ebook img

Kondo Effect in the Presence of Spin-Orbit Coupling PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Kondo Effect in the Presence of Spin-Orbit Coupling

Kondo Effect in the Presence of Spin-Orbit Coupling Takashi Yanagisawa Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568, Japan (Dated: Received April 8, 2012; published online September4, 2012) Recently, a series of noncentrosymmetric superconductors has been a subject of considerable interest since the discovery of superconductivityin CePt3Si. In noncentrosymmetric materials, the degeneracyofbandsisliftedinthepresenceofspin-orbitcoupling. Thiswillbringaboutneweffects intheKondoeffectsincethebanddegeneracyplaysanimportantroleinthescatteringofelectrons by localized spins. We investigate the single-impurity Kondo problem in the presence of spin-orbit 3 coupling. Weexaminetheeffectofspin-orbitcouplingonthescatteringofconductionelectrons,by 1 0 usingtheGreen’sfunctionmethod,forthes-dHamiltonian,withemployingadecouplingprocedure. 2 Asaresult,weobtainaclosedsystemofequationsofGreen’sfunctions,fromwhichwecancalculate physicalquantities. TheKondotemperatureTK isestimatedfromasingularityofGreen’sfunctions. n We show that TK is reduced as the spin-orbit coupling constant α is increased. When 2αkF is a comparable to or greater than kBTK(α = 0), TK shows an abrupt decrease as a result of the J band splitting. This suggests a Kondo collapse accompanied with a sharp decrease of TK. The 7 logT-dependenceof theresistivity will be concealed bythespin-orbit interaction. 2 ] l I. INTRODUCTION rectiontoresistivityarediscussedinsubsequentSections e V and VI. In Section VII we examine the strong limit of - r TheKondoeffecthasattractedmanyresearcherssince thespin-orbitinteractionwherethedetailsofcalcuations t s thediscoveryofthesolutionoftheresistanceminimum[1, are shown in Appexdix. . t 2]. The effect arises from the interactions between a sin- a m gle magnetic atom and the many electrons in a metal. Metals, when magnetic atoms are added, and rare earth - d compoundsexhibitmanyinterestingphenomenathatare n related to the Kondo effect. The spin-flip scattering of o a conduction-electron spin by a localized impurity spin II. MODEL HAMILTONIAN c givesrisetoatermproportionaltolnT intheresistivity. [ Superconductorswithout inversionsymmetry have at- 1 tracted much attention since the discovery of supercon- The Hamiltonianis H =H0+Hsd =HK+Hso+Hsd where v ductivity in CePt3Si[3]. A group of noncentrosymmet- 5 ric rare-earth compounds has been reported to exhibit 5 3 superconductivity: for example, Li2Pt3B[4, 5], CeIrSi3, H = ξ (c† c +c† c ), (1) 6 CeCoGe3, CeIrGe3[6–8], and LaNiC2[9]. The absence of K k k↑ k↑ k↓ k↓ k . spatial inversion yields the splitting of bands due to a X 01 spin-orbit interaction[10, 11]. Hso = [α(ikx+ky)c†k↑ck↓+α(−ikx+ky)c†k↓ck↑], 3 The influence of the spin-orbit interaction was dis- Xk 1 cussedveryrecentlyin two-dimensionalsystemsstarting (2) : from the single-impurity Anderson model[12–14]. In the J 1 iv conventional Kondo problem, the conduction-electron Hsd = −2 N [Sz(c†k↑ck′↑−c†k↓ck′↓)+S+c†k↓ck′↑ X stateswith spinupanddownaredegenerate. We expect Xkk′ ar that the band splitting has a large effect on the Kondo +S−c†k↑ck′↓]. (3) effect, and is closely related to a multi-channel Kondo problem. The purpose of this paper is to investigatethis subjectonthebasisofthes-dHamiltonianwiththespin- ξ is defined by ξ = ǫ µ where ǫ is the dispersion k k k k − orbit interaction of Rashba type in three dimensions at relation of the conduction electrons and µ is the chemi- finite temperature. We calculate Green’s functions and cal potential. c and c† are annihilation and creation kσ kσ evaluate the Kondo temperature TK from a singularity operators, respectively. We set H0 = HK +Hso. S+, of them. We show that TK is reduced as a result of the S− and Sz denote the operators of the localized spin. band splitting and shows a abrupt decrease when αkF is We consider the spin-orbit interactionof Rashba type in comparable to kBTK. Hso. α indicates the coupling constant of the spin-orbit The paper is organized as follows. In Section II we interaction. The term H indicates the s-d interaction sd showtheHamiltonian,andinSectionIIIwederiveequa- between the conduction electrons and the localized spin, tions for Green’s functions. We obtain an approximate with the coupling constant J. J is negative for the anti- solutionin SectionIV. The Kondotemperature and cor- ferromagnetic interaction. 2 III. GREEN’S FUNCTIONS Similarly, the equation of motion for Fkk′ is ∂ First, we define Green’s functions of the conduction Fkk′(τ) = ξkFkk′ α( ikx+ky)Gkk′↑(τ) ∂τ − − − electrons J Gkk′σ(τ) = −hTτckσ(τ)c†k′σ(0)i, (4) − 2N Xq [hhSzcq↓;c†k′↑iiτ −hhS+cq↑;c†k′↑iiτ]. Fkk′(τ) = −hTτck↓(τ)c†k′↑(0)i, (5) (20) We define whereT isthetimeorderingoperator. Wenotethatthe τ 1 spin operators satisfy the following relations: Γkk′(τ) = e−iωnΓkk′(iωn) β n 1 1 X S±Sz = ∓2Sz, SzS± =±2S±, (6) = hhSzck↑;c†k′↑iiτ +hhS−ck↓;c†k′↑iiτ, (21) 3 1 S+S− = 4 +Sz−Sz2, (7) Φqk(τ) = β e−iωnτΦqk(iωn) n 3 X S−S+ = 4 −Sz−Sz2. (8) = hhSzcq↓−S+cq↑;c†k↑ii, (22) then we obtain We also define Green’s functions which include the lo- calized spins as well as the conduction electron opera- (iωn ξk)Gkk′↑(iωn) = δkk′ +α(ikx+ky)Fkk′(iωn) tors. They are for example, following the notation of − J Zubarev[15], Γqk′(iωn), (23) − 2N qk′ X hhSzck↑;c†k′↑iiτ = −hTτSzck↑(τ)c†k′↑(0)i, (9) (iωn−ξk)Fkk′(iωn) = α(−ikx+ky)Gkk′↑(iωn) hhS−ck↓;c†k′↑iiτ = −hTτS−ck↓(τ)c†k′↑(0)i, (10) + 2JN Φqk′(iωn). (24) hhSzck↓;c†k′↑iiτ = −hTτSzck↓(τ)c†k′↑(0)i, (11) Xq S c ;c† = T S c (τ)c† (0) . (12) To obtain the solution to the equations above, we need hh − k↑ k′↑iiτ −h τ − k↑ k′↑ i Green’s functions in eqs.(9)-(12). The equations of mo- The Fourier transforms are defined as usual: tion for hhSzck↑;c†k′↑ii and hhS−ck↓;c†k′↑ii are 1 (iω ξ ) S c ;c† Gkk′σ(τ) = e−iωnτGkk′σ(iωn), (13) − k hh z k↑ k′↑iiiω β Xn = hSziδkk′ +α(ikx+ky)hhSzck↓;c†k′↑iiiω 1 Fkk′(τ) = β n e−iωnτFkk′(iωn), (14) − 2JN hhSz2cq↑;c†k′↑iiiω + 21hhS−cq↓;c†k′↑iiiω 1 X Xq h i S c ;c† = e−iωnτ S c ;c† ,(15) J hh z k↑ k′↑iiτ β n hh z k↑ k′↑iiiωn − 2N hhS+ck↑c†q↓cq′↑;c†k′↑iiiω X . (16) Xqq′ h ······ − hhS−ck↑c†q↑cq′↓;c†k′↑iiiω , From the commutation relations i (25) [H0,ck↑] = ξkck↑ α(ikx+ky)ck↓, (17) [Hsd,ck↑] = −−2JN Xk−′ (−Szck′↑−S−ck′↓), (18) = (αi(ω−−ikξxk+)hhkSy−)hchkS↓−;cc†kk′↑↑;ici†kiω′↑iiiω J the equation of motion for Gkk′↑(τ) reads − 4N hhS−cq′↓;c†k′↑iiiω qq′ X ∂ J ∂τGkk′↑(τ) = −δ(τ)δkk′ −ξkGkk′↑(τ) + 2N hhS−ck↓c†q↑cq′↑;c†k′↑iiiω α(ikx+ky)Fkk′(τ) Xqq′ h + −J [ S c ;c† + S c ;c† ]. −hhS−ck↓c†q↓cq′↓;c†k′↑iiiω −2hhSzck↓c†q↓cq′↑;c†k′↑iiiω 2N hh z q↑ k′↑iiτ hh − q↓ k′↑iiτ J i Xq −2N hhS+S−cq′↑;c†k′↑iiiω. (26) (19) q′ X 3 We use the commutationrelationS+S− =3/4+Sz−Sz2 proximation that to obtain α( ik +k ) (iω ξk)Γkk′(iω) hhSzck↓;c†k′↑iiiω = −iω x ξk y hhSzck↑;c†k′↑iiiω, − − = δkk′hSzi+α(ikx+ky)hhSzck↓;c†k′↑iiiω (30) α(ik +k ) + α(−ikx+ky)hhS−ck↑;c†k′↑iiiω hhS−ck↑;c†k′↑iiiω = iωx ξ y hhS−ck↓;c†k′↑iiiω.(31) k J 3 − − 2N 4hhcq↑;c†k′↑iiiω +Γqk′(iω) Xq h i Thismeansthatwehaveneglectedthetermsoftheorder J of Jα in the right-hand side. Then we obtain − 2N hhS+ck↑c†q↓cq′↑;c†k′↑iiiω Xqq′ h α2(k2+k2) − hhS−ck↑c†q↑cq′↓;c†k′↑iiiω −hhS−ck↓c†q↑cq′↑;c†k′↑iiiω iω−ξk− iωx ξky !Γkk′(iω) − ++ 2hhhShS−zcckk↓↓cc†q†q↓↓ccqq′↓′↑;;cc†k†k′↑′↑iiiiiωiω . (27) = −2JN Xq h34hhcq↑;c†k′↑iiiω +Γqk′(iω)i Here we assume that S i = 0. Now we need − 2JN hhS+ck↑c†q↓cq′↑;c†k′↑iiiω S c ;c† and S hc zi;c† to obtain a solu- Xqq′ h hhthhioSn−z ckfko↓↑r;cΓk†k′k′↑↑kii′ii. reTadhehheq−uakt↑ionks′↑fioir hhSzck↓;c†k′↑ii and +− hhhhSS−−cckk↓↑cc†q†q↓↓ccqq′′↓↓;;cc†k†k′′↑↑iiiiiiωω +−2hhhShS−zcckk↓↓cc†q†q↑↓ccqq′↑′↓;;cc†k†k′↑′↑iiiiiiωω (32i) (iω ξ ) S c ;c† − k hh z k↓ k′↑iiiω We use the same approximation in the right-hand side = α( ik +k ) S c ;c† − x y hh z k↓ k′↑iiiω of eq.(23), that is, (iω ξk)Fkk′(iω) = α( ikx + − − + 2JN hhSz2cq↓;c†k′↑iiiω − 21hhS+cq↑;c†k′↑iiiω ky)Gkk′↑(iω), and we have Xq h i J − 2JN hhS+c†q↓cq′↓ck↓;c†k′↑iiiω (iω−ξk)Gkk′↑(iω) = δkk′ − 2N p Γpk′(iω) Xqq′ h α2(k2+k2X) − hhS−c†q↑cq′↓ck↓;c†k′↑iiiω , (28) + iωx ξky Gkk′↑(iω) (33) − i Here, we employ the decoupling approximation proce- dure for Green’s functions[16, 17]. Many-body Green’s (iω ξ ) S c ;c† functions are approximated as follows. − k hh − k↑ k′↑iiiω = −Jδkk′hS−i+α(ikx+ky)hhS−ck↓;c†k′↑iiiω hhS−ck↑c†q↑cq′↓;c†k′↑iiiω ≈ hck↑c†q↑ihhS−cq′↓;c†k′↑iiiω + 4N hhS−cq′↑;c†k′↑iiiω + hS−c†q↑cq′↓ihhck↑;c†k′↑iiiω, q′ X (34) J + 2N hhS−ck↑c†q↓cq′↓;c†k′↑iiiω hhS+ck↑c†q↓cq′↑;c†k′↑iiiω ≈ hS+c†q↓cq′↑ihhck↑;c†k′↑iiiω − hhS−Xqcqk′↑hc†q↑cq′↑;c†k′↑iiiω +2hhSzc†q↓cq′↓ck↑;c†k′↑iiiω . − hS+c†q↓ck′↑ihhcq′↑;c†k′↑ii(iω35,) (29i) hhSzck↓c†q↓cq′↑;c†k′↑iiiω ≈ hck↓c†q↓ihhSzcq′↑;c†k′↑iiiω − hSzc†q↓ck↓ihhcq′↑;c†k′↑iiiω, (36) IV. APPROXIMATE SOLUTION hhS−ck↓c†q↓cq′↓;c†k′↑iiiω ≈ hcq↓c†q′↓ihhS−ck↓;c†k′↑iiiω We assumethat the spin-orbitcouplingα is smalland + hck↓c†q↓ihhS−cq′↓;c†k′↑iiiω. we keep terms up to the order of α. We adopt the ap- (37) 4 We define we obtain J 3 nk = hc†q↑ck↑i= hc†q↓ck↓i, (38) Γkk′(ω) = 2NG0k(ω)G0k′(ω) mk− 4 (1+JG(ω)) Xq Xq 1 h(cid:18) (cid:19) mk = 3 hS−c†q↑ck↓i=2 (hSzc†q↑ck↑i+hS−c†q↑ck↓i). − nk− 2 JΓ(ω) q q (cid:18) (cid:19) i X X 1 (39) , (49) × 1+JG(ω)+(J/2)2Γ(ω)F(ω) We used the relation obtained from the rotational sym- J2 metry in the spin space, Gkk′(ω) = δkk′G0k(ω)− 4NΓ(ω)G0k(ω)G0k′(ω) hS−c†q↑cq′↓i=hS+c†q↓cq′↑i=2hSzc†q↑cq′↑i=−2hSzc†q↓cq′↓i. × 1+JG(ω)+(J1/2)2Γ(ω)F(ω) (40) hTahveen, after the analytic continuation iω → ω +iδ, we = δkk′G0k(ω)+ NJ G0k(ω)G0k′(ω)t(ω), (50) where we defined α2k2 3 ω ξk ⊥ Γkk′(ω)+ mk J Γ(ω) (cid:18) − − ω−ξk(cid:19) (cid:18)4 − (cid:19) t(ω)=−4 1+JG(ω)+(J/2)2Γ(ω)F(ω). (51) J 1 J × 2N Gqk′(ω)+ nk− 2 N Γqk′(ω)=0, mk is given by q (cid:18) (cid:19) q X X m∗ = 2 ( S c† c S c† c )=2 Γ (τ = 0) (41) k h z k↑ q↑ih − k↑ q↓i qk − q q X X 2 = eiωnδΓ (iω ), (52) α2k2 J β qk n ω−ξk− ω ξ⊥ Gkk′(ω)+ 2N Γqk′(ω)=δkk′, qXωn (cid:18) − k(cid:19) Xq where δ is an infinitesimal constant. Because mk is real, (42) we obtain wherewesetk2 =k2+k2. Then,weobtainfromeqs.(41) ⊥ x y 1 and (42) that m = 4 eiωnδG0(iω )t(iω ). (53) k − β k n n Xωn 3 J Γkk′(ω) = G0k(ω) mk− 4 2NG0k′(ω) Similarly we have (cid:18) (cid:19) 1 2 n = G0(iω )(1+JF(iω )t(iω )). (54) G0(ω) n 1 J + m 3 J F(ω) k β k n n n − k k− 2 k− 4 2 Xωn h(cid:18) (cid:19) (cid:18) (cid:19)(cid:18) (cid:19) i 1 Γ (ω), × N qk V. KONDO TEMPERATURE q X (43) A singularity of t(ω) determines the characteristic temperature of the system. We investigate the high- where temperature region where m =0. Then, k G0k(ω) = 12(cid:18)ω−ξk1+αk⊥ + ω−ξk1−αk⊥(cid:19)(44) Γ(ω)=−43F(ω). (55) F(ω) = 1 G0(ω), (45) We obtain for k=k′ N Xk k G (ω)−1 = G0(ω)−1 3J2 F(ω) +O(J4). 1 1 kk k − 16N 1+JG(ω) G(ω) = n G0(ω), (46) N k− 2 k (56) k (cid:18) (cid:19) X Γ(ω) = 1 m 3 G0(ω). (47) The Kondo temperature TK is determined by the van- N k− 4 k ishing of the denominator in this equation: k (cid:18) (cid:19) X 1 1 1 1 J + Because of − 2N ω ξ +αk ω ξ αk k (cid:18) − k ⊥ − k− ⊥(cid:19) X N1 Γqk(ω)= 2JNΓ(ω)G0k(ω)1+JG(ω)+(J1/2)2Γ(ω)F(ω),× 14 tanh ξk2−Tαk⊥ +tanh ξk2+Tαk⊥ =0, q (cid:18) (cid:18) K (cid:19) (cid:18) K (cid:19)(cid:19) X (48) (57) 5 where This yields the temperature T as K 1 ξk = 2m(k⊥2 +kz2)−µ. (58) k T = 2eγD exp 1 7ζ(3) 2αkF 2 B K π − ρ J − 2π2 k T We have used n = (f(ξ αk )+f(ξ +αk ))/2 by h F| | (cid:18) B K(cid:19) k k ⊥ k ⊥ 4 neglecting the term of the−order of J2. By using the + 31ζ(5) 2αkF , (65) expansion, 12π4 (cid:18)kBTK(cid:19) −··· i z ∞ 1 where we introduced the Boltzmann constant kB and tanh = , (59) the density of states ρ = mk /(2π2). This is a self- 2 z iπ(2n+1) F F (cid:16) (cid:17) n=X−∞ − consistency equation for TK, and yields the equation for T is K α 2 α 4 r r x = exp 0.21314 +0.0550 ∞ 1 2m K iπT sign(2n+1) − x x 1 = Jn=X−∞8(2π)2r µ Z0 dk⊥k⊥h2ω−Kiπ(2n+1)TK − 0.01h655 αxr 6+(cid:16)0.0(cid:17)05396 αxr (cid:16)8−0(cid:17).001822 αxr 10 iπT sign(2n+1) (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) + K + ω+2αk iπ(2n+1)T ··· ⊥ K − g(xi), (66) iπTKsign(2n+1) ≡ + , (60) ω 2αk iπ(2n+1)T ⊥ K with variables − − i whereK isacutoffandweuseanapproximateexpression x=T /T0, α =2αk /k T0, (67) K K r F B K K 1 dkzω k2/(2m)+αk k2/(2m)+µ where Z−K − ⊥ ⊥− z 1 2eγD 1 k T0 = exp . (68) × k2/(2m)+k2/(2m)+αk µ iπ(2n+1)T B K π −ρ J ⊥ z ⊥− − K (cid:18) F| |(cid:19) 2m 1 iπsign(2n+1)TK . We expanded g(x) in powers of αr/x up to the tenth ≈ µ ω+2αk iπ(2n+1)T r ⊥− K order. Thefunctiong(x)isshowninFig.1,wherehigher- (61) order terms are small and negligible except near x ∼ 0. The equation x = g(x) has no finite solution when We set ancutoff n0 ≡D/(2πTK) in the summationwith αr > 1.045. This indicates that TK vanishes when the respect to n. By using the formula for the digamma spin-orbit coupling αk is greater than 1.045k T0, and function, F B K indicates a Kondo collapse with a sharp decrease of T . K n0 1 1 1 This may overestimate the reduction of TK. When α is n+ 1 +x =ψ 2 +x+n0 −ψ 2 +x , (62) verylarge,ifweusetheasymptoticrelationψ(1/2+z)∼ n=0 2 (cid:18) (cid:19) (cid:18) (cid:19) log(z), we obtain X we obtain 2eγD 1 2αk 1 F 1 ρ J log log + . (69) 1 = |J|321π2 2µm Kdk⊥k⊥ 4log 2πeTγD +2ψ 21 ≃ F| |h (cid:18)πkBT(cid:19)− 2 (cid:18)πkBT(cid:19) 4i r Z0 h (cid:18) K (cid:19) (cid:18) (cid:19) This yields 1 1 ω+2αk ⊥ ψ − 2 2 − i2πT √e (2eγD)2 2 π√e (cid:18) K (cid:19) k T exp = k T0, 1ψ 1 + ω+2αk⊥ 1ψ 1 ω−2αk⊥ B K ≃ 2αkF π (cid:18)−ρF|J|(cid:19) αr B (K70) − 2 2 i2πT − 2 2 − i2πT (cid:18) K (cid:19) (cid:18) K (cid:19) for α 1. We show T as a function of α in Fig.2. 1ψ 1 + ω−2αk⊥ . (63) Were≫xpect that,in thKe strong coupling limr it αr 1, − 2 (cid:18)2 i2πTK (cid:19)i TK should approach that of single-band model: ≫ We set µ = kF2/(2m) and K = 2kF, and expand the 2eγD 2 digamma function in terms of αk⊥/(2πTK). For ω = 0, kBTKα = π exp −ρ J . (71) we have (cid:18) F| |(cid:19) mk 2eγD 7ζ(3) 2αk 2 We will show this in the section 7. This agrees with F F 1 = J log eq.(70) for αk D. This is very small compared to | | 2π2 h (cid:18)π4TK (cid:19)− 2π2 (cid:18) TK (cid:19) the original TKF b∼ecause TKα/TK0 ≃ kBTK0/D. Therefore + 31ζ(5) 2αkF ... . (64) TK decreases as αr is increased and shows up a sharp 12π4 (cid:18) TK (cid:19) − decrease at αr ∼1. i 6 1.5 The inverse of the life time τ (ω) is k 1 = n NImG (ω)−1 i kk τ (ω) k 3n J2 1+JK(ω) = i πρα(ω) , 1 a = 0.5 16 (1+JK(ω))2+(JL(ω))2 r (72) g wheren istheconcentrationofmagneticimpurities. We 1 i havedefinedK(ω)=ReG(ω+iδ),L(ω)= ImG(ω+iδ), and ρα(ω)= (1/π)ImF(ω+iδ). Because−we obtain 1.5 − 0.5 2eγD 7ζ(3) 2αk 2 F K(0) ρ log , (73) ≃ F πk T − 4π2 k T h (cid:18) B (cid:19) (cid:18) B (cid:19) i the formula of the conductivity yields 2e2 ∂f 0 σ = τ (ξ )v2 ρ(ξ )dξ 0 0.5 1 1.5 2 − 3 k k k∂ξ k k x Z k 2e2 16 v2ρ(0) (1 J K(0)) ≃ 3 F 3πn J2ρα(0) −| | FIG. 1: g(x) = exp(−(7ζ(3)/2π2)(αr/x)2+···) up to the i tenthorderofαr/xasafunctionofxforαr =0.5,1and1.5. 2e2v2ρ 16 ρF log T The straight line is a linear function x. ≃ 3 F F3πn J ρα(0) T0 i| | h (cid:18) K(cid:19) 2 7ζ(3) 2αk F + . (74) 4π2 k T (cid:18) B (cid:19) i Wehavetheterm(α/T)2 thatcomesfromthespin-orbit interaction, and this term will conceal the logarithmic dependence of the resistivity. Then, the electrical resis- tivity R in the high temperature region T T0 is ≫ K 1 R = R0 0TK 2eγD 7ζ(3) 2αkF 2 −1 T/K × "1−|J|ρF log(cid:18)πkBT(cid:19)+ 4π2 |J|ρF (cid:18) kBT (cid:19) # (75) 0.5 where R0 is a constant. If the term (α/kBT)2 is larger than the logarithmic term, the resistivity even shows R T2. Hence, the spin-orbit coupling may change the ∼ temperature dependence of the resistivity drastically. 0 VII. STRONG SPIN-ORBIT COUPLING CASE 0 0.4 0.8 1.2 1.6 a r In this section let us consider the case with strong spin-orbitcoupling. For this purpose,we diagonalizethe FIG.2: TK asafunctionofαr. x=g(x)hasnosolutionfor αr >1.045(Kondocollapse)asindicatedbydottedline. The Hamiltonian H0: dashed line is an expected line. ξ α(ik +k ) c H0 = (c†k↑c†k↓) α( ikk+k ) xξ y ck↑ x y k k↓ k (cid:18) − (cid:19)(cid:18) (cid:19) X = (ξ αk )α†α +(ξ +αk )β†β , (76) k− ⊥ k k k ⊥ k k Xk h i VI. CORRECTION TO RESISTIVITY where k = k2+k2, and α and β are defined by ⊥ x y k k q The imaginary part of Gkk(ω)−1 gives the scattering αk = ukck↑+vkck↓, (77) rate of conduction electrons due to the localized spin. β = v∗c +u c . (78) k − k k↑ k k↓ 7 The coefficients uk and vk are VIII. DISCUSSION 1 ik +k u = , v = x y, (79) We investigated the Kondo effect in the presence of k k 2 − √2k⊥ spin-orbit coupling. The influence of band splitting was examinedbyusingtheGreen’sfunctionmethodwherewe satisfyingu2k+|vk|2 =1. Weconsiderthecasewherethe adoptedthedecouplingschemetoobtainanapproximate bandsplitissolargethatwecanneglecttheupperband. solution. TheKondotemperatureisreducedbythespin- This means that we keepterms that containα-operators orbitinteraction,andshowsasuddendecreasewhenαk F only. In this approximation the s-d interaction term is is of the order of k T0. We call this the Kondo collapse B K due to the spin-orbit coupling. The Kondo effect is sup- J 1 Hsαd = −2 N [Sz{(ukuk′ −vkvk∗′)α†kαk′ pbreewsseeadkeanneddtahnedlcoognTce-daleepde.nTdehnecreedoufctthioenreosfiTstiviatsyawriel-l kk′ K X sultofthespin-orbitcouplingisconsistentwiththeresult + S+vkuk′α†kαk′ +S−ukvk∗′α†kαk′]. (80) forthesingle-impurityAndersonmodelusingthenumer- ical renormalization group technique[13]. In their work This is the model of one-channel conduction-electron the Kondo temperature is a decreasing function of the band that interacts with the localized spin. Rashba energy E α2 when the level of the localized Let us consider the following Green’s function: R ∝ electrons is lowered, that is, in the Kondo region, while it is a increasing function when the localized level is not Gαkk′(τ)=−hTταk(τ)α†k′(0)i. (81) deep. ThevariationoftheKondotemperatureisapprox- imately linear as a function of E , namely, quadratic in By using the same method in previous sections, Gα is R kk′ α. Thisisconsistentwithourresultwhichshowsasmall shown to be variation of the Kondo temperature with the quadratic Gαkk′(z) = zδkkξ′kα + 2JN (z ξ12k+α)v(zkvk∗′ξk′α)t(z), cKDozorynraedclootsiothenimnswpkhei-reMantouαrrieyiasissinmintaecrrllae.actsiIeondn.ainrTtehcheeenptDrwezsyoearnlkoc[se1h2oi]n,fsttkhhyee- − − − (82) Moriya interaction, however, vanishes in the Kondo re- gion with particle-hole symmetry ǫ = U/2. Hence the d − for arbitrary complex number z where we defined result in ref.[12] seems consistent with the result for the s-d model. 3J Fα(z) Asalimitofstrongspin-orbitinteraction,wecaninves- t(z)= , (83) 16 1+ JG (z) 3 J 2F (z)2 tigate a crossoverto a one-channel Kondo problem. The 2 α − 16 2 α Kondo problem with the spin-orbit coupling is closely (cid:0) (cid:1) related to a multi-channel Kondo problem. The Kondo 1 1 temperature is reduced considerably because the degen- F (z) = , (84) α eracy of the conducting electrons becomes half of the N z ξ kα Xk − conventional Kondo system in this limit. The specific 1 n¯kα 1/2 heatalsoexhibitsalogT-terminthe presentmodelwith G (z) = − . (85) α N z ξ one-channel conduction band, and this term appears in kα k − X thefifth-orderofρJ. ThisagreeswiththeoriginalKondo We derive this formula in Appendix. The Kondo tem- problem. perature Tα is determined from a singularity of t(z) in The author expresses his sincere thanks to K.Yamaji, K the same way as previous sections. We obtain I. Hase and J. Kondo for helpful discussion. 2eγD 2 kBTKα = π exp − J ρ . (86) IX. APPENDIX (cid:18) | | F(cid:19) The characteristic energy Tα is reduced significantly In this appendix we derive the equation of motion for K comparedtotheconventionalKondotemperaturebyfac- Green’s functions for the single-band s-d model and dis- tor2intheexponentialfunction. Thisfactorappearsbe- cuss its physical properties. cause the number of channel of the conduction electrons inthiscaseisjusthalfofthenormalKondosystem. The resistivity is also calculated as A. Green’s functions R=R0 1+ ρF|J|log 2eγD + , (87) H0 was diagonalized by αk and βk: 2 πk T ··· h (cid:18) B (cid:19) i αk = ukck↑+vkck↓, (88) with a factor 1/2. β = v∗c +u c . (89) k − k k↑ k k↓ 8 The coefficients u and v are k k u = 1, v = ikx+ky, (90) iωnhhSzαk;α†k′iiiωn =ξkαhhSzαk;α†k′iiiωn k 2 k − √2k⊥ + J [ (u u v v∗) S2α ;α† 2N − k q− k q hh z q k′iiiωn q satisfying u2 + v 2 = 1. The s-d interaction part be- X comes k | k| + vku∗qhhS+(nkα− 12)αq;α†k′iiiωn 1 J 1 u v∗ S (n )α ;α† ], Hsd = −2 N [Sz{(ukuk′ −vkvk∗′)α†kαk′ − k qhh − kα− 2 q k′iiiωn kk′ (100) X − (ukuk′ −vk∗vk′)βk†βk′ − (ukvk′ +vkuk′)α†kβk′ −(ukvk∗′ +vk∗uk′)βk†αk′} + S+(vkuk′α†kαk′ −ukvk′βk†βk′ −vkvk′α†kβk′ iωnhhS+αk;α†k′iiiωn =ξkαhhS+αk;α†k′iiiωn + ukuk′βk†αk′) + 2JN [−(ukuq−vkvq∗)hhS+(nkα− 12)αq;α†k′iiiωn + S−(ukvk∗′α†kαk′ −vk∗uk′βk†βk′ +ukuk′α†kβk′ Xq − vk∗vk′βk†αk′)]. (91) + 2ukvq∗hhSznkααq;α†k′iiiωn −ukvq∗hhS+S−αq;α†k′iiiωn], (101) Thesingle-bands-dmodelcontainsonlythefollowings-d interaction, Hsαd = −J2 N1 Xkk′[Sz{(ukuk′ −vkvk∗′)α†kαk′ + i2ωJNnhhS−[(αukk;uαq†k−′iiviωknvq∗=)hhξSk−αh(hnSk+αα−k;21α)†kα′iqi;iαωn†k′iiiωn + S+vkuk′α†kαk′ +S−ukvk∗′α†kαk′]. (92) Xq − 2vkuqhhSznkααq;α†k′iiiωn −vkuqhhS−S+αq;α†k′iiiωn], We consider the following Green’s functions: (102) Gαkk′(τ) = −hTταk(τ)α†k′(0)i, (93) whSerne nαkα;α=† αf†koαrka.=zW, +e ahnadve u.nknown functions S α ;α† = T (S α )(τ)α† (0) , (94) hh a kα q k′ii − hh z k k′iiτ −h τ z k k′ i hhS+αk;α†k′iiτ = −hTτ(S+αk)(τ)α†k′(0)i. (95) B. Approximate Solution The Fourier transforms are defined similarly: Toobtainaconsistentsolution,weadoptthefollowing 1 approximation: Gαkk′(τ) = β eiωnτGαkk′(iωn), (96) Xωn S n α ;α† = n S α ;α† . (103) S α ;α† = 1 eiωnτ S α ;α† , (97) hh a kα q k′ii h kαihh a q k′ii hh z k k′iiτ β hh z k k′iiω Xωn UsingthisapproximationandtherelationS+S− =3/4+ hhS+αk;α†k′iiτ = β1 eiωnτhhS+αk;α†k′iiω. (98) Sz−Sz2, we obtain Xωn (iωn−ξkα)Gαkk′(iωn)=δkk′ 2 J n¯ 1/2 Tdehreiveeqduaastifoonllsowofs.motion for these Green’s functions are + (cid:18)2N(cid:19) Xq iωqn−−ξq Xq′ hvkuq′hhS+αq′;α†k′iiiωn iωnGαkk′(iωn) = δkk′ +ξkαGαkk′(iωn) + ukvq∗′hhS−αq′;α†k′iiiωn J [(u u v v∗) S α ;α† + (ukuq′ −vkvq∗′)hhSzαq′;α†k′iiiωn − 2N k q− k q hh z q k′iiiωn 2 i + vkuqXhqhS+αq;α†k′iiiωn + 83(cid:18)2JN(cid:19) Xq iωn−1 ξqα Xq′ (ukuq′ +vkvq∗′)Gαq′k′(iωn), + u v∗ S α ;α† ], (99) (104) k qhh − q k′iiiωn 9 where n¯q =hnqαi. Here we define Then Gαkk′ and Γkk′ read Γkk′(iωn) = Xq h(ukuq−vkvq∗)hhSzαq;α†k′iiiωn Gαkk′(z) = z−δkkξ′kα + 2JN (z−ξ21k+α)v(zkv−k∗′ξk′α)t(z), + vkuqhhS+αq;α†k′iiiωn +ukvq∗hhS−αq;α†k′iiiωn . 1 +v v∗ (112) (105i) Γkk′(z) = 2 k k′t(z), (113) − z ξk′α − This quantity reads after substituting the equations for S α ;α† forarbitrarycomplexnumberz. TheKondotemperature hh a q k′ii Tα is determined from a singularity of t(z) in the same K J 1 way as previous sections. We obtain Γkk′ = 2N iω xi Xq n− kα Xq′ h Tα = 2eγD exp 2 . (114) 1 K π − J ρ − vkuq′ n¯q− 2 hhS+αq′;α†k′iiiωn (cid:18) | | F(cid:19) (cid:18) (cid:19) The characteristic energy Tα is reduced significantly 1 K − ukvq∗′ n¯q− 2 hhS−αq′;α†k′iiiωn ctoorm2painretdhteoetxhpeocnoennvteianltifounnacltiKonon:dotemperaturebyfac- (cid:18) (cid:19) 1 − (ukuq′ −vkvq∗′) n¯q− 2 hhSzαq′;α†k′iiiωn Tα TK0 T0. (115) (cid:18) (cid:19) K ∼ D K − 38(ukuq′ +vkvq∗′)Gαq′k′(iωn) (cid:18) (cid:19) Thisfactorappearsbecausethenumberofchannelofthe J 3 n¯ 1/2 i J 3 1 k conductionelectronsinthiscaseisjusthalfofthenormal = − Γkk′ −2N 8 q iωn−ξqα − 2N 8 q iωn−ξqα Kondo system. The resistivity is also calculated as X X × Xq′ (ukuq′ +vkvq∗′)Gαq′k′(iωn). (106) R=R0h1+ ρF2|J|log(cid:18)π2ekγBDT(cid:19)+···i, (116) Then we obtain with a factor 1/2. 2 Gαkk′(iωn) = iωδkk′ξ + 38 2JN iω 1 ξ n− kα (cid:18) (cid:19) n− kα C. Entropy and Specific Heat 1 1 × Xq′ iωn−ξq′α1+ 2JN p in¯ωpn−−1ξ/p2α The energy expectation value E =hHi is given by × Xq (ukuq+vkvq∗)Gαqk′(Piωn). (107) E = ξkhα†kαki− 2JN h{Sz(ukuk′ −vkvk∗′) k kk′ X X Wanedhvave2s=et1u/k2,=w1e/h√a2v.eBecause vk satisfies vk =−v−k + S+vkuk′ +S−ukvk∗′}α†kαk′i | k| = 1 ξ G† (iω ) J 1 Γ (iω ) v∗ 3 J 2 1 β kα kk n − 2 βN kk n Xk vk∗Gαkk′(iωn) = iωn−k′ξk′αh1− 8(cid:18)2(cid:19) 2Fα(iωn)2 = 1 kXωn ξkα + J 1 Xk iωnt(iωn) . 1 −1 β iωn ξkα 2 βN (iωn ξkα)2 , (108) kXωn − kXωn − × 1+(J/2)G (iω ) α n (117) i where we set The expectation value of the interaction Hamiltonian is 1 1 denoted as V. V is given by F (z) = , (109) α N z ξ kα k − J 1 Xn¯kα 1/2 V = −2N h{Sz(ukuk′ −vkvk∗′)+S+vkuk′ Gα(z) = − . (110) kk′ N z ξkα X Xk − + S−ukvk∗′}α†kαk′i We define J 1 J 1 t(iω ) n = Γ (iω )= . kk n t(z)= 3J Fα(z) . (111) −2 βN Xk 2 βN kXωn iωn−ξkα 16 1+ JG (z) 3 J 2F (z)2 (118) 2 α − 16 2 α (cid:0) (cid:1) 10 This is written as To estimate V, we use the expansion formula for the Fermi distribution function f(ω): J D V = 2ρ(0)ReZ−Ddωf(ω)t(ω−iδ), (119) D dωf(ω)h(ω)= 0 dωh(ω)+ π2(kBT)2h′(0), 6 Z−D Z−D where we adopted the approximation (129) for a differentiable function h(ω). Using this, we obtain F (ω iδ)= πρ(0)i. (120) α ± ∓ 3π 0 1 V = ρ(0)JIm dω ρ(ω) is the density of states of conduction electrons. −16 log(Tα/T) g(βω) Z−D K − We need t(z) to estimate V. Gα(z), which appears in 3ππ2 ∂ 1 the denominator of t(z), contains a singularity. G (z) is (k T)2ρ(0)JIm . written as α − 16 6 B ∂ωlog(TKα/T)−g(βω)(cid:12)ω=0 ((cid:12)130) (cid:12) J 1 1 t(iω ) n G (z) = R (z)+ , α α 2N βN kXωn z−ξkα(iωn−ξkα)2 lWoge(Dar/ekBiTnt)e2reasntdedsoinonloignatrhitehmreigciotner|mlosg(TloKαg(/DT/)|k≫BT1)., (121) The second term is written as π4 1 where V2 =−128kBTρ(0)J(log(Tα/T))2. (131) K 1 F (iω ) F (z) 1 α n α R (z)= − F (z). (122) α α This is expanded as in terms of ρ(0)J: β z iω − 2 n Xωn − π4 ρ(0)J 4 D Rα(z) is evaluated as[18] V2 = 32 2 kBT log k T (cid:18) (cid:19) (cid:18) B (cid:19) 1 βD 1 βz 3π4 ρ(0)J 5 D 2 R (ω iδ) ρ(0) ψ + ψ +i , k T log . (132) α B − ≈ 2 2π − 2 2π − 64 2 k T (cid:20) (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) (cid:18) (cid:19) (cid:18) B (cid:19) (123) In the first term of V, the logarithmic corrections never where ψ is the digamma function and D is the cutoff emerge from the region where βω is large because we energy. We use the following relation, have g(βω) log(βω) for large ω and the T-dependence ρ(0)J D 1 βω is canceled w∼ith log(TKα/T). When βω is small, g(βω) is 1+ log ψ +i expressed in a power series of βω. A dominant contri- 2 2πk T − 2 2π ρ(0)J hTα (cid:18) B (cid:19) (cid:18) (cid:19)i bution is of the order of (log(TKα/T))−2. The integral is = log K g(βω) , (124) restrictedontheinterval( kBT,0)andthefirsttermV1 2 T − is estimated as − h i where 3π 1 0 1 βω V1 ≃ −16ρ(0)J(log(Tα/T))2 dωImψ 2 +i2π 1 x 1 K Z−kBT (cid:18) (cid:19) g(x)=ψ +i ψ . (125) 3π 1 1 2 2π − 2 = k Tρ(0)J π +0.0052 (cid:18) (cid:19) (cid:18) (cid:19) −16 B (log(Tα/T))2 − 8 K h Then the interaction energy is 0.00738+0.000026 . (133) − ··· 3π D 1 i V = ρ(0)JIm dωf(ω) , As a result, V is given as −16 log(Tα/T) g(βω) Z−D K − (126) A 1 V = k Tρ(0)J , (134) where we neglected the term of the order of (ρ(0)J)2 in −2 B (log(Tα/T))2 K the denominator of t(z). V has a logarithmic temper- ature dependence. Because of the relation between the for a constant A>0. free energy and V, From the relation TKα =Dexp(2/(ρ(0)J)), we have dρ(0)J 1 ∂F = dlogTα. (135) V =J , (127) ρ(0)J −log(Tα/D) K ∂J K Using this formula, the entropy obtained from the inter- the additional entropy ∆S(T) is action energy V is ∆S(T)= ∂ (F F0)= J dJ′ ∂ V(J′,T). (128) ∆S = ∂∆F, (136) −∂T − − 0 J′ ∂T − ∂T Z

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.