ebook img

Kois-Ostrowska-etal-PLOSG2016-Bacterial-chromosome-segregation-machinery-in-apically PDF

44 Pages·2017·5.76 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Kois-Ostrowska-etal-PLOSG2016-Bacterial-chromosome-segregation-machinery-in-apically

RESEARCHARTICLE Unique Function of the Bacterial Chromosome Segregation Machinery in Apically Growing Streptomyces - Targeting the Chromosome to New Hyphal Tubes and its Anchorage at the Tips AgnieszkaKois-Ostrowska1☯,AgnieszkaStrzałka1☯,NataliaLipietta1,EmmaTilley2, JolantaZakrzewska-Czerwińska1,3,PaulHerron2,DagmaraJakimowicz1,3* a11111 1 FacultyofBiotechnology,UniversityofWroclaw,Poland,2 InstituteofPharmacyandBiomedicalSciences, UniversityofStrathclyde,Glasgow,UnitedKingdom,3 InstituteofImmunologyandExperimentalTherapy, Wroclaw,Poland ☯Theseauthorscontributedequallytothiswork. *[email protected] OPENACCESS Abstract Citation:Kois-OstrowskaA,StrzałkaA,LipiettaN, TilleyE,Zakrzewska-CzerwińskaJ,HerronP,etal. (2016)UniqueFunctionoftheBacterial Thecoordinationofchromosomesegregationwithcellgrowthisfundamentaltotheprolifer- ChromosomeSegregationMachineryinApically ationofanyorganism.Inmostunicellularbacteria,chromosomesegregationisstrictlycoor- GrowingStreptomyces-Targetingthe dinatedwithcelldivisionandinvolvesParAthatmovestheParBnucleoproteincomplexes ChromosometoNewHyphalTubesandits bi-orunidirectionallytowardthecellpole(s).However,thechromosomeorganizationinmul- AnchorageattheTips.PLoSGenet12(12): e1006488.doi:10.1371/journal.pgen.1006488 tiploid,apicallyextendingandbranchingStreptomyceshyphaechallengestheknownmech- anismsofbacterialchromosomesegregation.ThecomplexStreptomyceslifecycle Editor:PatrickH.Viollier,UniversityofGeneva MedicalSchool,SWITZERLAND involvestwostages:vegetativegrowthandsporulation.Inthelatterstage,multiplecelldivi- sionsaccompaniedbychromosomecompactionandParABassistedsegregationturnmulti- Received:September8,2016 genomichyphalcellintoachainofunigenomicspores.However,therequirementforactive Accepted:November16,2016 chromosomesegregationisunclearintheabsenceofcanonicalcelldivisionduringvegeta- Published:December15,2016 tivegrowthexceptintheprocessofbranchformation.Themechanismbywhichchromo- Copyright:©2016Kois-Ostrowskaetal.Thisisan somesaretargetedtonewhyphaeinstreptomycetevegetativegrowthhasremained openaccessarticledistributedunderthetermsof unknownuntilnow.Here,weaddressthequestionofwhetheractivechromosomesegrega- theCreativeCommonsAttributionLicense,which tionoccursatthisstage.AppliedforthefirsttimeinStreptomyces,labellingofthechromo- permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal somalreplicationinitiationregion(oriC)andtime-lapsemicroscopy,revealedthatin authorandsourcearecredited. vegetativehyphaeeverycopyofthechromosomeiscomplexedwithParB,whereasParA, DataAvailabilityStatement:Allrelevantdataare throughinteractionwiththeapicalproteincomplex(polarisome),tightlyanchorsonlyone withinthepaperanditsSupportingInformation chromosomeatthehyphaltip.Theanchorismaintainedduringreplication,whenParAcap- files. turesoneofthedaughteroriCs.Duringsporegerminationandbranching,ParAtargetsone Funding:ThisworkwasfundedbyMaestro ofthemultiplechromosomalcopiestothenewhyphaltip,enablingefficientelongationof fundingscheme,grant2012/04/A/NZ1/00057from hyphaltube.Thus,ourstudiesrevealanovelroleforParABproteinsduringhyphaltipestab- NationalScienceCentreawardedtoJZC,Poland, co-financedbyHarmoniagrant2014/14/M/NZ1/ lishmentandextension. 00076fromNationalScienceCentre,Poland awardedtoDJ.EJTwasfinancedbyBBSRC(UK) grantBB/D521657/1awardedtoPRH.Thecostof PLOSGenetics|DOI:10.1371/journal.pgen.1006488 December15,2016 1/25 ChromosomeSegregationduringHyphalGrowth publicationwasfinancedbytheWroclawCentreof Biotechnology,programmeoftheLeadingNational AuthorSummary ResearchCentre(KNOW)foryears2014–2018. Toproliferate,cellssynchronizegrowthanddivisionwithchromosomesegregation.In Thefundershadnoroleinstudydesign,data collectionandanalysis,decisiontopublish,or unicellularbacteria,chromosomessegregateduringreplicationbyactivemovementof preparationofthemanuscript. nucleoproteincomplexestowardthecellpole(s).Here,weaskedthequestionhowactive chromosomesegregationoccursintheabsenceofcelldivision,duringhyphalgrowthand CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. branchingofthefilamentousbacterium,Streptomycescoelicolor.Weshowthatinmultige- nomicStreptomyceshyphae,thebacterialsegregationmachineryanchorsasinglechromo- someatthehyphaltip.Throughchromosomalanchorage,segregationproteinsfacilitate chromosometargetingtothenewlyformedgermtubesorbranches.Thus,beingadapted forapicalgrowth,inStreptomyceshyphaethebacterialsegregationmachineryimposesa chromosomedistributionthatisreminiscentofnucleardistributioninapicallygrowing eukaryoticcellssuchasfilamentousfungi. Introduction Chromosomesegregationinunicellularbacteriaisstrictlycoordinatedwiththecellcycleand chromosomesaresegregatedduringtheirreplicationandpriortocelldivision.However,the spatialchromosomeorganizationinbacteria,determinedbythepositionoftheoriginofrepli- cation(oriC)inthecell,differswithrespecttothemorphologyandgrowthstrategyofthe organism[1–3].Thesedifferencesinchromosomeorganizationarereflectedinthespecific, cellcycle-tunedmechanismofchromosomesegregation[4,5].Inmostbacterialspecies(with theexceptionofEscherichiacoliandsomeγ-proteobacteria)efficientchromosomesegregation reliesontheactivityoftwoproteins,ParAandParB[4,6].BybindingparSsitesclustered aroundoriC,ParBassemblesthisregionofthechromosomeintoalargenucleoproteincom- plex.Soonaftertheinitiationofreplication,ParBcomplexesaresegregatedintospecificloca- tionsofthecellduetointeractionwiththeATPase,ParA[6–8].Species-specificdifferencesin spatialchromosomeorganizationarelinkedwithvariationsintheParAandParBchoreogra- phy.Forinstance,duringvegetativegrowthofBacillussubtilis,ParBcomplexesaresegregated bi-directionallytooppositecellpoles,whileinCaulobactercrescentusandinthecaseofVibrio choleraechromosomeI,onlyoneofthetwoParB/oriCnucleoproteincomplexesismoved towardtheoppositepolebytheParAassembly[2].TheinteractionofParAwithproteins localizedatthecellpole,suchasPopZandTipNinC.crescentusorHubPinV.cholerae,trans- latethecellpolaritytoasymmetricchromosomesegregation[9–11].Thechromosome arrangementandmechanismofsegregationremainsunexploredinmultigenomicbacteria suchasthefilamentousactinobacteriaincludingStreptomyces. Streptomycesdifferremarkablyfromotherbacteriawiththeirhyphalgrowththatisreminis- centoffilamentousfungi[12].Moreover,Streptomyceselongatedhyphalcellscontainmultiple copiesoflinearchromosomes.Duringcolonydevelopment,twotypesofhyphalcellsarepro- duced:branchingvegetativehyphaethatformadensemycelialnetworkandsporogenic hyphae,thatareconvertedintochainsofsporesbymultiplecelldivisions.Incontrasttomost bacteriathatextendalongthelateralcellwall,Streptomycesasotheractinobacteria,growby cellextensionatthepoles(tips)[13,14].TheapicalsynthesisofpeptidoglycaninActinobac- teriaislinkedtotheactivityoftheessentialcoiled-coilprotein,DivIVAthatlocalizesatthecell poles[15–17].WhatisuniquetoStreptomycesgrowth,istheunidirectionalcellextensionat thehyphaltips.InStreptomyces,polargrowthisdirectedbyaproteincomplexlocalizedatthe hyphaltip(‘polarisome’ortip-organizingcomplex,TIPOC),whichincludesDivIVAand anothercoiled-coilprotein,Scy[16–18].Branchingisinitiatedbyassemblyofthepolarisome PLOSGenetics|DOI:10.1371/journal.pgen.1006488 December15,2016 2/25 ChromosomeSegregationduringHyphalGrowth atasiteonthelateralwalldistantfromtheextendingtip[14,19].Asimilarmechanismof branchformationwasobservedinthefilamentousfungusNeurospora crassa,suggestingthatit isafeaturesharedbetweenbacteriaandeukaryote[20]. ThetwostagesofStreptomycesdevelopment,vegetativegrowthandsporulation,differwith respecttothecellularorganizationandcellcycleevents.Duringsporulation,multiple,syn- chronizeddivisionsofelongatedsporogeniccellsareaccompaniedbycondensationandsegre- gationofnumerouschromosomalcopies[12].Ourearlierstudiesshowedthatthesegregation proteinsParAandParBuniformlydistributechromosomesalongthelongsporogeniccellat thetimeofitsseptation[21,22].Duringvegetativegrowth,multigenomichyphalcells,named hyphalcompartments,donotundergotypicalcelldivision.Widelyspacedcrosswallsdelimit, butdonotseparate,hyphalcompartmentswhichremainadjacentinlonghyphae[23,24]. Verylittleisknownaboutchromosomeorganizationinvegetativehyphae.Severalcopiesof thechromosomesremainuncondensedandvisiblyunseparatedwhenvisualizedbyDNA staininginhyphalcompartments.FISH(fluorescenceinsituhybridization)experimentsindi- catedthattheendsoflinearchromosomesarespatiallycloseandthechromosomesare unevenlydistributedinvegetativehyphae[25].Inaddition,replisomelabelingdemonstrated thatchromosomesreplicateasynchronouslywithinthecompartmentsandfollowtheextend- ingtip[27,28].Localizationofsegregationproteinsinvegetativehyphaeissignificantlydiffer- entfromtheirlocalizationinsporulatinghyphae.ParBwasvisualizedasmultiple,irregularly spacedcomplexes,withadistinctfocuslocatedataconstantdistancefromthehyphaltip[26]. Meanwhile,ParAinvegetativehyphae,localizesexclusivelyatthehyphaltips(notalongthe cellasinsporogeniccells),whereitinteractswithScy[29].Eventhoughthelocalizationofthe segregationproteinssuggestedtheirengagementintheorganizationoftheapicalchromo- some,chromosomedistributionandtheroleofParAandParBduringgrowthofmultige- nomicvegetativehyphaeremainsunknownintheabsenceofchromosomallocus-specific labellingtools. Tounderstandhowhyphaltipextensionandbranchingarecoordinatedwithdistribution andsegregationofmultiplechromosomalcopiesduringvegetativegrowthofS.coelicolor,we tookadvantageoforiClabelingandtime-lapsefluorescentmicroscopy.Weshowthatinmulti- genomichyphalcellsParAanchorsthesingleapicalchromosomeandunidirectionallysegre- gatesoneofthenewlyreplicatedoriCregionsatthetip.Duringestablishmentofthenew hyphaltip,ParA-mediatedapicaloriCanchoragetargetsachromosomefrommultigenomic celltoanewbranchoragermtube.Ourstudyrevealsauniquemechanismforbacterialchro- mosomesegregationthatisadjustedtoaccommodatehyphalgrowthandbranching. Results AlloriCsinmultigenomicvegetativehyphaeareboundbyParB ToaddressthequestionhowchromosomesaredistributedinS.coelicolorapicallyextending andbranchingvegetativehyphaeweconstructedafluorescentreporter-operatorsystem (FROS)tomarkchromosomaloriCregions. AFROScassettethatcontainedanarrayof120tandemtetOrepeats[30]wasintegrated intotheS.coelicolorchromosomeapproximately29kbfromtheoriCregionbyinvitrotrans- positionandintergenicconjugation[31](Fig1A,S1AFig)resultinginthestrainEJTH31.Sub- sequentlythetetR-mcherrygenewasintegratedintothechromosomeofthisstrainon pMS83mCherryresultingintheFROSstrain,DJ-NL102(S1AFig,strainswereverifiedas showninS1BandS1CFig).AnalysisofDJ-NL102hyphaerevealedirregularlydistributed mCherryfoci(themeandistancebetweenfociwas2.0±1.2μm,S2AandS2BFig).Thefoci disappeareduponadditionofanhydrotetracycline(aTc)totheculturemedium,presumably PLOSGenetics|DOI:10.1371/journal.pgen.1006488 December15,2016 3/25 ChromosomeSegregationduringHyphalGrowth Fig1.ParB-EGFPcomplexesco-localizewithalloriCsinmultigenomicS.coelicolorvegetativehyphae.(A)SchemeofFROS cassettelocalizationintheS.coelicolorchromosome.(B)ImagesofParB-EGFP(green)andFROS(red)fociinvegetativehyphaeofFROS parB-egfpstrain(AK113).Thehyphaltipsaremarkedwithanasterisk,scalebar—1μm.(C)Co-localizationofFROSandParB-EGFPfociin AK113strainalongthevegetativehyphaeandatthetipsofhyphae;thepercentageofthefocilocalizingwithinthegivendistanceis indicated.(D)CorrelationbetweenthedistancefromParB-EGFPtothetipofhyphaeanddistancefromFROSsignaltotipofFROSparB- egfp(AK113)strainhyphae.Thescatterplotwithafittedlinearmodelshowsdatafrom16hyphaemeasuredat10minutetimeintervals. Datawereanalyzedusingamixedeffectsmodelwhichcancompensateforanindividualhyphaeffectandthestandardlinearmodel. Resultsofbothmodelsweresimilar,comparisonofLog-likelihoodsofbothmodelsshowedthatrandomeffectsofindividualhyphaewere notsignificant.CorrelationwascalculatedusingthePearsonmethod. doi:10.1371/journal.pgen.1006488.g001 duetothereliefofTetRbindingtotetO(S2AFig)[30].However,incontrasttoE.coli[30],we didnotdetectanygrowthimpairmentordisturbedreplicationofFROSstrain(s)inthe absenceofaTc(S2C,S2D,S2EandS2FFig).Thissuggeststhat,atleastinvegetativehyphae, thebindingofTetR-mCherrytothetetOarrayintheFROScassettedidnotcauseseriousrepli- cationroadblocksdetrimentaltogrowth. WeexpectedthatinhyphalcellsParB-EGFPshouldco-localizewithatleastsomeoriCsof themultiplechromosomalcopies.Tocheckthis,weanalyzedastrainAK113withtheFROS cassetteandtetR-mcherryexpressedinaparB-egfpbackground.InAK113hyphae,97%ofPar- B-EGFPfociandmCherry-FROSfocioverlapped(distancebetweenfocilessthan1μm)(Fig 1Band1C).WedidnotobserveanyFROSfociunaccompaniedbytheParB-EGFPcomplexat thehyphaltips,suggestingthatthetip-proximalchromosomeisconstantlyboundbyParB. PLOSGenetics|DOI:10.1371/journal.pgen.1006488 December15,2016 4/25 ChromosomeSegregationduringHyphalGrowth Thus,theFROSlabelingoforiCregionsinS.coelicolorconfirmedirregulardistributionof themultiplecopiesofchromosomesandindicatedbindingofParBtoeachchromosomaloriC regioninthemultigenomichyphae. OnlyapicaloriC-ParBcomplextightlyfollowstheextendinghyphaltip EarlierstudiesofchromosomereplicationinS.coelicolorvegetativehyphaeshowedreplisome traffickingandsuggestedthatchromosomesfollowtheextendingtip[27].Theconstantdis- tancebetweentheFROS/ParBcomplexandthetip,observedinsnapshotanalysis,suggests thatthetip-proximalchromosomeisanchoredtothetipduringhyphalextension. Theapplicationoftime-lapsemicroscopyandtheFROSstrains(DJ-NL102andAK113) allowedustoexaminethechromosomedistributionduringhyphalgrowth(Fig2,S3A,S3B, S3CandS3DFig).Theearlierobservationsshowedthatreplicationstartsbeforesporegermi- nation[27,28],andthegerminatingsporesshowedmultipleFROSfoci,asexpected.Inspore germtubes(Fig2Atoppanel,S3AandS3DFigtoppanel,S1Movie)andextendingvegetative hyphaeof24hoursoldcolonies(Fig2Abottompanel,S3DFig,bottompanel),thedistance betweenthehyphaltipandthefirst,tip-proximalFROScomplexwasconstant(1.4±0.4μm), demonstratingthatthefirstoriCfollowstheelongatingtip(Fig2B).Interestingly,thedistance betweenthetipandtheFROScomplexeslocatedfurtherfromthetipwasmorevariableduring hyphalextension(Fig2B,inset).Wecomparedthetip-proximal(oriC1)andtip-distalcom- plexes(oriC2—oriC8)byanalyzingthecorrelationbetweentheirmovementandtipgrowth rates(Fig2C).Thecorrelationwashighforthefirstchromosomeanddecreasedwithan increasingdistancebetweentheoriCsandtheextendingtip. Next,wemeasuredthedistancebetweenthehyphaltipandthefirstFROSsignalinextend- inghyphaeofFROS,parB-egfpstrain(AK113)andplotteditagainstthedistancebetweenthe ParBcomplexandthetip(Fig1D).ThisanalysisconfirmedthatthepositionsoftheParBand FROSsignalsatthehyphaltipwerehighlycorrelatedandaveragedistancebetweenbothcom- plexesandthetipwas1.5–2.0μm. Thus,thetime-lapseanalysisconfirmedthatchromosomesfollowtheextendinghyphaltip. Markedly,onlythefirstoriCremainstightlyassociatedwiththeextendinghyphaltipand maintainsaconstantdistancetoit. ParABproteinslocalizeoriCataconstantdistancetothetip ParBbindstheoriCsofeachchromosomealongthehyphae,butonlythefirstonemaintainsa constantdistanceandfollowstheextendinghyphaltip.AsParAinvegetativehyphaeislocal- izedatthetip[21,29](S4Fig),wehypothesizedthatthepresenceofParAanditsinteraction withthetip-proximalParBcomplexarecriticalforthelocalizationoftheoriC/ParBcomplex attheconstantdistancefromthetip.AnalysisofFROS-markedoriCregionsintheΔparBand ΔparAbackgroundallowedustoverifythis. ThesnapshotsanalysisrevealedthatintheΔparBandΔparA(AK114andAK115)mutant strains,thetip-proximalFROScomplexwasfurtherawayfromthehyphaltipthaninthewild typeFROSstrain.Thedistancesbetweentip-proximalFROScomplexesandthetipwere 2.5±1.4μminΔparB,2.3±1.0μminΔparAand1.4±0.4μmin“wildtype”strain(Fig3A and3B,differencesbetweenmutantsandthewildtypestrainwerestatisticallysignificant, p<0.001,verifiedwithANOVAandaposthocGames-Howelltest).Moreover,thepositionof theapicalFROScomplexexhibitedhighervariationinΔparBandΔparAstrainsthaninthe wildtypestrain(demonstratedwithanF-test;theratioofvarianceswas6.3±1.2forΔparA and11.9±2.3forΔparBinrelationtothewildtypestrain(p<2.2e-16)).Wealsoobservedthat intheΔparAstrain,butsurprisinglynotintheΔparBstrain,thedistancebetweentheedgeof PLOSGenetics|DOI:10.1371/journal.pgen.1006488 December15,2016 5/25 ChromosomeSegregationduringHyphalGrowth Fig2.Thetip-proximalchromosomefollowstheextendingvegetativehyphaetip.(A)Time-lapsesnapshotsoftheFROS strain(DJ-NL102)germinatingspore(toppanel)andvegetativehypha(bottompanel).TheimagesaretheoverlayofTetR-mCherry fluorescence(red)andDICimage(gray)(forseparateimagesofTetR-mCherryfluorescenceandDICseeS3DFig).Thearrows indicate:red—oriC1(closesttothetipofthehypha),yellow—oriC2,purple—oriC3,asterisksindicatethetipofoutlinedhyphae,scale bar—1μm.(B)PositionsoftheFROScomplexesintheextendinghyphaeofFROSstrain(DJ-NL102).Greybarsarerepresentations oftheextendinghyphaewith95%confidenceintervalforhyphallengthandsemitransparentcoloreddotsrepresentoriCpositions PLOSGenetics|DOI:10.1371/journal.pgen.1006488 December15,2016 6/25 ChromosomeSegregationduringHyphalGrowth (red–oriC1,yellow–oriC2,purple–oriC3,asshownintheschematicdrawingattheright),coloredlinesindicate95%mean confidenceintervals(analyzedfor41hyphae).Inset:Distribution(shownasprobabilitydensityfunction)ofthedistancesbetweenthe hyphaltipandtheoriC1(red),oriC2(yellow)andoriC3(purple).(C)CorrelationofhyphalextensionrateandFROScomplex movementcalculatedfor8subsequentoriCsfromthetip.Scatterplotswithfittedlinearmodelsshowdatafrom20hyphaemeasured at10minutetimeintervals,greyareaindicates95%confidenceintervalforthemodel.Minussignmeansthatthedistancebetween thechromosomeandthetipisincreasingandaplussignthatitisdecreasing.Datawereanalyzedusingamixedeffectsmodel, whichcancompensatefortheeffectofindividualhyphaeandastandardlinearmodel.Resultsofbothmodelswereverysimilar, comparisonofLog-likelihoodsofbothmodelsshowedthatrandomeffectsofindividualhyphaewerenotsignificant.Inset:the calculatedcorrelationinrelationtotheoriCpositioninthehyphaewithafittedlinearmodel.Correlationswerecalculatedusing Pearsonmethodwith95%confidenceintervals. doi:10.1371/journal.pgen.1006488.g002 nucleoidandthehyphaltipwasincreased,whencomparedtothewildtypeFROSstrain(S5 Fig,onlythedifferencebetweentheΔparAandthewildtypewasstatisticallysignificant, p<0.001verifiedwithANOVAandposthocTukey’stest). Theincreaseddistanceofthetip-proximaloriCtotheextendinghyphaltipintheΔparA (AK115)andΔparB(AK114)strainswasconfirmedbytime-lapseanalysisofFROScomplex dynamics(S6Fig).PlottingthecorrelationbetweenthehyphalextensionrateandoriCmove- mentshowedthattheassociationofthefirstoriCwiththehyphaltipwasvisiblydecreasedin themutantstrains(Fig3C).AlthoughchromosometraffickinginthehyphaeoftheΔparAand ΔparBstrainswasmaintained,wenotedaslightlyincreasedvariationofthedistancesbetween oriC2ororiC3andthetip(S6Fig). Fig3.TheconstantdistancebetweenoriCandthehyphaltipisdependentonParAB.(A)ImagesofFROSinthe“wildtype”FROS strain(DJ-NL102),ΔparAFROS(AK115)andΔparBFROS(AK114)strains.TheimagesaretheoverlayofTetR-mCherryfluorescence (red)andDICimage(grey),asterisksindicatethetipofhyphae,scalebar—1μm.(B)Distribution(shownasprobabilitydensityfunction)of thedistancesbetweenthehyphaltipandtip-proximalFROSsignalin“wildtype”FROS(DJ-NL102),ΔparAFROS(AK115)andΔparB FROS(AK114)strains.(C)Correlationbetweenhyphalextensionrateandthetip-proximaloriCmovementvelocityin“wildtype”FROS (DJ-NL102),ΔparAFROS(AK115)andΔparBFROS(AK114)strains(analyzedfor41ofDJ-NL102,31AK115and30AK114hyphae). Scatterplotswithfittedlinearmodels,greyareaindicates95%confidenceintervalforthemodel. doi:10.1371/journal.pgen.1006488.g003 PLOSGenetics|DOI:10.1371/journal.pgen.1006488 December15,2016 7/25 ChromosomeSegregationduringHyphalGrowth OuranalysesshowthatintheΔparAandΔparBmutantstrains,chromosometraffickingin hyphaewasmaintainedalbeitslightlydisturbed.Moreover,bothsegregationproteinsParA andParBwereessentialforanchorageofthetip-proximalchromosomeoriCregionatthetip oftheextendinghyphae. ParApositionsthetip-proximalParB–oriCcomplex Havingestablishedthatbothsegregationproteinsarerequiredforthetip-proximaloriC localization,wesoughtconfirmationthatParAanchorsandorganizesthefirstParBcom- plex.Toaddressthisquestion,wecomparedthelocalizationoftheParBcomplexinasetof strainswithdifferentparAmodifications:ΔparA(J3318),aparAoverexpressionstrain (DJ532)andastrainwithamutationthatabolishestheinteractionwithParBandScy— parA (DJ598)[29]. mut InparAmutantstrains,thetip-proximalParBcomplexwasdelocalizedandpositionedfur- therawayfromthetipthaninthewildtypestrain.ThedistancebetweentheParB-EGFPcom- plexandthetipwas2.2±1.4μmintheΔparAstrain,3.0±1.5μminthestrainoverexpressing parAand2.5±1.1μmintheparA strainincomparisonto1.7±0.8μminthecontrol mut parB–egfpstrain(Fig4Aand4D,thedifferencesbetweenthemutantsandthewildtypestrain werestatisticallysignificant,p<0.001,calculatedwithANOVAandposthocGames-Howell test).ThemeasureddistanceofParB-EGFPcomplextothetipsomewhatdiffersfromearlier reports[26]andfromoriC–tipdistance(1.4±0.4μm,seeabove).Thisispossiblyduetodiffer- entsampleprocessinganddataanalysis(useofcellwallstaininginsteadoftransmittedlight images(Figs1,2and3)presumablyaffectstheanalysisofthehyphaltipposition).Thevaria- tionofthetip-proximalParBcomplexpositioningintheparAmutantstrainswasveryhigh (shownwithanF-test,theratioofvariances3.0±0.8forΔparA,3.2±0.7forparAoverproduc- tionand1.7±0.4forparA strain(p<0.001))(Fig4D). mut OverexpressionofparAresultedinthemostnotablechangeoftheParBcomplexposition. ImmunostainingofParAinthewildtypeparB-egfpstrainrevealedthattheParBcomplexwas positionedattheedgeoftheParAsignal(Fig4B).TheoverproductionofParAledtoahuge accumulationofParAatthehyphaltipsandshiftedtheParBcomplexawayfromthetip. WeshowedbeforethattiplocalizationofParAisdependentonScyandParA protein mut ismislocalized[29].However,sincetheParA proteindoesnotinteractwithboth,ParB mut andScy,onthebasisofparA strainanalysis,wecannotconcludethattheScydependent mut localizationofParAdetermineslocalizationofParBcomplex.TheanalysisofParB-EGFP fociintheΔscy,parB-egfpstrain(BD05)showedthatintheabsenceofScy,thedistance betweenthetipandtheapicalParB-EGFPfocusinthenewlyformedbrancheswasmuch morevariedthaninthe“wildtype”strainJ3310(S7Fig).Thisreinforcedthenotionthat Scy-ParAinteractionisrequiredtoestablishanchoragefororiC/ParBcomplexsoonafter branchemergence. Finally,weexaminedwhetherParAinfluencestheoverallorganizationofthetipchromo- somethroughtheParBcomplexandoriCanchorage.Toaddressthisquestion,weanalyzed thelocalizationofParBcomplexesinconjunctionwithDNAstaining(Fig4C).Inthewild typeparB-egfpstrain,theParBcomplexwasfoundatthetip-proximaledgeofthestained nucleoid,whereasintheΔparAstrain,theParBcomplexwaslocatedfurtherawayfromthetip thantheedgeofthenucleoid.MeasurementandplottingoftheParBfluorescenceandDNA stainingintensitiesconfirmedthatintheabsenceofParA,thetip-proximalorientationofthe oriC/ParBcomplexattheedgeofthenucleoidwaslost(Fig4E). Torecapitulate,analysesoftheparAmutantstrainsrevealedthatthedistancebetweenthe firstParBcomplexandthetipisdependentonParA.ParAinteractionswithScyandParB PLOSGenetics|DOI:10.1371/journal.pgen.1006488 December15,2016 8/25 ChromosomeSegregationduringHyphalGrowth Fig4.LocalizationofParBcomplexisdependentonParA.(A)ImagesofParB-EGFP(green)complexesinthehyphaeof”wildtype” parB-egfp(J3310)ΔparAparB-egfp(J3318),parA parB-egfp(DJ532),parA parB-egfp(DJ598)strains,mergedwithcellwall overexp mut staining(gray).(B)Co-localizationofParB-EGFP(green)withimmunostainedParA(blue)in“wildtype”parB-egfp(J3310)andparA overexp parB-egfp(DJ532).ToppanelshowstheParAimmunofluorescence(blue)mergedwithParB-EGFPfluorescence(green).Thebottom panelshowsParB-EGFPfluorescence(green)mergedcellwallstaining(grey).(C)LocalizationofParB-EGFP(green)withinthenucleoid (DNAstaining—red)in”wildtype”parB-egfp(J3310)andinΔparAparB-egfp(J3318).InpanelsA,BandCasterisksindicatethetipof hyphaeandscalebars—1μm.(D)Thedistribution(shownasprobabilitydensityfunction)ofthedistancesbetweenthehyphaltipandthe tip-proximalParB-EGFPcomplexin„wildtype”parB-egfp(J3310),ΔparAparB-egfp(J3318),parA parB-egfp(DJ532),parA parB- overexp mut egfp(DJ598)(analyzedfor170–300hyphae).(E)FluorescenceintensityofParB-EGFPandDNAstainmeasuredfromthehyphaltipin“wild type”parB-egfp(J3310)andΔparAparB-egfp(J3318)(15and21hyphaeanalyzed).Foreachhypha,thefluorescencesignalwas normalizedsothatthemaximumsignalwas100%.LinesaremodelsfittedusingaLoessalgorithmimplementedintheRprogram,greyarea indicates95%confidenceinterval.DashedlineshowsmaximumParBfluorescenceintensityascalculatedbythemodel. doi:10.1371/journal.pgen.1006488.g004 arepresumablyrequiredtoestablishthechromosomaltipanchorage.Furthermore,theParB complexispositionedattheedgeofthetipParAassembly,andtheinteractionbetweenthe ParBcomplexandParAorientatesthenucleoidwiththeoriCregiontowardthetipof hyphae. PLOSGenetics|DOI:10.1371/journal.pgen.1006488 December15,2016 9/25 ChromosomeSegregationduringHyphalGrowth AfterreplicationParAanchorsatthetiponeofthenewly–replicatedoriC WehavedemonstratedthatParA,presumablythroughinteractionwithScy,anchorstheoriC/ ParBcomplexatthetip,assuringthatitfollowstheextendinghyphaltip.Thisraisestheques- tionhowthisanchorageisestablishedafteroriCduplication.Toanswerthisquestion,weused astrainwiththeEGFPtaggedreplisomes(DnaN-EGFP,J3337,[28])astheparentstrainfor theintroductionoftheFROSsystem,tomonitorduplicationofthetipproximaloriCbytime- lapseanalysis. WesetouttoexaminehowdaughteroriCsbecomeanchoredafterreplication.Possiblesce- nariosincludedalossofconnectionwiththetipduringoriCreplication;acloseassociationof bothnewlyreplicatedoriCswiththetip,followedbyalossofanchorageofoneofthedupli- catedoriCs;oranchorageofonlyoneofthenewlyreplicatedoriCstothetip.Byanalyzingthe time-lapseimagesoftheFROSstrainexpressingdnaN-egfp(strainAK122),weobservedthe appearanceofaDnaNfocusclosetoatip-proximalFROSfocus(Fig5Atoppanel,B,S8Fig, toppanel,S2Movie).10minafterthereplisomeappearance,wedetected,bothnewlyrepli- catedoriCsseparatedbyadistanceofaround0.8μminalmost15%ofthehyphae.Twenty minuteslater,duplicatedoriCsseparatedbyadistanceofroughly1.3μmwerevisiblein approximately70%ofhyphae(Fig5B,5Dand5E).However,thedistancebetweenthetipand tip-proximaloriCwasthesame20–10minutesbeforeand10–20minutesafteroriCduplica- tion(Fig5C).Thus,afterduplication,thetip-proximaldaughteroriCdidnotmovetowardthe tip,butmaintainedaconstantdistancetothetip(Fig5Band5C).Interestingly,thesecondof thenewlyreplicatedoriCsremainedco-localizedwiththereplisomeinthesubsequenttime- lapseimages(Fig5Atoppanel,Fig5B,S8Fig,toppanel).Thedistancebetweenthetipand tip-distaldaughteroriCsincreasedashyphaeextended(Fig5Band5C).Theseresultsindicate thatwhiletiptheproximaloriCfollowsthetip,thesecondoriCstaysbehindtheextendingtip. IntheΔparAFROSdnaN-egfpstrain(AK123),bothdaughteroriCsremainedcloselyassoci- atedafterduplication(Fig5Abottompanel,S8Fig,bottompanel,S3Movie).IntheΔparA strain(AK123),wedetecteddoubleFROSfocilaterafterreplisomeappearancethanobserved inthe“wildtype”AK122.DaughteroriCsseparatedbyadistanceofapproximately0.9μm werevisible20minutesafterreplisomeappearanceinonly12%ofthehyphae(Fig5Abottom panel,Fig5Brightpanel,D,E).Approximately30minutesafterreplisomedetection,theaver- agedistancebetweentheduplicatedoriCsreached1μminabout35%ofhyphae,butitdidnot exceedthisvalue(forcomparison,inthewildtypehyphaeatthistimepointthedistancewas 1.3μmin70%ofhyphae).Interestingly,intheΔparAstrain,bothoriCsandreplisomesstillfol- lowedtheextendinghyphaltip,butthedistancebetweenthefirstoriCandthehyphaltip remainedgreaterthanthatfoundforthe“wildtype”AK122strain(Fig5C).Thisobservation indicatesthat,althoughbothnewlyduplicatedoriCsstillmovebehindtheextendingtipinde- pendentlyofParA(inΔparAstrain),theirseparationislessefficientandthefirstoriCisnot attachedtothehyphaltip. SinceParBcomplexesformateachoriCinthemultigenomichyphalcompartmentwe expectedthatshortlyafterreplication,bothdaughteroriCsshouldbeboundbyParB.Totest thisweusedthestrainexpressingparB-egfpanddnaN-mcherry(AK101).Time-lapseanalysis showedthatParBcomplexduplication,asoriCduplication,wasdetected30minafterrepli- someappearanceatthetipinalmost70%ofhyphae(S9Fig). InordertoconfirmthatsegregationofduplicatedoriCinhyphaeisefficientinthepresence ofParAwealsocheckedhowthenewlyreplicatedtip-distaloriCsareseparatedinthehyphal stem.TheanalysisofthedistancesbetweenFROSfociaftertheirduplicationshowedthatthe separationoftip-distalfociismuchlessefficientthanseparationoftip-proximalfociwhich occursinpresenceofParA(S10Fig). PLOSGenetics|DOI:10.1371/journal.pgen.1006488 December15,2016 10/25

Description:
In most unicellular bacteria, chromosome segregation is strictly coor- nomic Streptomyces hyphae, the bacterial segregation machinery anchors a (PDF). S2 Fig. Growth and chromosome replication are not disturbed in the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.