionelectrons forCoon(4,4)SWNT,foreachsymmetrys−aandspindirectionu−d(up- down);below:phaseshiftofconductionelectronsfordifferentsymmetriess−a, e−oandspindirectionsu−d. 6